Chapter 3: Problems in One Dimension

Application of concept of quantum mechanics to simple systems in 1 dimension:

- An impenetrable box → only discrete energy eigenvalues exist
- Harmonic oscillator potential → zero-point energy & algebraic solution & coherent states
- A potential wall, steps → reflection & transmission into a potential well & tunneling
- δ-function potential → bound states and scattering eigenstates of the Hamiltonian operator

3.1 Particle in an Impenetrable Box

Consider particle trapped in a potential $V(x) = \begin{cases} 0 & ; 0 \leq x \leq L \\ \infty & ; x < 0 \text{ or } x > L \end{cases}$

We need to determine all possible energy eigenvalues and the corresponding eigenfunctions from the time-independent Schrödinger equation:

$$-\frac{h^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + V(x) \psi(x) = E \psi(x)$$

Infinite potential region: Consider $V(x) = \infty$ for $x \to \pm \infty$. The term $\frac{h^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2}$ is finite almost everywhere (i.e., everywhere except at exceptional and separated points) and we have $E < \infty$.

So $\psi(x)$ must vanish almost everywhere.

We can therefore conclude that $\psi(x) = 0$ in the region where $V(x) = \infty$.

Smoothness of $\psi(x)$ at boundary points $x = 0, L$. For any finite L (with $L \to \infty$) $\psi(x)$ must be smooth, because if $\psi(x)$ were discontinuous (i.e., $\psi(x) \approx 0$ for x close to zero) we had $\frac{\partial^2 \psi(x)}{\partial x^2} \approx 0$, which does not appear in the time-independent Schrödinger equation. So we must have $\psi(x) = 0$. $\psi(x)$ is also continuous everywhere in the region $0 < x < L$.

Zero potential region: We have to solve the following eigenvalue problem with boundary conditions:

$$-\frac{h^2}{2m} \frac{\partial^2 \phi(x)}{\partial x^2} + E \phi(x) = 0, \quad \phi(0) = \phi(L) = 0$$

This is the differential equation for trigonometric functions and the general solution without yet considering the boundary condition reads $\phi(x) = N \exp(i(kx))$ with $E = \frac{h^2 k^2}{2m}$ and $k, a, b \in \mathbb{R}$.

The boundary conditions further restrict the possible eigenvalues and the form of the eigenfunctions.

$\phi(0) = 0$: $\sin(kL) = 0 \Rightarrow L = \frac{\pi}{k} (n = 1, 2, \ldots)$

$\phi(L) = 0$: $\sin(n\pi) = 0 \Rightarrow kL = \frac{n\pi}{2} \Rightarrow E = \frac{\pi^2 n^2}{2mL^2}$, $n \in \mathbb{N}$.

We thus obtain as the energy eigenfunctions and the associated energy eigenvalues:

$$\phi_n(x) = N \sin \left(\frac{n\pi x}{L} \right) \text{ with } E_n = \frac{\pi^2 n^2}{2mL^2}$$
Normalization gives the condition:
\[N^2 \int_0^L \sin^2 \left(\frac{n\pi}{L} x \right) \, dx = \frac{N^2}{2} \implies N^2 = \frac{2}{L} \]

4. Final result: \(\phi_n \): energy eigenfunctions; \(E_n \): energy eigenvalues

\[\phi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{n\pi}{L} x \right), \quad E_n = \frac{n^2 \pi^2}{L^2}, \quad n = 1, 2, 3, \ldots \quad (n \in \mathbb{N}) \]

\[E_n = \frac{E_1}{2}, \quad \text{so} \quad E_n = \frac{1}{2n^2 \pi^2}, \quad E_2 = 4E_1, \quad \ldots \quad E_n = n^2 E_1 \]

\[\langle \phi_n | \phi_m \rangle = \frac{1}{L} \int_0^L \phi_n^*(x) \phi_m(x) \, dx = \delta_{nm} \]

4. Completeness: Every continuous wave function \(\psi(x), \ x \in [0,L] \) with \(\psi(0) = \psi(L) = 0 \) can be expanded in the \(\phi_n \) within as a superposition of the energy eigenfunctions: (→ Fourier Analysis!)

\[\psi(x) = \sum_{n=1}^\infty \phi_n(x) \, c_n, \quad c_n = \langle \phi_n | \psi \rangle = \frac{1}{L} \int_0^L \phi_n^*(x) \psi(x) \, dx \]

This implies the completeness relation

\[\sum_{n=1}^\infty \phi_n(x) \phi_n(y) = \delta(x-y) \]

4. Time evolution:

\[\psi(x,t) = e^{-\frac{iE_n t}{\hbar}} \sum_{n=1}^\infty c_n \phi_n(x) = \sum_{n=1}^\infty e^{-\frac{iE_n t}{\hbar}} c_n \phi_n(x) \]
Consider particle in the harmonic oscillator potential $V(x) = \frac{k}{2}x^2$.

Hamilton operator: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2} m \omega^2 \hat{x}^2$

We can easily see that the energy spectrum of \hat{H} contains only real numbers $E \geq 0$, because

$$\langle 4 \mid \hat{H} \mid 4 \rangle = \frac{1}{2}m \langle 4 \mid \hat{p}^2 \rangle + \frac{m \omega^2}{2} \langle 4 \mid \hat{x}^2 \rangle$$

$$= \frac{1}{2}m \langle 4 \mid \hat{p}^2 \rangle + \frac{m \omega^2}{2} \langle 4 \rangle \langle 4 \rangle = 0$$

The ground state is the energy eigenstate with the lowest energy eigenvalue. Using Heisenberg's Uncertainty Principle, we can show that the ground state's energy is indeed ≥ 0.

