
Exercises “Particle Physics II” (2016)

Numerical values of physical constants and particle physics data can be found at
pdg.lbl.gov (Particle Data Tables).

If not stated otherwise, we are using natural units (h̄ = c = 1).

1. The energy of an electron in the LEP collider (at maximum beam energy)
was about 100 GeV. Compute the corresponding velocity of the electron
and express your result in units of the speed of light.

2. The energy of a proton in the LHC (at maximum beam energy) will be 7
TeV. Compute the corresponding velocity of the proton and express your
result in units of the speed of light.

3. A particle of mass M decays into two particles with masses m1 and m2.
Express the momenta |~p1,2| and the energies E1,2 of the two decay products
in the rest frame of the decaying particle in terms of M , m1 and m2.

4. Apply the result of the previous problem to the decay π± → `±
(−)
ν` , where

` = e, µ. Determine the velocity of e± and µ±, respectively.

5. Determine the range of possible values of momentum and energy of the
electron in the case of the β-decay of a free neutron (n → p e−ν̄e). (The
neutron is assumed to be at rest.)

6. Compute the Compton length of the pion. Discuss its physical relevance.

7. ϕ(t, ~x) is a real (classical) field fulfilling the boundary conditions ϕ(t1,2, ~x) =
f1,2(~x) at some times t1 < t2. Assume further that ϕ(t, ~x) minimizes the
action integral

t2∫
t1

dt

∫
R3

d3xL (ϕ(t, ~x), ∂µϕ(t, ~x)) ,

whith some Lagrangian density L. Show that ϕ(t, ~x) has to satisfy the
Euler-Lagrange equation

∂µ
∂L
∂ϕ,µ

=
∂L
∂ϕ

.

8. Derive the field equation of ϕ4 theory following from the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ

4!
ϕ4 .

9. What is the energy-momentum tensor Tµν of ϕ4 theory? Verify ∂µTµν = 0.



10. The commutation relations of the creation and annihilation operators of a
Hermitian scalar field (spin 0 field) with mass m are given by[

a(p), a(p′)†
]

= (2π)32p0δ(3)(~p− ~p ′)︸ ︷︷ ︸
δ(p,p′)

, [a(p), a(p′)] = 0 ,

where p0 =
√
m2 + ~p 2. The one-particle momentum eigenstate |p〉 is defined

by |p〉 = a(p)†|0〉. The general form of a normalizable one-particle state
|ψ(1)〉 is given by

|ψ(1)〉 =

∫
d3p

(2π)32p0︸ ︷︷ ︸
dµ(p)

|p〉ψ(1)(p) .

(a) 〈p|p′〉 =?

(b) Determine the normalization condition for the momentum-space wave
function ψ(1)(p) implied by the state normalization 〈ψ(1)|ψ(1)〉 = 1.

(c) Show that the projection operator

P (1) =

∫
dµ(p)|p〉〈p|

satisfies indeed P (1)P (1) = P (1).

11. The two-particle momentum eigenstate |p1, p2〉 is defined by

|p1, p2〉 = a(p1)
†a(p2)

†|0〉 .

(a) 〈p1, p2|p′1p′2〉 =?

(b) Determine the operator P (2) projecting on the two-particle subspace.

(c) Discuss the general form of a normalizable two-particle state |ψ(2)〉
and the properties of the corresponding two-particle wave function in
momentum space.

12. In the case of n particles, one defines

|p1, . . . pn〉 = a(p1)
† . . . a(pn)†|0〉 .

Show by induction:

〈p1, . . . pn|k1, . . . kn〉 =
∑
σ∈Sn

n∏
i=1

δ(pi, kσ(i)) .



13. Discuss the projection operator P (n) and the general form of an n-particle
state ψ(n).

14. The Fourier decomposition of a real scalar field is given by

φ(x) =

∫
dµ(p)

[
a(p)e−ipx + a(p)†eipx

]
.

Show that a(p) and a(p)† can be obtained from φ(x) by the relations

a(p) = i

∫
d3x eipx

↔
∂ 0 φ(x) , a(p)† = −i

∫
d3x e−ipx

↔
∂ 0 φ(x) .

15. Use the previous formulas to show that the canonical equal-time commu-
tation relations for φ and φ̇ imply the commutation relations for a(p) and
a(p)† displayed in problem 1.

16. The four-momentum operator P µ is given by

P µ =

∫
dµ(p) pµ a(p)†a(p) .

Show the following commutation relations:

[P µ, a(p)] = −pµa(p),
[
P µ, a(p)†

]
= pµa(p)† .

17. Show:
exp(iPa)φ(x) exp(−iPa) = φ(x+ a) .

Hint: It is sufficient to check the infinitesimal version of this relation.

18. Show:
〈0|Tφ(x)φ(y)|0〉 = 〈0|Tφ(x− y)φ(0)|0〉 .

Hint: Use the formula of the previous problem.

