
Exercises “Particle Physics II”

1. The Fourier decomposition of the vector potential �A(t, �x) describing a free
electromagnetic field in a box (volume V ) with periodic boundary conditi-
ons is given by
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Show that the field energy is given by
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2. Show that the momentum of the electromagnetic field is given by
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(a) Verify the equations of motion ṗ
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(b) Express the Hamiltonian in terms of q
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(t) and p
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(t).

4. In the quantized theory, it is convenient to introduce the annihilation and
creation operators a
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, a
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by
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They fulfill the commution relations[
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Verify that Heisenberg’s equation of motion

�̇A(t, �x) = i
[
H, �A(t, �x)

]

describes indeed the correct time behaviour of the field operator.



5. The ladder operators of a one-dimensional harmonic oscillator a, a† satisfy
the commutation relation [

a, a†
]

= � .

Show:

(a)
[
a, (a†)n

]
= n(a†)n−1

(b)
[
a, f(a†)

]
= f ′(a†) Hint: Consider the power series expansion of the

function f .

6. The coherent state |z〉 (z ∈ �) of a harmonic oscillator is defined by the
property a|z〉 = z|z〉. Show that the solution of this equation is given by

|z〉 = Ceza† |0〉 .

Hint: Use the formula of the previous problem.

7. Write the coherent state |z〉 as a linear combination of the normalized energy
eigenstates |n〉. 〈n|z〉 =? Determine the normalization factor C (up to a
phase factor) from the state normalization 〈z|z〉 = 1.

8. The Poisson distribution is defined by

p(n;λ) = e−λλ
n

n!
.

(a) Check the normalization
∑
n

p(n;λ) = 1.

(b) Determine the characteristic function φ(t) = 〈eitn〉.
(c) 〈nk〉 can be obtained from the characteristic function.

(d) 〈n〉 =?, 〈n2〉 =?, 〈n2〉 − 〈n〉2 =?.

9. Convince yourself that the probabilities |〈n|z〉|2 obey a Poisson distribution.
What does this imply for 〈z|N |z〉, 〈z|N2|z〉 and ΔN? (N = a†a)

10. Express the operator of the electric field �E(t, �x) in terms of creation and

annihilation operators. Show that the expectation value of �E vanishes for
a state with sharp photon number n.

11. Consider the coherent state |ψ〉 of the electromagnetic field defined by

a
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∈ � .

What is the expectation value of the electric field in this state?