We may assume that the ground state $\mid 1_0 \rangle$ has the classical property $\langle \hat{X} \rangle = 0$, $\langle \hat{P} \rangle = 0$.

Since it should be the state that simply stays at the minimum and does not move.

$$\langle \hat{X}^2 \rangle = \langle \hat{P}^2 \rangle - \langle \hat{P} \rangle^2$$

Hence $\langle \hat{X}^2 \rangle = \langle \hat{P}^2 \rangle = \frac{\hbar^2}{2m}$ (Heisenberg's Uncertainty Principle)

We can now look for the minimum of the function $E(\mu) = \frac{\hbar^2}{8m} \mu + \frac{m \omega^2}{4} \mu^2$

$$\mu_{\text{min}} = -\frac{\hbar^2}{2m \omega^2} \implies E(\mu_{\text{min}}) = \frac{\hbar^2}{8m} \mu_{\text{min}} = -\frac{\hbar^2}{2m \omega^2} \implies E(\mu_{\text{min}}) - V(\mu_{\text{min}}) = 0$$

So the ground state energy has the property $E_0 = \langle \hat{H} \rangle = \frac{\hbar^2}{2m \omega^2}$.

It turns out that the ground state is the Gaussian wave packet from Chap. 29. With $\mu_0 = 0$:

$$\psi_0(x) = (2\pi)^{\frac{1}{4}} \frac{1}{\sqrt{\mu_0}} \exp\left(-\frac{x^2}{2\mu_0}\right)$$

We check:

$$-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi_0(x) - \frac{m \omega^2}{2} x^2 \psi_0(x)$$

$$\implies -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi_0(x) + \frac{m \omega^2}{2} \psi_0(x) = \frac{\hbar^2}{8m \omega^2} \psi_0(x) + \frac{\hbar^2}{4m \omega^2} \psi_0(x)$$

So we must have $\mu_0 = \left(\frac{\hbar}{2m \omega}\right)^2$ and get $E_0 = \frac{\hbar^2}{2m \omega^2}$ as the ground state energy.

Note that $\frac{1}{2m} \langle \hat{P}^2 \rangle = \frac{m \omega^2}{2} \langle \hat{X}^2 \rangle$, so kinetic and potential energy average values are equal in the ground state.

Note: The ground state wave function is unique (up to a global phase factor).
Ladder operators:

From Chp. 2.8 (generalized uncertainty relation) and the fact that the ground state \(|\phi_0\rangle \) minimizes the Heisenberg's uncertainty relation it follows that

\[
\left(\frac{\hbar^2}{2m} \right)^{\frac{1}{4}} \left(\frac{\hbar}{\Delta x} \right)^{\frac{1}{4}} \Delta x = \frac{\hbar}{2} \text{ and } \Delta P = \frac{\hbar}{2} \Delta x
\]

It turns out to be extremely useful to define the ladder operators

\[
a : = \left(\frac{m \hbar^2}{2} \right)^{\frac{1}{4}} X + i \left(\frac{1}{2 \hbar m \omega} \right)^{\frac{1}{4}} P, \quad a^+ = \left(\frac{m \hbar^2}{2} \right)^{\frac{1}{4}} X - i \left(\frac{1}{2 \hbar m \omega} \right)^{\frac{1}{4}} P
\]

\[
\Rightarrow X = \left(\frac{m \hbar^2}{2} \right)^{\frac{1}{4}} (a + a^+) \quad \text{and} \quad P = \left(\frac{\hbar m \omega}{2} \right)^{\frac{1}{4}} i(a^+ - a)
\]

The commutation relation of the \(a \) and \(a^+ \) reads:

\[
[a, a^+] = 1 \quad \Rightarrow \quad N = a a^+ - 1
\]

We also have that the Hamiltonian operator \(N = a a^+ \) called number operator can be written as

\[
\hat{N} = \frac{m \hbar^2}{2m} X^2 + \frac{1}{2m \omega} P^2 + \frac{i}{\hbar \omega} [X, P] = \frac{1}{\hbar \omega} \left(\frac{1}{2m \omega} P^2 + \frac{m \hbar \omega}{2} X^2 \right) - \frac{1}{2} = \frac{1}{\hbar \omega} \hat{H} - \frac{1}{2}
\]

such that the Hamiltonian can be expressed as

\[
\hat{H} = \hbar \omega \left(a^+ a + \frac{1}{2} \right) = \hbar \omega \left(N + \frac{1}{2} \right)
\]

We also have the following commutation relations:

\[
[a, a^+] = 1, \quad [N, a^+] = -a
\]

\[
\Rightarrow \quad [\hat{H}, a^+] = \hbar \omega a^+, \quad [\hat{H}, a] = -\hbar \omega a
\]

Algebraic construction of the energy eigenstates:

We know that \(a |\phi_0\rangle = 0 \) with \(|\phi_0\rangle \) being unique and so we also have \(\hat{N} |\phi_0\rangle = 0 \), i.e. \(|\phi_0\rangle \) is an eigenstate to \(\hat{N} \) with eigenvalue 0.

