4. Perturbation theory

theory with interaction term:

\[S[\varphi] = S_0[\varphi] + S_{\text{int}}[\varphi] \]

\[\text{action of free theory} \]
\[\text{bilinear in } \varphi \]

\[\text{example: } \varphi^4 - \text{theory} \]

\[S_{\text{int}}[\varphi] = -\frac{\lambda}{4!} \int dx \varphi(x)^4 \]

\[\text{remark: anticipate already dimensional regularization (}dx^4 \rightarrow dx^4\) \]

\[\text{perturbation series:} \]

\[e^{iS} = e^{iS_0} e^{iS_{\text{int}}} = e^{iS_0} \sum_{k=0}^{\infty} \frac{ik^k}{k!} S_{\text{int}}^k \]

\[\langle 0 | T \phi(x_1) \ldots \phi(x_n) | 0 \rangle = \]

\[= \frac{\int [d\varphi] e^{iS} \phi(x_1) \ldots \phi(x_n)}{\int [d\varphi] e^{iS}} \]

\[\text{vacuum of interacting theory} \]
\[
\left< e^{iS_{\text{int}}[\varphi]} \varphi(x_1) \ldots \varphi(x_n) \right> = \frac{\int [d\varphi] e^{iS_{\text{int}}[\varphi]} e^{iS_{\phi}[\varphi]} \varphi(x_1) \ldots \varphi(x_n)}{\int [d\varphi] e^{iS_{\phi}[\varphi]}}
\]

where \(\left< F[\varphi] \right> := \frac{\int [d\varphi] e^{iS_{\phi}[\varphi]} F[\varphi]}{\int [d\varphi] e^{iS_{\phi}[\varphi]}} \)

Gaussian mean value of the function \(F[\varphi] \)

perturbative expansion:

\[
\left< e^{iS_{\text{int}}[\varphi]} \varphi(x_1) \ldots \varphi(x_n) \right> = \sum_{k=0}^{\infty} \frac{i^k}{k!} \left< S_{\text{int}}[\varphi]^k \varphi(x_1) \ldots \varphi(x_n) \right>
\]
in the case of a ϕ^4-theory:

$$
\left< e^{i \int \mathcal{L}} \phi(x_1) \ldots \phi(x_n) \right> = \\
= \sum_{k=0}^{\infty} \frac{(-i \lambda)^k}{k! (4!)^k} \int dy_1 \ldots dy_k \left< \phi(y_1)^4 \ldots \phi(y_k)^4 \phi(x_1) \ldots \phi(x_n) \right>
$$

we know already:

$$
\left< \phi(x_1) \ldots \phi(x_r) \right> = \begin{cases}
0 & \text{for } n \text{ odd} \\
\sum_{\text{pairs}} \frac{1}{i} \Delta(x_i - x_j) \ldots \frac{1}{i} \Delta(x_{r-1} - x_r) & \text{for } n \text{ even}
\end{cases}
$$

difference to previously considered case:

in addition to the product $\phi(x_1) \ldots \phi(x_n)$ with different space-time points x_1, \ldots, x_n also terms from the interaction $\sim \phi(y)^4$ with fields at the same space-time point y

pairing rule (Wick's theorem) \rightarrow form all possible pairings of the $n + 4k$ fields and replace the various pairs by $\frac{1}{i} \Delta(x_i - x_j)$
two types of points:

vertices \(y_1, \ldots, y_k \)

external points \(x_1, \ldots, x_n \)

two types of lines connecting the points:

internal lines: connect vertices

external lines: at least one endpoint is external point

examples:

\[
\begin{align*}
\text{external points:} & \quad x_1 \quad \quad x_2 \quad \quad x_3 \\
\text{external line:} & \quad y_1 \quad \quad y_2 \\
\text{internal line:} & \quad x_4 \quad \quad x_5 \quad \quad x_6 \\
\text{connected graph:} & \quad y_1 \quad \quad y_2 \\
\text{disconnected graph:} & \quad x_1 \quad \quad x_2 \quad \quad x_3 \quad \quad x_4 \quad \quad x_5 \quad \quad x_6
\end{align*}
\]
UV divergences \rightarrow UV-regularization necessary

Bulk force method: stay in $d=4$, $\int d^4k$ made finite by cut-off $|k^\mu| < \Lambda \rightarrow$ violates Lorentz invariance (in intermediate steps of the calculation) \rightarrow Lorentz invariance only recovered in final results

Dimensional regularization respects Lorentz invariance (and other symmetries of the theory under consideration)

Renormalization \rightarrow finite result for observables in the limit $d \rightarrow 4$ (or $\Lambda \rightarrow \infty$)

IR divergences generated by $\int d^d y$... in (disconnected)

Vacuum bubbles

Example: $\Delta(y-y) = \Delta(0)$

$\Delta(x)$ singular for $x^2 = 0$

UV divergence for $d \rightarrow 4$

$\int d^d y \Delta(\mathbf{0}) \Delta(\mathbf{0})$

$\sim V T$ (volume of space-time)
contributions of disconnected vacuum bubbles cancel in the ratio

\[
\frac{\left\langle e^{iS_{\text{int}}} \phi(x_1) \ldots \phi(x_n) \right\rangle}{\left\langle e^{iS_{\text{int}}} \right\rangle}
\]

\[\rightarrow \text{IR divergences do not cause any problems}
\]
(situation a bit more complicated in massless theories)