19. The propagator of the (free) Klein-Gordon field is defined by

∆(x) = i〈0|Tφ(x)φ(0)|0〉 .

Show: ∆(−x) = ∆(x).

20. Show that ∆(x) (as defined in the previous problem) is a Green function of
the Klein-Gordon operator, i.e.

(2 +m2)∆(x) = δ(4)(x) .

Discuss the behaviour of ∆(x) for positive (negative) x0.



21. The one-dimensional harmonic oscillator is described by the Hamilton ope-
rator

H =
P (t)2

2m
+
mω2Q(t)2

2
.

The position operator Q(t) and the momentum operator P (t) fulfil the
canonical commutation relation

[Q(t), P (t)] = ih̄1 .

(a) Verify that Heisenberg’s equation of motion for Q(t),

Q̇(t) =
i

h̄
[H,Q(t)] ,

implies the classical equation of motion Q̈(t) + ω2Q(t) = 0.

(b) Express Q(t) in terms of the ladder operators a and a†, which satisfy
the commutation relation

[
a, a†

]
= 1.

(c) Calculate the two-point function 〈0|TQ(t1)Q(t2)|0〉.

22. Determine the generating functional of the one-dimensional harmonic os-
cillator,

Z[f ] = 〈0|Te
i
h̄

+∞∫
−∞

dt f(t)Q(t)

|0〉 ,

using the path integral representation

Z[f ] =
1

N

∫
[dq] exp

 i

h̄

+∞∫
−∞

dt

[
m

2
q̇(t)2 − m(ω2 − iε)

2
q(t)2 + f(t)q(t)

] .

Give a physical interpretation of the external field f(t). Verify the result
for the two-point function obtained with the operator method.

Hint: The path integral calculation is completely analogous to the one for
a free field, discussed in detail in the lecture. The position variable q(t) can
be interpreted as a scalar field living in 0 + 1-dimensional spacetime.

23. The generating functional of a free non-Hermitian scalar field φ(x),

Z[f ] = 〈0|Tei
∫
d4x(f(x)∗φ(x)+f(x)φ(x)†)|0〉 ,

can be deduced from the generating functionals of two Hermitian scalar
fields φ1,2(x) with equal masses. Use this relation to derive the explicit
form of Z[f ].

Hint: φ = (φ1 + iφ2)/
√

2, f = (f1 + if2)/
√

2, f ∗i = fi.



24. Using the result of the previous problem, discuss the pairing rule for the
Green function

〈0|Tφ(x1) . . . φ(xm)φ(y1)
† . . . φ(yn)†|0〉

of a non-Hermitian scalar field φ(x).

25. Use Noether’s theorem to derive the conserved current jµ associated with
the global U(1) symmetry φ→ eiαφ, φ∗ → e−iαφ∗ of the Lagrange density
L = ∂µφ

∗∂µφ−m2φ∗φ.

26. Compute the Gaussian mean values

〈〈ϕ(x1)ϕ(x2)e
iSint〉〉 , 〈〈eiSint〉〉

in ϕ4 theory,

Sint = − λ
4!

∫
ddy ϕ(y)4 ,

including the contributions of order λ. Convince yourself that the contri-
butions of graphs with vacuum bubbles cancel when the ratio of the two
terms is taken.

27. Show the following formula in dimensional regularization (α, β ∈ N):∫
ddk

(2π)d
(k2)β

(M2 − k2 − iε)α
=

(−1)βi

(4π)d/2
Γ(α− β − d/2)Γ(β + d/2)

Γ(α)Γ(d/2)
Md+2β−2α .

Discuss the case α = 0 and the implication for δd(0) in dimensional regula-
rization.

28. Write the finite one-loop function (d = 4)

B̄(p2,m2) = B(p2,m2)−B(0,m2)

in the form

B̄(p2,m2) =

1∫
0

dα f(α, p2,m2) .

29. Using the previous result, determine the imaginary part of B̄(p2,m2).

30. Consider the kinematics of the scattering process ϕ(p1)ϕ(p2)→ ϕ(p3)ϕ(p4)
in the center of mass system. Express the Mandelstam variables

t = (p1 − p3)2 , u = (p1 − p4)2

in terms of s = (p1 + p2)
2 and the scattering angle θ in the center of mass

system.



31. Use Noether’s theorem to derive the form of the conserved current jµ asso-
ciated with the global U(1) symmetry

ψ(x)→ eiαψ(x) , ψ̄(x)→ e−iαψ̄(x)

of the Lagrangian L = ψ̄(i∂/−m)ψ.

32. Use the Dirac equation to show that ∂µj
µ = 0 is indeed fulfilled for

jµ = qψ̄γµψ .

33. The Fourier decomposition of the field operator of a free Dirac field is given
by

ψ(x) =
∑
s

∫
dµ(p)

[
b(p, s)u(p, s)e−ip·x + d(p, s)†v(p, s)eip·x

]
.