\[
\begin{align*}
\hat{N} a^{\dagger} |\phi_0\rangle &= [\hat{N}, a^+] |\phi_0\rangle = a^+ a |\phi_0\rangle = a^+ |\phi_0\rangle, \\
\hat{H} a^{\dagger} |\phi_0\rangle &= [\hat{H}, a^+] |\phi_0\rangle = (\hat{E} + \frac{\hbar \omega}{2}) a^+ |\phi_0\rangle \quad \Rightarrow \quad <a^+ |\phi_0\rangle = \frac{\hat{E} + \frac{\hbar \omega}{2}}{\hbar \omega} \end{align*}
\]

\[
N a^{\dagger} |\phi_0\rangle = [N, a^+] |\phi_0\rangle = a^+ a |\phi_0\rangle = 0
\]

\[
(a a^+) |\phi_0\rangle = \frac{\hat{E} + \frac{\hbar \omega}{2}}{\hbar \omega} a |\phi_0\rangle = (a a^+) |\phi_0\rangle = \frac{\hat{E} + \frac{\hbar \omega}{2}}{\hbar \omega} |\phi_0\rangle
\]

So \(|\phi_0\rangle = a^+ |\phi_0\rangle \) is a normalized eigenstate of \(\hat{N} \) to the eigenvalue 1 and energy eigenstate with the eigenvalue \(\frac{\hbar \omega}{2} \), and we have \(a |\phi_0\rangle = |\phi_0\rangle \).
$\hat{N} a^\dagger \hat{\psi} = [N, a^\dagger] \hat{\psi} = a^\dagger N \hat{\psi} = 2 a^\dagger \hat{\psi}$

$\quad H a^\dagger \hat{\psi} = [H, a^\dagger] \hat{\psi} = a^\dagger H \hat{\psi} = (E_0 + \omega) a^\dagger \hat{\psi}$

$\langle \psi, a^\dagger \hat{\psi} \rangle = \langle \psi, a a^\dagger \hat{\psi} \rangle = \langle \psi, (N+1) \hat{\psi} \rangle = 2 \langle \psi, \hat{\psi} \rangle = 2$

$\quad N a^\dagger \hat{\psi} = a a^\dagger N \hat{\psi} = a a^\dagger \hat{\psi} = (N+1) \hat{\psi} = 2 \hat{\psi}$

$\langle \psi, a a^\dagger \hat{\psi} \rangle = \langle \psi, a \lambda a^\dagger \hat{\psi} \rangle = \langle \psi, \lambda^2 a^\dagger \hat{\psi} \rangle = 2 \langle \psi, \lambda \hat{\psi} \rangle = 2 \langle \psi, (N+1) \hat{\psi} \rangle = 4 \langle \psi, \hat{\psi} \rangle = 4$

So $\langle \hat{\psi}, \lambda \rangle = \frac{1}{\sqrt{2}} \frac{a^\dagger}{\sqrt{\lambda^2}} = \frac{1}{\sqrt{2}} \frac{a^\dagger}{\sqrt{\lambda^2}}$ is a normalized eigenstate of \hat{N} to the eigenvalue 2 and energy eigenstate to the eigenvalue $\frac{\sqrt{2}}{\sqrt{\lambda}}$, and we have $a^\dagger \hat{\psi} = \sqrt{\lambda} \hat{\psi}$.

Proof: exercise

With this method we can (indeed!) construct a GNS of eigenstates of
the number operator \hat{N} and the Hamilton operator H:

$\quad a^\dagger \hat{\psi}_0 = 0 \quad \langle \psi_0, a^\dagger \hat{\psi}_0 \rangle = 1$

$\quad a^\dagger \hat{\psi}_n = \frac{1}{\sqrt{n+1}} (\sqrt{n+1} \hat{a}^\dagger \hat{\psi}_n)$

$\quad a^\dagger \hat{\psi}_n = \sqrt{n+1} \hat{a}^\dagger \hat{\psi}_n \quad \langle \hat{\psi}_n, a^\dagger \hat{\psi}_n \rangle = \langle \hat{\psi}_n, \sqrt{n+1} \hat{a}^\dagger \hat{\psi}_n \rangle = n + 1$

$\quad \langle \hat{\psi}_n, a \hat{\psi}_n \rangle = \langle \hat{\psi}_n, \sqrt{n} \hat{a} \hat{\psi}_n \rangle = \frac{1}{\sqrt{n+1}} \langle \hat{\psi}_n, (n+1) \hat{\psi}_n \rangle = 1 + \frac{1}{\sqrt{n+1}}$

$\quad N \hat{\psi}_n = n \hat{\psi}_n \quad \langle \hat{\psi}_n, a^\dagger \hat{\psi}_n \rangle = \langle \hat{\psi}_n, \sqrt{n+1} \hat{a}^\dagger \hat{\psi}_n \rangle = n + 1$

$\quad H \hat{\psi}_n = \hbar \omega (n + \frac{1}{2}) \hat{\psi}_n \quad \langle \hat{\psi}_n, a^\dagger \hat{\psi}_n \rangle = \langle \hat{\psi}_n, \sqrt{n+1} \hat{a}^\dagger \hat{\psi}_n \rangle = n + 1$

Due to property (x) we call a^\dagger creation operator and a annihilation operator.
The state $\hat{\psi}_n$ is called the n-th excited state.

We can obtain the configuration space energy eigenfunctions by applying the creation operator a^\dagger:

$\quad \phi_n(x) = (\sqrt{2\pi} \hbar)^{-n} \exp \left\{ -\frac{1}{2} \left(\frac{\hbar}{\sqrt{2\pi} \xi} \right)^2 \right\} \quad \varepsilon = \left(\frac{\hbar}{2\pi \xi} \right)^2 = \frac{\hbar^2}{2\pi^2} \Delta x$

$\quad \phi_n(x) = (\sqrt{2\pi} \hbar)^{-n} \exp \left\{ -\frac{1}{2} \left(\frac{\hbar}{\sqrt{2\pi} \xi} \right)^2 \right\} \quad a^\dagger = \frac{1}{\sqrt{2\pi} \xi} \left(\frac{\sqrt{\hbar}}{\sqrt{2\pi} \xi} \right)^2 \left(\sqrt{2\pi} \xi \right)^2 \frac{\hbar}{\sqrt{2\pi} \xi} \Delta x$

$\quad \phi_n(x) = (\sqrt{2\pi} \hbar)^{-n} \exp \left\{ -\frac{1}{2} \left(\frac{\hbar}{\sqrt{2\pi} \xi} \right)^2 \right\} \quad \phi_n(x) = (\sqrt{2\pi} \hbar)^{-n} \exp \left\{ -\frac{1}{2} \left(\frac{\hbar}{\sqrt{2\pi} \xi} \right)^2 \right\} \quad H_n \left(\frac{\hbar}{\sqrt{2\pi} \xi} x \right)$

Hermite polynomials:

$\quad H_n(x) = e^{-x^2} \left(\frac{\hbar^2}{2\pi^2} \frac{\hbar}{\sqrt{2\pi} \xi} \right)^n \frac{d^n}{dx^n} \left(e^{x^2} \right)$

$\quad H_0(x) = 1 \quad H_3(x) = 8x^3 - 12x$

$\quad H_1(x) = 2x \quad H_4(x) = 16x^4 - 40x^2 + 12$

$\quad H_2(x) = 4x^2 - 2 \quad H_5(x) = 32x^5 - 160x^3 + 120x$
Orthogonality: \[\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = \sqrt{\pi} 2^n n! \delta_{nm} \]

Generating function: \[e^{t^2+2tx} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) \]

Differential equation: \[\left(\frac{d^2}{dx^2} - 2x \frac{d}{dx} + 2n \right) H_n(x) = 0 \]

→ Multiparticle state interpretation:

The energy eigenstates \(|k\rangle \) with \(E_k = \hbar \omega (\frac{k}{\hbar} + 1) \) also provide the quantum mechanical description of states with \(n \) identical Bose particles each having energy \(E_k \).

Example: Photons (light particles) with a fixed direction and a fixed frequency \(\omega \).

1|0\rangle: zero photon state, "vacuum" with vacuum energy \(E_0 = \frac{1}{2} \hbar \omega \).

1|n\rangle: n photon state with energy \(E_n = E_0 + n \hbar \omega \).

\(a \): operator that annihilates one photon.

\(a^* \): operator that creates one photon.

→ Coherent States:

The energy eigenstates \(|n\rangle \) do not at all resemble at all a classical particle oscillating in the harmonic oscillator potential with \(x(t) = x_0 \cos(\omega t - \phi) \) because we have at any time \(t \):

\[\langle t | x | t \rangle = x_0 \cos(\omega t - \phi) \quad \text{and} \quad \langle t | x^2 | t \rangle = \frac{1}{2} (x_0)^2 + \frac{(\hbar \omega)^2}{2} (\cos^2(\omega t - \phi) - 1) \]

We want to construct a solution of the time-dependent Schrödinger equation that describes an oscillating behavior.

\[\frac{d}{dt} \langle \psi | \psi \rangle = 0 \quad \text{at} \quad t = 0 \]

A solution with \(\langle \psi | \psi \rangle = \langle \psi_0 | \psi_0 \rangle = 1 \) at \(t = 0 \) may have the correct property, so we may look for a wave function

\[\frac{1}{2} \left(\frac{\Delta x}{\Delta x} + i \frac{\Delta p}{\Delta p} \right) | \psi_0 \rangle = 0 , \quad \Delta x = \frac{\hbar}{2\omega} \frac{1}{\Delta p} = \frac{\hbar}{2\omega} \frac{1}{\Delta p} \text{ from the ground state } |0\rangle \]

\[a | \psi_0 \rangle = \frac{1}{2} \left(\frac{\Delta x}{\Delta x} + i \frac{\Delta p}{\Delta p} \right) | \psi_0 \rangle = 0 | \psi_0 \rangle , \quad z \in \Delta \]

\[a | \psi_0 \rangle = z | \psi_0 \rangle \quad z \in \Delta \]

→ The eigenvalue equation \(a | \psi_0 \rangle = z | \psi_0 \rangle \), \(z \in \Delta \), is an example of a coherent state.

* \(| \psi_0 \rangle \) is obviously a superposition of states with different particle number.

* Destroying one photon from state \(| \psi_0 \rangle \) gives \(| \psi_0 \rangle \) = \(\sum_{n=0}^{\infty} z^n | n \rangle \).

* Important for the quantum mechanical description of coherent light.

