Two computable sets of multipartite entanglement measures
- Author(s)
- Beatrix Hiesmayr, Marcus Huber, Philipp Krammer
- Abstract
We present two sets of computable entanglement measures for multipartite systems where each subsystem can have different degrees of freedom (so-called qudits). One set, called “separability” measure, reveals which of the subsystems are separable or entangled. For that we have to extend the concept of k separability for multipartite systems to a unambiguous separability concept which we call γk separability. The second set of entanglement measures reveals the “kind” of entanglement, i.e., if it is bipartite, tripartite, …, n-partite entangled and is denoted as the “physical” measure. We show how lower bounds on both sets of measures can be obtained by the observation that any entropy may be rewritten via operational expressions known as m concurrences. Moreover, for different classes of bipartite or multipartite qudit systems we compute the bounds explicitly and discover that they are often tight or equivalent to positive partial transposition.
- Organisation(s)
- Particle Physics
- Journal
- Physical Review A
- Volume
- 79
- No. of pages
- 11
- ISSN
- 1050-2947
- DOI
- https://doi.org/10.1103/PhysRevA.79.062308
- Publication date
- 2009
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 1030 Physics, Astronomy
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/83abc214-77ca-4eaf-b2a6-d79a92a9316d