Electroweak Physics at the LHC – Introductory Lecture –

Stefan Dittmaier

MPI München

Universität Wien, October 2007

1 The Large Hadron Collider (LHC) – the world largest particle accelerator

Some facts about the LHC:

• Planned startup: May 2008 (CERN Council, June '07)

After accumulated delay in LHC installation, the originally planned low-energy run is dropped.

- Accelerator: circumference $= 27 \,\mathrm{km}$ 2 beam pipes in "2 in 1 magnet design"
- Magnets: 1232 superconducting dipole magnets (length 14 m, operating at B = 8 T, T = 1.9 K)
- Beams: two proton beams with energy $E_{\text{beam}} = 7 \text{ TeV} = 7000 \text{ GeV}$, energy per beam up to 360 MJ

for comparison:

 $1 \,\mathrm{TeV} \approx 1000 \times m_{\mathrm{p}} \sim \text{energy of motion of a flying mosquito}$ $360 \,\mathrm{MJ} \sim \text{energy of motion of an aircraft carrier at } 12 \,\mathrm{knots}$

- Bunches: 2808 bunches per beam, 10^{11} protons per bunch, beam size of $16 \,\mu m$ at IP
- Luminosity: $L \sim 100 \, {\rm fb}^{-1}$ / exp. / year
- Trigger: $\sim 10^9$ collisions/s $\xrightarrow[online]{} \sim 10^2$ interesting collisions/s \hookrightarrow offline reconstruction \rightarrow millions of Gbytes / exp. / year

LHC accelerator, beam delivery, and experiments

LHC equipment in real life

Experiments at the LHC:

- ATLAS A Toroidal LHC ApparatuS
- CMS Compact Muon Solenoid
- LHCb LHC-beauty
- ALICE A Large Ion Collider Experiment
- TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation
- LHCf LHC-forward

ATLAS & CMS (~ 1800 scientists from ~ 150 institutes each)

- \hookrightarrow general-purpose experiment for recording proton-proton collisions
 - searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism
 - searches for new particles (supersymmetric particles, new gauge bosons, leptoquarks, etc.)
 - study possible quark and lepton compositeness
 - physics of the top quark
 - study physics of B mesons (CP violation, rare decays, spectroscopy, mixing)

The ATLAS detector

"Wheel" of the muon system

Mounting of the endcap

The CMS detector

CMS in real life

Hadronic calorimeter endcap

Tracking system

Particle detection at CMS

How Higgs production might look at the LHC...

 $H \rightarrow ZZ \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ at CMS (=a "clean" event)

Fig. 6.3: Decay of the Standard Model Higgs into 4 muons. All tracks with $p_t>2$ GeV are reconstructed.

Structure of the Electroweak Standard Model

Comparison of the Standard Model (SM) and QED:

	QED	SM
matter fields (spin $\frac{1}{2}$)	e^{\pm}	leptons + quarks
gauge symmetry	${ m U}(1)_{ m em}$	${ m SU}(2) imes { m U}(1)$
\rightarrow gauge bosons (spin 1)	γ	γ , Z^{0} , W^{\pm}

Differences to QED:

- non-abelian gauge group
 - \rightarrow gauge-boson self-interactions
- spontaneous symmetry breaking $SU(2) \times U(1) \rightarrow U(1)_{em}$
 - → massive gauge bosons Z^0 , W^{\pm} Higgs boson H (spin 0)
- \Rightarrow Common description of electromagnetic and weak interactions

Structure of the Electroweak Standard Model and QCD

Comparison of the Standard Model (SM) and QED:

	QED	SM
matter fields (spin $\frac{1}{2}$)	e^{\pm}	leptons + quarks
gauge symmetry	${ m U}(1)_{ m em}$	${ m SU}(3) imes { m SU}(2) imes { m U}(1)$
\rightarrow gauge bosons (spin 1)	γ	γ , Z^{0} , W^{\pm} , g

Differences to QED:

- non-abelian gauge group
 - \rightarrow gauge-boson self-interactions
- spontaneous symmetry breaking $SU(2) \times U(1) \rightarrow U(1)_{em}$
 - → massive gauge bosons Z^0 , W^{\pm} Higgs boson H (spin 0)
- ⇒ Common description of electromagnetic and weak interactions as well as strong interactions

Higgs mechanism and electroweak symmetry breaking

- SM: all particles receive their mass via interaction with the vacuum expectation value of the Higgs field
- → "a quantum-field theoretical ether theory"
 but: "medium Higgs field" has its own particle excitation = Higgs boson

Important ingredient: "spontaneous symmetry breaking"

- \hookrightarrow non-vanishing vacuum expectation value of a scalar field
- SM: "ad hoc" introduced Higgs potential drives symmetry breaking

Investigation of Higgs self-interaction → window to mechanism of symmetry breaking

CERN's down-to-earth explanation:

The Higgs field is like a room full of physicists chattering quietly:

CERN's down-to-earth explanation:

The Higgs field is like a room full of physicists chattering quietly:

A particle is a well-known scientist walking in, attracting a cluster of admirers, thereby receiving resistance to movement ("mass").