We define for convenience: \(|1\rangle = |1\rangle \) and \(|2\rangle = |1\rangle \).

We can make the ansatz \(|z\rangle = f(a^*) |0\rangle \) and because \(\left[a, f(a^*) \right] = f(a^*) |0\rangle = \frac{1}{2} f(a^*) |0\rangle \)

...
We see that $|z\rangle = c \sum_{n=0}^{\infty} \frac{(z)^n}{n!} |n\rangle = c \sum_{n=0}^{\infty} \frac{(2z)^n}{n!} |0\rangle$

Norm: $1 = \langle z | z \rangle = |c|^2 \sum_{n=0}^{\infty} \frac{(2z)^n}{n!} \langle n | n \rangle = |c|^2 \sum_{n=0}^{\infty} \frac{1}{n!} |z|^n = |c|^2 e^{\frac{|z|^2}{2}} \Rightarrow |c| = e^{-\frac{|z|^2}{2}}$

We set $c = |c|$.

$\textbf{Time-dependent solution:}$

$\psi(x,t) = e^{-i\frac{1}{2}x^2} \sum_{n=0}^{\infty} \frac{(-i e^{-i\frac{1}{2}x^2})^n}{n!} \phi_n(x) = e^{-i\frac{1}{2}x^2} \phi(x)$

$\psi(x,t) = e^{-i\frac{1}{2}x^2} \phi(x)$

$\text{with } z(t) = 2 e^{i\omega t}$

$\text{Location and momentum expectation value:}$

$\langle x \rangle = \frac{\langle \psi(x) | x \psi(x) \rangle}{\langle \psi(x) | \psi(x) \rangle} = \frac{\frac{1}{\sqrt{2}} \langle \psi(x) | (a + a^\dagger) \psi(x) \rangle}{\frac{1}{2} \langle \psi(x) | (a - a^\dagger) \psi(x) \rangle}$

$= \frac{\frac{1}{\sqrt{2}} \langle \psi(x) | (a + a^\dagger) \psi(x) \rangle}{\frac{1}{2} \langle \psi(x) | (a - a^\dagger) \psi(x) \rangle} = \frac{\frac{1}{\sqrt{2}} \langle \psi(x) | (a + a^\dagger) \psi(x) \rangle}{\frac{1}{2} \langle \psi(x) | (a - a^\dagger) \psi(x) \rangle} = \frac{1}{\sqrt{2}}$ $2 \pi \hbar \omega \sin(\omega t - \frac{\pi}{2})$

\Rightarrow Exactly corresponds to the motion of a classical particle in the harmonic oscillator potential with the amplitude $x_0 = \frac{\hbar \omega}{2} \pi \sin(\omega t - \frac{\pi}{2})$.

$\textbf{Explicit expression for wave function:}$

$\psi_2(x,t) = e^{-i\frac{1}{2}x^2} \sum_{n=0}^{\infty} \frac{(-i e^{-i\frac{1}{2}x^2})^n}{n!} \phi_n(x) = e^{-i\frac{1}{2}x^2} e^{i(\hbar \omega t - \frac{\pi}{2})} \phi(x)$

$\text{valid if } [a, a^\dagger] = [a^\dagger, a] = 0$

$\text{Use: } e^x = e^{a + b} = e^a e^b = e^{a^\dagger} e^a$

$\Rightarrow a^\dagger = \frac{1}{\sqrt{2}} \left(\frac{x}{\hbar \omega} - \frac{\hbar \omega}{2} \frac{d}{dx} \right), a = \frac{1}{\sqrt{2}} \left(\frac{x}{\hbar \omega} + \frac{\hbar \omega}{2} \frac{d}{dx} \right)$

\Rightarrow

$\psi_2(x,t) = e^{-i\frac{1}{2}x^2} e^{-i(\frac{\hbar \omega}{2}) \frac{d}{dx}} \int e^{i(\hbar \omega t - \frac{\pi}{2})} \phi(x) dx$

\Rightarrow

$|\phi_n(\psi_2)|^2 = \frac{1}{\frac{\hbar \omega}{2}} \exp \left\{ -\frac{1}{\frac{\hbar \omega}{2}} (x - x_0 \cos(\omega t - \frac{\pi}{2}))^2 \right\}$

$x_0 = \frac{\hbar \omega}{2} \pi \sin(\omega t - \frac{\pi}{2})$

This is exactly a Gaussian wave packet oscillating with frequency ω, that does not broaden with time.

This does completely agree with our classic notion of a coherent light beam.
Energy expectation value:

\[
\langle H \rangle = \frac{\hbar}{2} \langle [a, a^+ + \frac{1}{2}] \rangle = \frac{\hbar}{2} \langle a^+ a + \frac{1}{2} \rangle + \hbar \langle [a^+, a] \rangle = \frac{\hbar}{2} + \hbar \langle a^+ a \rangle = \frac{\hbar}{2} + \hbar \langle \phi_{2n} | a^+ a | \phi_{2n} \rangle
\]

= \frac{\hbar}{2} + \hbar \langle |2n+1\rangle^2 - \hbar \omega (2n+1) = \hbar \omega \left(\frac{x_0^2}{2} + \frac{1}{2} \right)
\]

= \frac{\hbar \omega}{2} \langle x_0^2 \rangle + \frac{\hbar}{2}

\]

We see that the classical limit is obtained for \(|x_0| \to 1 \).

This is consistent with the following derivation:

We have \(\langle \phi_{2n} | \phi_{2m} \rangle = e^{-i\pi m} \sum_{\mu=0}^{\infty} \frac{1}{\mu!} \langle \phi_{2n} | \phi_{\mu} \rangle \).

The function \(f_2(x) = \frac{|e^{i\pi n}|}{n!} \) has its maximum at \(n = |x| \), so the states \(|\phi_n \rangle \) with \(n = |x| \) dominate the coherent state for \(|x| \gg 1 \).
3.3. Potential With a Step

Consider a particle that experiences a very localized force at $x=0$ of the form $F_0(x) = -V_0 \delta(x)$.

So the particle moves in a potential of the form $V(x) = V_0 \theta(x)$,

and the force acts to the left.

Hamilton operator: $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V_0 \theta(x)$

We have to find all solutions of the eigenvalue problem $H \phi_0(x) = E \phi_0(x)$.

We have $\langle H \rangle \geq 0$ for any state, so $E \geq 0$ as well.

Region $x < 0$: We have to solve the free particle Schrödinger equation $-\frac{\hbar^2}{2m} \phi_0(x) = E \phi_0(x)$

The solution has the form: $A e^{ikx} + B e^{-ikx}$, $p = \hbar k$, $E = \frac{\hbar^2 k^2}{2m}$, $k \in \mathbb{R}$

Note that $p e^{ikx} = -\hbar e^{-ikx}$, so e^{ikx} describe a right/left moving particle.

Region $x > 0$: We solve the eigenvalue equation $-\frac{\hbar^2}{2m} \phi_0(x) = (E-V_0) \phi_0(x)$

$(E-V_0)$ can be positive or negative, so we must consider 2 cases.

Case $0 \leq E \leq V_0$: Solution has the form: $C e^{-kx}$, $k > 0$

with $\frac{\hbar^2 k^2}{2m} = V_0 - E - V_0 = \frac{\hbar^2 k^2}{2m} \Rightarrow k = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$, $k \in \mathbb{R}$

Note that the solution e^{-kx} is not allowed since it diverges for large x.

Case $E > V_0$: Solution has the form: $C e^{ikx} + D e^{-ikx}$

with $\frac{\hbar^2 k^2}{2m} = E - V_0 = \frac{\hbar^2 k^2}{2m} - V_0 \Rightarrow k = \sqrt{\frac{2m(E - V_0)}{\hbar^2}}$, $k \in \mathbb{R}$

Continuity at $x = 0$: $\phi_0(x)$ and $\phi_1(x)$ must be continuous at $x = 0$, because otherwise $\phi(x)$ would contain terms $\delta(x)$ or $\delta(x)$, which however do not appear in the Schrödinger equation.

Construction of a complete set of energy eigenfunctions

We want to identify the eigenfunctions $\phi_k(x)$ with: $H \phi_k(x) = E_k \phi_k(x)$

(1) Right-moving incoming particle with $E_k < V_0$:

\[
\phi_k(x) = \begin{cases}
 e^{ikx} + R e^{-ikx}, & x < 0 \\
 C e^{-kx}, & x > 0
\end{cases}
\]

with $0 < k = \sqrt{\frac{2m(E_k - V_0)}{\hbar^2}}$.

05/01/2016
Continuity of \(\phi_h(x) \) at \(x = 0 \): \(A + R = C \)

Continuity of \(\phi_h(x) \) at \(x = 0 \): \(\left\{ \begin{array}{ll}
 i k (e^{i k x} - R e^{-i k x}), & x < 0 \\
 - R - i k C e^{-i k x}, & x > 0
 \end{array} \right. \) at \(x = 0 \) gives \(i k (1-R) = -ikC \)

\[C = \frac{2k}{k + ik}, \quad R = \frac{k - ik}{k + ik} \quad \text{with} \quad |C| = \frac{2k}{\sqrt{k^2 + k^2}} < 1 \]

\[L = C = \frac{2k}{k + ik} e^{i \delta_0} = \frac{2}{\sqrt{k^2 + k^2}} \left(\sqrt{k^2 + k^2} \right) e^{i \delta_0}, \quad \delta_0 = -\arctan \left(\frac{k}{k} \right) \quad (-\pi < \delta_0 < 0) \]

\[R = e^{i \delta_0}, \quad \delta_0 = -2 \arctan \left(\frac{k}{k} \right) \quad (-\pi < \delta_0 < 0) \]

\[P \text{ Physical interpretation:} \quad \text{with sharp monochromatic } p = ik \]

\[+ e^{i k x} \Theta(x): \text{increasing wave, coming from left, with probability current } \Delta = \frac{ik}{2im} e^{i k x} \Delta x = \frac{4k}{2im} \]

\[* R e^{-i k x} \Theta(x): \text{totally reflected wave, going left, with probability current } \Delta = \frac{4k}{2im} e^{-i k x} \Delta x = \frac{4k}{2im} \Delta x \]

\[* L e^{-i k x} \Theta(x): \text{wave function penetrating into the classically forbidden zone } x > 0 \text{, with probability} \]

\[\text{current amplitude } \Delta = \frac{4k}{2im} e^{i k x} \Delta x = 0 \quad \text{Quantum effect} \]

\[\text{Note: The reflected wave (as well as the penetrating wave) obtains an additional phase shift } e^{i k x} \text{ which can be physically observed by a time delay of the reflected particle.} \]