\text{n-point functions in } \phi^4\text{-theory:}

non-vanishing result only for even } n \text{ (reason: symmetry } \phi \rightarrow -\phi \text{ of } \phi^4\text{-theory)}

two-point function to } O(\lambda) :

\[
\left\langle e^{iS_{\text{int}}} \phi(x_1) \phi(x_2) \right\rangle
\]

\[= \left\langle \phi(x_1) \phi(x_2) \right\rangle - \frac{i\lambda}{4!} \int d^4y \left\langle \phi(x_1) \phi(x_2) \phi(y)^4 \right\rangle + O(\lambda^2)
\]

\[x_1 \quad + \quad x_1 \quad + \quad x_2 \quad + \quad O(\lambda^2)
\]
\[\left\langle \varphi(x_1) \varphi(x_2) \varphi(y)^4 \right\rangle = \]
\[= 4 \frac{1}{i} \Delta(x_1-y) 3 \frac{1}{i} \Delta(x_2-y) \frac{1}{i} \Delta(o) \]
\[\langle 0 | T \varphi(x_1) \varphi(x_2) | 0 \rangle = \frac{1}{i} \Delta(x_1-x_2) \]
\[+ \frac{\lambda}{2} \Delta(o) \int dy \int \frac{d^dR}{(2\pi)^d} \frac{1}{m^2 - R^2 - i\varepsilon} \]
\[= \frac{1}{i} \int \frac{d^dR}{(2\pi)^d} \frac{e^{-i R(x_1-x_2)}}{m^2 - R^2 - i\varepsilon} \]
\[+ \frac{\lambda}{2} \Delta(o) \int dy \int \frac{d^dR_1}{(2\pi)^d} \frac{e^{-i R_1(x_1-y)}}{m^2 - R_1^2 - i\varepsilon} \int \frac{d^dR_2}{(2\pi)^d} \frac{e^{-i R_2(x_1-y)}}{m^2 - R_2^2 - i\varepsilon} \]
\[= \frac{1}{i} \int \frac{d^dR}{(2\pi)^d} \frac{e^{-i R(x_1-x_2)}}{m^2 - R^2 - i\varepsilon} \]
\[+ \frac{\lambda}{2} \Delta(o) \int \frac{d^dR_1}{(2\pi)^d} \frac{d^dR_2}{(2\pi)^d} \frac{e^{-i R_1 x_1} e^{-i R_2 x_1}}{(m^2 - R_1^2 - i\varepsilon)(m^2 - R_2^2 - i\varepsilon)} \]
\[+ O(\lambda^2) \]
\[= \frac{4}{i} \int \frac{d^dR}{(2\pi)^d} \frac{e^{-i R(x_1-x_2)}}{m^2 - R^2 - i\varepsilon} + \frac{\lambda}{2} \Delta(o) \int \frac{d^dR}{(2\pi)^d} \frac{e^{-i R(x_1-x_2)}}{(m^2 - R^2 - i\varepsilon)^2} \]
\[+ O(\lambda^2) \]
\begin{align*}
\langle 0 | T \phi(x_1) \phi(x_2) | 0 \rangle &= \\
&= \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{\delta_{ij}}{m^2 - k^2 - i\epsilon} \left(\frac{1}{\sqrt{2}} \frac{1}{m^2 - k^2 - i\epsilon} \right)^2 \left(1 + \frac{i\alpha_0}{2} \right) + \mathcal{O}(\alpha^2) \\
&= \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{\delta_{ij}}{m^2 - k^2 - i\epsilon} \left(\frac{1}{\sqrt{2}} \frac{1}{m^2 - k^2 - i\epsilon} \right)^2 + \mathcal{O}(\alpha^2) \\
&= \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{\delta_{ij}}{m^2 - i\alpha_0} - \frac{k^2}{2} - i\epsilon + \mathcal{O}(\alpha^2) \\
\text{general structure of two-point function (arbitrary order in perturbative expansion):} \\
\langle 0 | T \phi(x_1) \phi(x_2) | 0 \rangle &= \\
&= \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{\delta_{ij}}{m^2 + \Sigma(k^2) - k^2 - i\epsilon} \\
\text{remark: one-loop contribution to } \Sigma(k^2) \text{ in } \phi^4 \text{-theory} \\
\text{independent of } k^2; \kbar^2 \text{-dependence arises only at two loops in the case of } \phi^4 \text{-theory}
pole of the propagator (in momentum space) shifted by higher order corrections

physical interpretation:

\[
\langle 0 | T \Phi(x) \Phi(0) | 0 \rangle = \\
= \Theta(x^0) \langle 0 | \Phi(x) \Phi(0) | 0 \rangle + \Theta(-x^0) \langle 0 | \Phi(0) \Phi(x) | 0 \rangle \\
= \Theta(x^0) \sum_\alpha \langle 0 | \Phi(x) | \alpha \rangle \langle \alpha | \Phi(0) | 0 \rangle + \Theta(-x^0) \sum_\alpha \langle 0 | \Phi(0) | \alpha \rangle \langle \alpha | \Phi(x) | 0 \rangle \\
= \Theta(x^0) \sum_\alpha \langle 0 | e^{iP_x} \Phi(0) e^{-iP_x} | \alpha \rangle \langle \alpha | \Phi(0) | 0 \rangle + \Theta(-x^0) \sum_\alpha \langle 0 | \Phi(0) | \alpha \rangle \langle \alpha | e^{iP_x} \Phi(0) e^{-iP_x} | 0 \rangle \\
= \Theta(x^0) \sum_\alpha e^{-iP_x x} |\langle 0 | \Phi(0) | \alpha \rangle|^2 + \Theta(-x^0) \sum_\alpha e^{iP_x x} |\langle 0 | \Phi(0) | \alpha \rangle|^2
\]
\[\sum_{n=1}^{\infty} \alpha | \alpha \rangle \langle \alpha | = \langle 0 | + \int d\mu(p) \langle 1p | \langle p | \]

\[+ \sum_{n=2}^{\infty} \frac{1}{n!} \int d\mu(p_1) \ldots d\mu(p_n) \langle 1p_1 \ldots p_n | \langle \text{in} | \langle \text{out} | p_1 \ldots p_n | \text{in} \rangle \]

In our case no contribution from vacuum state as \[\langle 0 | \phi(0) | 0 \rangle = 0 \quad (\text{in theories with} \]

\[\langle 0 | \phi(0) | 0 \rangle \neq 0 \quad \text{take} \quad \phi(x) - \langle 0 | \phi(0) | 0 \rangle \quad \text{instead of} \quad \phi(x) \]

\[\Rightarrow \langle 0 | T \phi(x) \phi(0) | 0 \rangle = \]

\[= \Theta(x^0) \int d\mu(p) e^{-ip.x} | \langle 0 | \phi(0) | p \rangle |^2 \]

\[+ \Theta(-x^0) \int d\mu(p) e^{ip.x} | \langle 0 | \phi(0) | p \rangle |^2 \]

\[+ \text{contributions from intermediate states} \]

\[\text{with} \quad n \geq 2 \]
\(\langle 0 \mid \phi(0) \mid p \rangle \) is independent of \(p \) because of Lorentz invariance:

\(\mid p \rangle = \sqrt{m_p^2 + p^2}, \hat{p} \rangle \) can be obtained by a Lorentz transformation acting on \(\mid m_p, \sigma \rangle \):

\(\mid p \rangle = \sqrt{m_p^2 + p^2}, \hat{p} \rangle = U(L) \mid m_p, \sigma \rangle \),

where \(L(m_p, \sigma) = (\sqrt{m_p^2 + p^2}, \hat{p}) \)

\[\Rightarrow \langle 0 \mid \phi(0) \mid p \rangle = \langle 0 \mid \phi(0) U(L) \mid m_p, \sigma \rangle \]

\[= \langle 0 \mid U(L)^{-1} \phi(0) U(L) \mid m_p, \sigma \rangle = \]

\[U(L) \mid 0 \rangle = \mid 0 \rangle \]

\[= \langle 0 \mid \phi(0) \mid m_p, \sigma \rangle \quad \text{independent of } p \]

\(\phi \) is a scalar field

\(U(L)^{-1} \phi(x) U(L) = \phi(L^{-1}x) \)

\(Z := |\langle 0 \mid \phi(0) \mid p \rangle|^2 \)

with a suitable definition of the phase of \(\mid p \rangle \):

\(|Z| = \langle 0 \mid \phi(0) \mid p \rangle \)
\[
\langle 0 | T \phi(x) \phi(0) | 0 \rangle =
\]

\[
= \Xi \left\{ \Theta(x^0) \int d\mu(p) e^{-ip \cdot x} + \Theta(-x^0) \int d\mu(p) e^{ip \cdot x} \right\} + \ldots
\]

\[
= \frac{1}{i} \Delta(x; m^2_{ph})
\]

\[
= \Xi \frac{1}{i} \int \frac{d^d k}{(2\pi)^d} \frac{e^{-ik \cdot x}}{m^2_{ph} - k^2 - i\varepsilon} + \ldots
\]

pole of the two-point function in momentum space determines the physical mass \(m_{ph} \)

\[
\Rightarrow m^2 + \Sigma(m^2_{ph}) - m^2_{ph} = 0
\]

residue of the pole at \(k^2 = m^2_{ph} \) occurring in

\[
\frac{1}{M^2 + \Sigma(k^2) - k^2 - i\varepsilon}
\]

may be worked out by expanding the function \(\Sigma(k^2) \) around this point:

\[
\Sigma(k^2) = \Sigma(m^2_{ph}) + (k^2 - m^2_{ph}) \Sigma'(m^2_{ph}) + O[(k^2 - m^2_{ph})^2] \Rightarrow \Xi = \frac{1}{1 - \Sigma'(m^2_{ph})}
\]