CERN's down-to-earth explanation:

The Higgs field is like a room full of physicists chattering quietly:

A particle is a well-known scientist walking in, attracting a cluster of admirers, thereby receiving resistance to movement ("mass").

The Higgs boson is like a rumor crossing the room, creating the same kind of clustering, but this time among the scientists themselves.

Theoretical and experimental facts about the Higgs field / boson:

• Higgs boson not yet found,

 $e^+e^- \rightarrow ZH \text{ at LEP2} \implies M_H > 114.4 \text{ GeV} (95\% \text{ C.L.})$

- SM fit to precision measurements (μ decay, LEP1, LEP2, SLC, Tevatron) $M_{\rm H}$ enters perturbative predictions $\Rightarrow M_{\rm H} < 144 \,{\rm GeV}$ (95% C.L.) LEPEWWG Winter '07
- theoretical bound from "triviality" and unitarity arguments: $M_{\rm H} \lesssim 1 \, {
 m TeV}$
- Higgs field rescues renormalizability and unitarity of the gauge theory with massive gauge bosons
 - → SM is closed theory down to arbitrarily small scales ("UV closure") (though this requires some "fine-tuning" in the renormalization of the Higgs sector)

Theoretical description of particle interactions and processes

Starting point: quantum field theory defines model

- each particle corresponds to a field ϕ_i
- Lagrangian $\mathcal{L}(\phi_i)$ for free motion & interactions

Perturbative evaluation of quantum field theories

Transition amplitude $\langle f|S|i\rangle = \Sigma$ Feynman graphs for $|i\rangle \rightarrow |f\rangle$

Form graphs following Feynman rules:

Elementary couplings of electroweak interaction:

gauge-boson self-interaction:

gauge-boson-Higgs interation:

Higgs self-interaction:

fermionic interaction:

Elementary couplings of the strong interaction:

gluon self-interation:

quark-gluon interaction:

Electroweak (EW) issues at the LHC \rightarrow covered in this lecture series

• Higgs physics:

Higgs discovery, analysis of its quantum numbers, decay channels, first studies of couplings, extended Higgs sectors

• production of single EW gauge bosons:

EW precision physics (calibration, $M_{\rm W}$, $\sin^2 \theta_{\rm eff}^{\rm lept}$), strengthen SM consistentcy check and indirect bounds on $M_{\rm H}$, search for new gauge bosons W', Z'

• EW gauge-boson pair production:

find or constrain non-standard couplings among EW gauge bosons

• triple gauge-boson production and $W_LW_L \rightarrow W_LW_L$:

behaviour of longitudinal weak gauge bosons weakly (as in Higgs models) or strongly coupled W_L

- Theoretical requirements: \rightarrow partially developed in this lecture
 - electroweak theory
 - \hookrightarrow SM, Higgs mechanism, basics of EW precision physics, unstable particles
 - understand hadronic environment
 - \hookrightarrow QCD-improved parton model, radiative corrections "No QCD, no party!"

3 Physics at the LHC

Inelastic hadronic collisions:

Parton content of the proton: valence quarks uud, sea quarks u, d, c, s, (+b,) gluons g (+photons γ) "Parton distribution functions" (PDF) $f_{i/p}(x,Q)$ determine fraction x of the p momentum carried by parton i at "factorization scale" Q= non-perturbative input (from exp.), but process independent

Hard interaction of partons → perturbative QCD applicable, model for hard interactions (apart from QCD) enters only here

Parton model description of hadronic collisions

hadronic momenta: p_A , p_B hadronic CM energy: $\sqrt{s} = E_A + E_B$ partonic momenta: $p_a = x_A p_A$, $p_b = x_B p_B$ partonic CM energy: $\sqrt{\hat{s}} = \sqrt{x_A x_B s}$

Hadronic cross section for $AB \rightarrow C + X$: (X = any hadronic remnant/activity)

$$\sigma_{AB \to C+X}(s) = \int_0^1 dx_A \int_0^1 dx_B \sum_{a,b} f_{a/A}(x_A, Q) f_{b/B}(x_B, Q) \,\hat{\sigma}_{ab \to C}(\hat{s}, Q)$$

Factorization scale *Q* separates soft from hard contributions.