Important: This physical interpretation is further supported by the fact that the interference between incoming and reflected waves vanishes:

\[j_{xx} = \frac{k}{2im} \left[i k (e^{-i k x} - R e^{i k x}) \right] \]

\[= \frac{k}{2im} \left[i k (1 - 1R^2 - R e^{2ikx} + R e^{-2ikx}) \right] \]

\[= \frac{k}{2im} (1 - 1R^2) \quad \text{The net current } j_{xx} = 0, \text{ due to } 1R^2 = 1. \]

\[\text{Limit of infinitely high potential wall } \left(V_0 \to -\infty \right): \quad k \to \infty, \quad C \to 0, \quad R \to -1 = e^{-i \pi} \]

\[\text{Phase shift of reflected wave!} \]

(2) Right-moving incoming particle with \(E(k) > V_0 \):

\[\phi_h(x) = \frac{e^{i k x} + R e^{-i k x}}{Te^{i k x}}, \quad x < 0 \quad \text{with} \quad L > \frac{2 \pi \sqrt{V_0}}{k} \]

\[L = \frac{\sqrt{k^2 - 2 \pi \sqrt{V_0}}}{k} < k \]

Continuity of \(\phi_h(x) \) and \(\phi_h(x) \) at \(x = 0 \) gives: \(A + R = T \) and \(i k (1-R) = ikT \)

\[T = \frac{2k}{k + ik}, \quad R = \frac{k - ik}{k + ik} \quad \text{with} \quad |T| < 2 \quad \text{and} \quad 0 < R < 1 \]
Physical interpretation: with sharp momentum p=t k

* $e^{i k x} \theta(x)$: incoming wave coming from left as in (1) with $\theta(0) = \begin{cases} 1 & \text{for } x < 0 \\ 0 & \text{for } x > 0 \end{cases}$

* $R e^{-i k x} \theta(-x)$: partially reflected wave going left with $\theta(x) = -1 - \frac{|R|^2 + i k}{2m} \quad \text{Quantum effect!}$

* $T e^{i k x} \theta(x)$: transmitted wave going right with $\theta(x) = \frac{|T|^2 + i k}{2m}$

with sharp momentum $p=t k$

1. Probability that incoming particle is reflected:
 \[\frac{\text{inc}}{\text{in}} = \frac{|R|^2}{|T|^2 + |R|^2} \quad \text{Probability conservation} \]

2. Probability that incoming particle is transmitted:
 \[\frac{\text{trans}}{\text{in}} = \frac{|T|^2}{|T|^2 + |R|^2} \quad \text{Particle number conservation} \]

3. Limit of infinite energy ($E \to V_0$): $k' \to k, R \to 0, T \to 1$

4. Left-moving incoming particle with $E(k) > V_0$: only $k > \frac{2 \pi V_0}{\hbar}$ is possible

5. Continuity of $\phi_1(x)$ and $\phi_2(x)$ at $x=0$ gives: $A + B' = T$ and $i k (T + B') = -i k T$

6. Exactly the same result for the reflected and the transmitted wave amplitudes as for case (2)!

7. Construction of scattered wave packets:
 * start a $x=x_0$ at $t=0$
 * has group velocity $v_g = \frac{E}{m}$ (right-moving incoming)

8. We take a superposition of ϕ states with a strongly peaked wave function $\frac{1}{2 \pi} e^{-i k x} \phi(x)$ shifted to $x = \frac{k}{2 \pi} t$ and an additional phase $\phi \psi(x) = \frac{1}{2 \pi} e^{-i k x} \phi(x)$ such that the wave packet is located at x_0 at $t=0$ ($x_0 < 0$).

9. Case $E(k) < V_0$: We have to take $\psi(x)$ from case (1)

10. $\psi(x) = \begin{cases} e^{i k x} + \frac{R}{C} e^{-i k x}, & x < 0 \\ C e^{-i k x}, & x > 0 \end{cases}$ with $0 < k < \frac{2 \pi V_0}{\hbar}$

 \[C = \frac{2 \pi}{\hbar} \frac{V_0}{k} \quad \text{phase shifting packet at } x_0 \text{ at } t=0 \]

 \[R = e^{i \delta}, \quad \delta = -i \arctan \left(\frac{k}{k} \right) \quad (-\pi < \delta < 0) \]

 \[C = - i \frac{2 \pi}{\hbar} V_0 \quad \text{velocity} \quad \frac{V_0}{\hbar} = \frac{k_0}{m} \]

 \[(-\pi < \delta < 0) \]
\(t=0 \): Wave packet located at \(x_0 \), moves right with \(v_0 = \frac{p_0}{m} \).

\(t=t_1 \): Wave packet broadens, located at \(x_0 + v_0 t \).

\(t=t_2 \): Packet hits potential barrier, penetration into zone \(x>0 \), continued broadening.

Packet passes a bit at barrier due to \(k \)-dependence of complex phases \(\xi_r \) and \(\xi_e \).

\(t=t_3 \): Reflected wave moves left with \(v_0 = \frac{p_0}{m} \), further broadening. Wave is a bit behind the classic reflected particle due to \(k \)-dependence of complex phase \(\xi_e \). \(\rightarrow \) phase shift.