The creation and annihilation operators fulfil the anticommutation relations{
b(p, s), b(p′, s′)†

}
=

{
d(p, s), d(p′, s′)†

}
= δ(p, p′)δss′ ,

{b(p, s), b(p′, s′)} = {d(p, s), d(p′, s′)} = 0 ,

{b(p, s), d(p′, s′)} =
{
b(p, s), d(p′, s′)†

}
= 0 .

Using these relations, verify the canonical anticommutaion relations for the
field operator:{

ψa(t, ~x), ψb(t, ~y)†
}

= δabδ
(3)(~x− ~y) , {ψa(x), ψb(y)}

∣∣∣
x0=y0

= 0 .

34. Express the energy-momentum operator

P µ =

∫
d3x : ψ†i∂µψ :

and the charge operator

Q = q

∫
d3x : ψ†ψ :

in terms of creation and annihilation operators.

35. Verify the commutation relations of P µ and Q with the creation and anni-
hilation operators listed in the lecture notes.

36. Show:
i [P µ, ψ(x)] = ∂µψ(x) .

Discuss the space-time shift

exp(ia · P )ψ(x) exp(−ia · P )

following from this relation.



37. The generating functional of the free Dirac field was found to be

Z[η, η̄] ≡
〈

0

∣∣∣∣T exp

{
i

∫
d4x

[
η̄(x)Ψ(x) + Ψ(x)η(x)

]}∣∣∣∣ 0〉
= exp

{
i

∫
d4x d4y η̄(x)S(x− y)η(y)

}
.

Using this formula, compute

〈0|T{Ψa1(x1)Ψb1(y1) . . .Ψan(xn)Ψbn(yn)}|0〉 .

38. Compute the two-body phase space integral∫
d3k1
2k01

d3k2
2k02

δ(4)(P − k1 − k2)f(k1 · k2),

where k2i = m2
i . P denotes a timelike 4-vector. Give your final answer in

terms of the function λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz).

Hint: The integral is a Lorentz scalar.

39. Compute

Iµ =

∫
d3k1
2k01

d3k2
2k02

δ(4)(P − k1 − k2) kµ2 .

Hint: The integral is a Lorentz vector and can be written in the form Iµ =
JP µ, where J is a scalar function (why?).

40. Compute the tensor integral

Iµν =

∫
d3k1
2k01

d3k2
2k02

δ(4)(P − k1 − k2) kµ1kν2 .

41. Compute the invariant amplitude of electron proton scattering (e−p→ e−p)
at tree level. Describe the electromagnetic interaction of the proton by
simply using the appropriate covariant derivative in the Dirac Lagrangean
of the proton.

Remark: In contrast to the electron, the proton is not a pointlike partice.
This reflects itself by the fact that e.g. the magnetic moment of the proton
is not correctly desribed by the Dirac Lagrangean alone. In a phenome-
nological description, an additional term ∼ ψ̄σµνψF

µν is needed. In this
exercise, we ignore these complications.

42. Compute the differential cross section of electron proton scattering in the
rest frame of the proton, using the result of the previous problem. Determine
also the total cross section of this reaction.



43. Verify the Gordon decomposition:

ū(p′, s′)γµu(p, s) = ū(p′, s′) [pµ + p′µ + iσµν(p′ − p)ν ]u(p, s)/(2m).

44. Compute γαγµγα, γαγµγνγα and γαγµγνγργα (d = 4).

45. The Higgs (Mh = 125 GeV) interacts with the elementary fermions by the
Yukawa couplings

L = −
∑
f

gf f̄(x)f(x)h(x),

where gf = mf/v (v = 246 GeV). Compute the contribution of the virtual
Higgs boson to the anomalous magnetic moment of the electron (at one
loop).

46. The structure constants fabc of a Lie algebra L with generators Ta are
defined by

[Ta, Tb] = ifabcTc.

Show that fabc is totally antisymmetric, if the Ta form an orthogonal basis
of L (Tr(TaTb) = c δab).

47. Show that (ta)bc = −ifabc defines a representation of L (adjoint representa-
tion).

48. The transformation formula for a nonabelian gauge field Aµ = AaµTa under
a local gauge transformation is given by

A′µ = UAµU
−1 +

i

g
(∂µU)U−1.

Show that the generalized field strength tensor

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]

transforms as
F ′µν = UFµνU

−1.

49. The positive frequency part of the massless scalar propagator is given by

∆+
0 (x) := i

∫
d3p

(2π)32p0
e−ip·x, x0 → x0 − iε, p0 = |~p |.

Show that this function can be written in the form

∆+
0 (x) =

1

4π2i[(x0 − iε)2 − ~x 2]
.

50. Determine the propagator of a real spin 1 field described by the Lagrangian

L = −1

4
FµνF

µν +
M2

2
AµA

µ,

where Fµν = ∂µAν − ∂νAµ.