- Q dependence of PDFs $f_{a/A}(x_A, Q)$ ruled by DGLAP evolution equations
- Q dependence of hard scattering cross section $\hat{\sigma}_{ab \to C}(\hat{s}, Q)$ universal
- Q drops out in "all-order" calculations for $\sigma_{AB \rightarrow C+X}(s)$
- \hookrightarrow residual Q dependence in finite-order predictions reflects theoretical uncertainty

Kinematical range in terms of PDF variables

LHC parton kinematics

- M = parton-parton invariant mass
- y = rapidity of partonic CM frame (y=0 partonic CM frame not boosted)

LHC explores new territory in (x, Q)

 → PDF extrapolation from existing data not sufficient, LHC data have to be included in new PDF fits

Parton distribution functions

- DGLAP evolution to larger Q shifts PDFs to lower x
 → enhancement of sea-quark and gluon PDFs
- Processes with both gg and $q\bar{q}$ channels (e.g. $t\bar{t}$ production) Tevatron: $q\bar{q}$ often dominates by $\sim 90\%$

LHC: gg often much more important than $q\bar{q}$

An idea about PDF uncertainties:

Uncertainties estimated from eigenvector analysis of χ^2 fit

uncertainties ~ 5-10%for $x \sim 10^{-4} - 10^{-1}$

Some Standard Model cross sections at the Tevatron $(p\bar{p})$ and the LHC (pp)

events $= \sigma \times$ luminosity

design luminosity: $100 \, \mathrm{fb}^{-1} \mathrm{a}^{-1} / \mathrm{exp}$.

2 experiments in 5 years:

 $\sigma \sim 1 \, \mathrm{pb} \quad
ightarrow \sim 10^6 \; \mathrm{events}$

→ precision physics
 (systematics dominates uncertainty)

 $\sigma \sim 1 \, {
m fb} \quad
ightarrow \sim 10^3 \, {
m events}$

 → good prospects for searches (statistics dominates uncertainty)

BUT:

inclusive cross sections reduced by branching ratios, event selection, experimental efficiencies, etc.

Production probability versus experimental reconstruction

Realistic event numbers do not follow from total cross sections for various reasons

• hadronically decaying particles (W, Z, t, H) cannot be reconstructed without additional signature

e.g. $BR(W \rightarrow leptons) \approx 1/3$, $BR(W \rightarrow hadrons) \approx 2/3$, similar for $t \rightarrow bW$ with subsequent W decay

- no full coverage of detectors
 e.g. ATLAS: |y| < 2.5(inner tracker), 2.7(muons), 3.2(em.cal.), 4.9(had.cal.)
- event selection cuts might be necessary to reduce background e.g. in Higgs production via "vector-boson fusion": $\sigma_{\rm H+2jets}$ reduced by factor 2–3 (2 antipodal hard jets with rapidity gap)
- tagging efficiencies are not 100%

e.g. b tagging in vertex detectors $\sim 30{-}60\%$

An example: Higgs discovery potential of ATLAS and CMS

Signal significance

- does not follow total hierarchy of cross sections for different channels
- differs between ATLAS and CMS

Parton model and "reality"

Theoretical separation of "hard" and "soft" interaction not possible in events !

 \hookrightarrow "Soft" physics has to be understood:

- "Underlying events" (UE): everything except for the hard process of interest (more than one definition for UE on the market)
 - UE are not independent from hard scattering (colour and momentum correlated)
 - ◇ UE comprise: ISR/FSR (coherent emission belongs to the hard process)
 - multiple parton interactions
 - beam remnants and interaction with beam remnants
 - ◊ UE increase with collider energy, large effects expected for jets at the LHC
- "Minimum bias events" (MBE): elastic, soft inelastic and diffractive events Tevatron: 1% of all MBE events have a jet with $p_{\rm T} > 10 \,{\rm GeV}$
- "pile-up events":

accumulating activity from multiple proton scattering per bunch crossing

Little theoretical understanding, extrapolation from Tevatron to LHC very uncertain

 \hookrightarrow Measurements and modelling necessary at the LHC !

A simulated event at the LHC

... before event reconstruction:

A simulated event at the LHC

... before event reconstruction:

... after event reconstruction:

