Exercises to QM2, Summer Term 2018, Sheet 9

1) Lagrangian for a Dirac particle

The Lagrangian density for a classic massive and charged Dirac particle has the form

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi,$$

where $\bar{\psi} = \psi^{\dagger} \gamma^{0}$ is the adjoint Dirac field and one can consider ψ and $\bar{\psi}$ as independent. (a) Use the Euler-Lagrange equations to derive the equation of motion for ψ and $\bar{\psi}$ and show that you correct forms of the Dirac equation.

(b) Determine the generalized momenta $\bar{\pi}$ for ψ and π for $\bar{\psi}$. (The bar superscript concerning complex conjugation is the usual convention.)

(c) Show that the Hamiltonian has the form

$$H = \int d^3 \vec{\mathbf{x}} \, \psi^{\dagger} \Big[-i\vec{\alpha} \cdot \vec{\nabla} + \beta m \Big] \psi \,,$$

where α^i and β are the Dirac matrices discussed in class.

(d) Calculate the Hamiltonian (by doing the integration over \vec{x}) for the general particle/antiparticle field

$$\psi(x) = \sum_{s} \int d^{3}\vec{\mathbf{k}} \left[a(\vec{\mathbf{k}},s) \,\psi^{(+)}_{\vec{\mathbf{k}},s}(x) \,+\, b^{*}(\vec{\mathbf{k}},s) \,\psi^{(-)}_{\vec{\mathbf{k}},s}(x) \,\right].$$

Identify what is highly problematic about this result.

(e) Think about the promoting the Dirac particle field theory to a quantum field theory. Which problem will arise when using commutation relations assuming that $a(\vec{\mathbf{k}}, s)$ and $b(\vec{\mathbf{k}}, s)$ annihilate a particle and anti-particle, respectively, and $a^{\dagger}(\vec{\mathbf{k}}, s)$ and $b^{\dagger}(\vec{\mathbf{k}}, s)$ create a particle and anti-particle, respectively? Show how this problem is resolved when considering instead anti-commutation relations.

(f) Calculate the quantum field theory the equal-time anticommutators $\{\psi_s(t, \vec{x}), \psi_{s'}^{\dagger}(t, \vec{x}')\}, \{\psi_s(t, \vec{x}), \psi_{s'}(t, \vec{x}')\}$ and $\{\psi_s^{\dagger}(t, \vec{x}), \psi_{s'}^{\dagger}(t, \vec{x}')\}.$

2) Diracology

(a) Verify the following relations for the γ matrices. Note that for a number of cases you just need to use their representation-independent property $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$:

- (1) $(\gamma^{\mu})^{\dagger} = \gamma^0 \gamma^{\mu} \gamma^0$,
- (2) $\gamma_{\alpha}\gamma^{\mu}\gamma^{\alpha} = -2\gamma^{\mu},$
- (3) $\gamma_{\alpha}\gamma^{\mu}\gamma^{\nu}\gamma^{\alpha} = 4g^{\mu\nu}$

- (4) $\operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}] = 4g^{\mu\nu}$
- (5) $\not{a}\not{b} = a \cdot b i\sigma_{\mu\nu}a^{\mu}b^{\nu}$, where $a \cdot b \equiv a_{\mu}b^{\mu}$, $\sigma_{\mu\nu} \equiv \frac{i}{2}[\gamma_{\mu}\gamma_{\nu} \gamma_{\nu}\gamma_{\mu}]$

(b) Verify the following properties of the momentum space Dirac spinors, where we have $p^{\mu} = (E_p, \vec{\mathbf{p}})$:

- (1) $(\not p m) u(\vec{\mathbf{p}}, s) = 0$, $(\not p + m) v(\vec{\mathbf{p}}, s) = 0$
- (2) $\bar{u}(\vec{\mathbf{p}},s)(\not p-m) = 0, \qquad \bar{v}(\vec{\mathbf{p}},s)(\not p+m) = 0$