## Exercises "Particle Physics II"

1. The Fourier decomposition of the vector potential  $\vec{A}(t, \vec{x})$  describing a free electromagnetic field in a box (volume V) with periodic boundary conditions is given by

$$\vec{A}(t, \vec{x}) = \sum_{\vec{k}, \lambda} \frac{1}{\sqrt{V}} \left( e^{i\vec{k}\cdot\vec{x}} e^{-i\omega_{\vec{k}}t} b_{\vec{k}}^{(\lambda)} \vec{\varepsilon}_{\vec{k}}^{(\lambda)} + \text{c.c.} \right) .$$

Show that the field energy is given by

$$H = \frac{1}{2} \int_{\Omega} d^3x \, (\vec{E}^2 + \vec{B}^2) = \sum_{\vec{k},\lambda} \underbrace{2\vec{k}^2 |b_{\vec{k}}^{(\lambda)}|^2}_{H_{\vec{k}}^{(\lambda)}} .$$

2. Show that the momentum of the electromagnetic field is given by

$$\vec{P} = \int_{\Omega} d^3x \, \vec{E} \times \vec{B} = \sum_{\vec{k},\lambda} \frac{\vec{k}}{|\vec{k}|} H_{\vec{k}}^{(\lambda)} .$$

3. The real variables  $q_{\vec{k}}^{(\lambda)}(t)$  and  $p_{\vec{k}}^{(\lambda)}(t)$  are defined by

$$q_{\vec{k}}^{(\lambda)}(t) = b_{\vec{k}}^{(\lambda)}(t) + b_{\vec{k}}^{(\lambda)}(t)^* , \quad p_{\vec{k}}^{(\lambda)}(t) = -i\omega_{\vec{k}} \left( b_{\vec{k}}^{(\lambda)}(t) - b_{\vec{k}}^{(\lambda)}(t)^* \right) ,$$

where

$$b_{\vec{k}}^{(\lambda)}(t) = e^{-i\omega_{\vec{k}}t}b_{\vec{k}}^{(\lambda)} .$$

- (a) Verify the equations of motion  $\dot{p}_{\vec{k}}^{(\lambda)}(t)=\ddot{q}_{\vec{k}}^{(\lambda)}(t)=-\omega_{\vec{k}}^2\,q_{\vec{k}}^{(\lambda)}(t)$  .
- (b) Express the Hamiltonian in terms of  $q_{\vec{k}}^{(\lambda)}(t)$  and  $p_{\vec{k}}^{(\lambda)}(t)$ .
- 4. In the quantized theory, it is convenient to introduce the annihilation and creation operators  $a_{\vec{k}}^{(\lambda)}$ ,  $a_{\vec{k}}^{(\lambda)\dagger}$  by

$$b_{\vec{k}}^{(\lambda)} = a_{\vec{k}}^{(\lambda)} / \sqrt{2\omega_{\vec{k}}} \,.$$

They fulfill the commution relations

$$\left[a_{\vec{k}}^{(\lambda)}, a_{\vec{p}}^{(\sigma)\dagger}\right] = \delta_{\vec{k}\vec{p}} \, \delta_{\lambda\sigma} \ , \quad \left[a_{\vec{k}}^{(\lambda)}, a_{\vec{p}}^{(\sigma)}\right] = 0 \ .$$

Verify that Heisenberg's equation of motion

$$\dot{\vec{A}}(t, \vec{x}) = i \left[ H, \vec{A}(t, \vec{x}) \right]$$

describes indeed the correct time behaviour of the field operator.

5. The ladder operators of a one-dimensional harmonic oscillator  $a, a^{\dagger}$  satisfy the commutation relation

$$\left[a, a^{\dagger}\right] = 1.$$

Show:

- (a)  $[a, (a^{\dagger})^n] = n(a^{\dagger})^{n-1}$
- (b)  $\left[a,f(a^{\dagger})\right]=f'(a^{\dagger})$  Hint: Consider the power series expansion of the function f.
- 6. The coherent state  $|z\rangle$  ( $z \in \mathbb{C}$ ) of a harmonic oscillator is defined by the property  $a|z\rangle = z|z\rangle$ . Show that the solution of this equation is given by

$$|z\rangle = Ce^{za^{\dagger}}|0\rangle$$
.

Hint: Use the formula of the previous problem.

- 7. Write the coherent state  $|z\rangle$  as a linear combination of the normalized energy eigenstates  $|n\rangle$ .  $\langle n|z\rangle=?$  Determine the normalization factor C (up to a phase factor) from the state normalization  $\langle z|z\rangle=1$ .
- 8. The Poisson distribution is defined by

$$p(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!}$$
.

- (a) Check the normalization  $\sum_{n} p(n; \lambda) = 1$ .
- (b) Determine the characteristic function  $\phi(t) = \langle e^{itn} \rangle$ .
- (c)  $\langle n^k \rangle$  can be obtained from the characteristic function.
- (d)  $\langle n \rangle =?, \langle n^2 \rangle =?, \langle n^2 \rangle \langle n \rangle^2 =?.$
- 9. Convince yourself that the probabilities  $|\langle n|z\rangle|^2$  obey a Poisson distribution. What does this imply for  $\langle z|N|z\rangle$ ,  $\langle z|N^2|z\rangle$  and  $\Delta N$ ?  $(N=a^{\dagger}a)$
- 10. Express the operator of the electric field  $\vec{E}(t, \vec{x})$  in terms of creation and annihilation operators. Show that the expectation value of  $\vec{E}$  vanishes for a state with sharp photon number n.
- 11. Consider the coherent state  $|\psi\rangle$  of the electromagnetic field defined by

$$a_{\vec{k}}^{(\lambda)}|\psi\rangle = z_{\vec{k}}^{(\lambda)}|\psi\rangle , \quad z_{\vec{k}}^{(\lambda)} \in \mathbb{C} .$$

What is the expectation value of the electric field in this state?