\(t=t_4 \): Further broadening, phase shift remains constant.

Case \(E(k) > V_0 \): We have to take \(\phi_e(x) \) from case (2).

\[
\phi_e(x) = \begin{cases}
 e^{ikx} + R e^{-ikx}, & x < 0 \\
 T e^{ikx}, & x > 0
\end{cases}
\]

with \(k > \frac{2 \mu V_0}{p_0^2} \), \(v_0 = \frac{p_0}{m} = \frac{k_0}{\mu} \), \(v_0' = \frac{k_0'}{\mu} < v_0 \).

\[
T = \frac{2k}{k+k'} \quad R = \frac{k-k'}{k+k'}
\]

with \(1 < T < 2 \) and \(0 < R < 1 \), \(T, R \in \mathbb{R} \).

\(t=0 \): Wave packet located at \(x_0 \), moves right with \(v_0 = \frac{p_0}{m} \).

\(t=t_1 \): Wave packet broadens, located at \(x_0 + v_0 t \).

\(t=t_2 \): Packet hits potential barrier, continued broadening, transmitted and reflected wave packets separate.

\(t=t_3 \): Reflected wave moves left with \(v_0 = \frac{p_0}{m} \), further broadening. \(\rightarrow \) Bounced back without delay.

Transmitted wave moves right with \(v_0' = \frac{k_0'}{\mu} < v_0 \), further broadening. \(\rightarrow \) Follows classic motion.

\(t=t_4 \): Further broadening.
3.4. Potential Wall

Consider a particle experiencing a force related to a potential wall of the form

\[V(x) = V_0 \Theta(x) \Theta(a-x) \]

\[= \begin{cases} 0, & x < 0 \text{ or } x > a \\ V_0, & 0 \leq x \leq a \end{cases}, \quad V_0 > 0 \]

From our considerations for the potential step we expect that an incoming particle with \(E \leq V_0 \) (coming from the left) can penetrate into the classically forbidden zone \(0 \leq x \leq a \) and with some finite probability emerge for \(x > a \).

We only consider energy eigenfunctions representing incoming particles from the left.

1. Right-moving incoming particle with \(E(k) \leq V_0 \):

\[\phi_k(x) = \begin{cases} e^{ikx} + \frac{1}{2} e^{-ikx}, & x < 0 \quad \text{with} \quad 0 \leq k \leq \frac{2\sqrt{V_0}}{a} \\ \frac{A e^{ikx} + B e^{-ikx}}{T e^{-ikx}}, & 0 \leq x \leq a \\ \frac{C e^{ikx} + D e^{-ikx}}{T e^{-ikx}}, & x > a \end{cases} \]

We have:
- partial reflection towards \(x < 0 \), phase shift
- penetration into classically forbidden zone \(0 \leq x \leq a \)
- classically forbidden transmission into \(x > a \)

\(\Rightarrow \) quantum effect that does not exist classically

2. Right-moving incoming particle with \(E(k) > V_0 \):

\[\phi_k(x) = \begin{cases} e^{ikx} + \frac{1}{2} e^{-ikx}, & x < 0 \quad \text{with} \quad k > \frac{2\sqrt{E}}{a} \\ \frac{A e^{ikx} + B e^{-ikx}}{T e^{-ikx}}, & 0 \leq x \leq a \\ \frac{C e^{ikx} + D e^{-ikx}}{T e^{-ikx}}, & x > a \end{cases} \]

We have:
- partial reflection towards \(x < 0 \)
- quantum effect
- transmission into \(x > a \), like classic particle

\(\Rightarrow \) Nature's application of the tunnel effect — d-Decay

\(\Rightarrow \) d-particle = \(\alpha \) the nucleus

Heavy nuclei are unstable and can decay by the emission of d-particles

Mechanism: Inside the nucleus \(R < 10^{-15} \text{m} = 10^{-15} A^{\frac{1}{3}} \) the nuclear force provides an attractive potential for the d-particle generated by the other protons and neutrons. Outside the nucleus \(r > R \) the nuclear force is screened and the Coulomb-force provides a repulsive potential \(V(r) \sim \frac{2(2-2)e^4}{r} \) for the d-particle.
$^{238}_{92} \text{U} \rightarrow ^{234}_{90} \text{Th} + a$, $E_{\text{th}} = 4.2 \text{ MeV}$, $E_{\text{barrier}} = 28 \text{ MeV}$, $T_{1/2} = 4.5 \times 10^9 \text{ a}$

$^{232}_{90} \text{Th (Thorium)}$, $E_{\text{th}} = 4.0 \text{ MeV}$, $T_{1/2} = 1.4 \times 10^6 \text{ a}$

$^{226}_{88} \text{Ra (Radium)}$, $E_{\text{th}} = 4.8 \text{ MeV}$, $T_{1/2} = 1600 \text{ a}$

$^{212}_{84} \text{Po (Polonium)}$, $E_{\text{th}} = 8.8 \text{ MeV}$, $T_{1/2} = 2 \times 10^{-7} \text{ s}$

→ Physical application of the tunnel effect: Scanning Tunneling Microscopy ("Tunnel-microscopist")

† Nobel prize 1986 for Gerd Binnig and Heinrich Rohrer

Tunnel current depends exponentially on distance d. One can picture the form of the conducting surface by scanning the surface (by moving the tip).