The strong coupling constant: state of the art and the decade ahead
- Author(s)
- , D. d’Enterria, S. Kluth, G. Zanderighi, C. Ayala, M. A. Benitez-Rathgeb, J. Blümlein, D. Boito, N. Brambilla, D. Britzger, S. Camarda, A. M. Cooper-Sarkar, T. Cridge, G. Cvetič, D. d’Enterria, M. Dalla Brida, A. Deur, F. Giuli, M. Golterman, A. H. Hoang, J. Huston, M. Jamin, S. Kluth, A. V. Kotikov, V. G. Krivokhizhin, A. S. Kronfeld, V. Leino, K. Lipka, T. Mäkelä, B. Malaescu, K. Maltman, S. Marzani, V. Mateu, S. Moch, P. F. Monni, P. Nadolsky, P. Nason, A. V. Nesterenko, R. Pérez-Ramos, S. Peris, P. Petreczky, A. Pich, K. Rabbertz, A. Ramos, D. Reichelt, A. Rodriguez-Sánchez, J. Rojo, M. Saragnese, L. Sawyer, M. Schott, S. Schumann
- Abstract
Theoretical predictions for particle production cross sections and decays at colliders rely heavily on perturbative Quantum Chromodynamics (QCD) calculations, expressed as an expansion in powers of the strong coupling constant α S . The current O ( 1 % ) uncertainty of the QCD coupling evaluated at the reference Z boson mass, α S ( m Z 2 ) = 0.1179 ± 0.0009 , is one of the limiting factors to more precisely describe multiple processes at current and future colliders. A reduction of this uncertainty is thus a prerequisite to perform precision tests of the Standard Model as well as searches for new physics. This report provides a comprehensive summary of the state-of-the-art, challenges, and prospects in the experimental and theoretical study of the strong coupling. The current α S ( m Z 2 ) world average is derived from a combination of seven categories of observables: (i) lattice QCD, (ii) hadronic τ decays, (iii) deep-inelastic scattering and parton distribution functions fits, (iv) electroweak boson decays, hadronic final-states in (v) e+e−, (vi) e-p, and (vii) p-p collisions, and (viii) quarkonia decays and masses. We review the current status of each of these seven α S ( m Z 2 ) extraction methods, discuss novel α S determinations, and examine the averaging method used to obtain the world-average value. Each of the methods discussed provides a ‘wish list’ of experimental and theoretical developments required in order to achieve the goal of a per-mille precision on α S ( m Z 2 ) within the next decade.
- Organisation(s)
- Particle Physics, Research Platform Erwin Schrödinger International Institute for Mathematics and Physics
- External organisation(s)
- European Organization for Nuclear Research (CERN), Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Technische Universität München, Universidad de Tarapacá, Deutsches Elektronen-Synchrotron DESY, Instituto Oceanográfico, University of Oxford, University College London, Universidad Técnica Federico Santa María, Thomas Jefferson National Accelerator Facility, San Francisco State University, Universitat Autònoma de Barcelona , Michigan State University, Scientific Software Center, Dubna, University of Chicago, Université Paris VI - Pierre-et-Marie-Curie, York University, University of Adelaide, Università degli Studi di Genova, Universidad de Salamanca, Instituto de Física Teórica UAM-CSIC, Universität Hamburg, Southern Methodist University, Università degli Studi di Milano-Bicocca, Brookhaven National Laboratory, Universitat de València, Karlsruher Institut für Technologie, Durham University, Université Paris Saclay, Vrije Universiteit Amsterdam, NIKHEF-Nationaal instituut voor subatomaire fysica, Louisiana Tech University, Johannes Gutenberg-Universität Mainz, Georg-August-Universität Göttingen, Institut Polytechnique des Sciences Avancées
- Journal
- Journal of Physics G: Nuclear and Particle Physics
- Volume
- 51
- No. of pages
- 163
- ISSN
- 0954-3899
- DOI
- https://doi.org/10.48550/arXiv.2203.08271
- Publication date
- 09-2024
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103012 High energy physics
- Keywords
- ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/b6bdaeba-a019-4c6c-afd9-8595ef715602