
Exercises to QM2, Summer Term 2018, Sheet 6

You may take c = 1 on this exercise sheet.

1) Lagrange density for the electromagnetic field

The action S for the electromagnetic field coupled to some conserved electric 4-current
in Heaviside-Lorentz units has the form

S =

∫
d4xL

(
Aµ(x), ∂µAν(x)

)
, L = −1

4
FµνF

µν − jµAµ , Fµν = ∂µAν − ∂νAµ .

(a) Derive from the least action principle form of the general Euler-Lagrange equations:

∂µ

(
∂L

∂(∂µAν)

)
− ∂L
∂Aν

= 0 .

(b) Derive from the Euler-Lagrange equations the Maxwell equations ∂µ F
µν = jµ.

(c) Show that the action is indeed gauge invariant under transformations Aµ(x) →
Aµ(x) + ∂µΛ(x), where Λ(x) is an arbitrary (well behaved) scalar function. Which
assumption (!) in addition to using periodic boundary conditions in the finite box
picture do you have to make so that you can show gauge-invariance? Think of the
following question: Is the fact that the current is conserved a consequence of or a
condition for gauge-invariance?

2) Lagrange density for the electromagnetic field in Coulomb gauge I

Start from the Lagrangian from exercise (1) accounting for the effects of the electric
current jµ.

(a) The generalized momentum conjugates of the vector fields Aµ(x) are defined as

πµ =
∂L

∂(∂0Aµ)
, .

Calculate the generalized momentum conjugates for all four comments of Aµ. What do
the results mean physically?

(b) Since A0 is not a physically independent degree of freedom, it can be expressed in
terms of other quantities. Use the Maxwell equations ∂µ F

µν = jµ to derive the equation
of motion for A0 and show that, applying the Coulomb gauge condition ∇A = 0, the
solution for A0 is

A0(t,x) =
1

4π

∫
d3x

ρ(t,x′)

|x− x′|
,

where the 4-current has the form jµ(t,x) = (ρ(t,x), j(t,x)).

(c) Derive the equation of motion for A(t,x).



3) Lagrange density for the electromagnetic field in Coulomb gauge II

Start from the Lagrangian from exercise (1) accounting for the effects of the electric
current jµ.

Calculate the explicit form of the Lagrangian L =
∫

d3xL(t,x) in Coulomb gauge and
show that the result can be written in the form

L =

∫
d3x

[1

2
E2(t,x)− 1

2
B2(t,x) + j⊥(t,x)·A(t,x)

]
− 1

8π

∫
d3x d3x′ ρ(t,x)ρ(t,x′)

|x− x′|
,

where the E, B fields are defined exactly as in the vacuum case discussed in class,

j⊥(t,x) ≡ j(t,x)−∇∂tA0(t,x) ,

and you have to use the explicit form of A0 derived in exercise (2). Note that you may
have to use the integration-by-parts trick several times. Explain the reasons why you
can use it. Argue why one can drop the second term in the definition of j⊥, so that
j⊥ = j.

4) Hamilton operator for an electron, proton and the electromagnetic field

Assume now that you have an electron and a proton located at the generalized coordi-
nates qe(t) and qp(t), so that the electric current adopts the form

jµ(t,x) = − e δ(3)(x− qe(t)) (1, q̇e(t)) + e δ(3)(x− qp(t)) (1, q̇p(t)) ,

and add the to the Lagrangian of exercise (3) the (non-relativistic) Lagrangian for a
free electron and a free proton. expressed as a function of the qi and their generalized
velocities. Use canonical Lagrange formalism to show that the Hamiltonian for this
system can be written in the form

H =

∫
d3x

[1

2
E2(t,x) +

1

2
B2(t,x)

]
− 1

4π

e2

|qe(t)− qp(t)|

+
1

2me

(
pe(t) + eA(t,qe(t))

)2
+

1

2mp

(
pp(t)− eA(t,qp(t))

)2
,

where pe and pp are the generalized momenta of the electron and positron, respectively.
To get to this result one has to discard the so-called self-energy contributions. What is
the physical interpretation of these self-energies. How does the Hamiltonian look for a
infinitely heavy proton at the origin?


