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1 The Large Hadron Collider (LHC) – the world largest particl e accelerator
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Some facts about the LHC:
• Planned startup: May 2008 (CERN Council, June ’07)

After accumulated delay in LHC installation, the originally planned low-energy run is dropped.

• Accelerator: circumference = 27 km
2 beam pipes in “2 in 1 magnet design”

• Magnets: 1232 superconducting dipole magnets
(length 14 m, operating at B = 8 T, T = 1.9 K)

• Beams: two proton beams with energy Ebeam = 7 TeV = 7000 GeV,
energy per beam up to 360 MJ

for comparison:

1 TeV ≈ 1000 × mp ∼ energy of motion of a flying mosquito

360 MJ ∼ energy of motion of an aircraft carrier at 12 knots

• Bunches: 2808 bunches per beam, 1011 protons per bunch,
beam size of 16 µm at IP

• Luminosity: L ∼ 100 fb−1 / exp. / year

• Trigger: ∼ 109 collisions/s −→

online ∼ 102 interesting collisions/s

→֒ offline reconstruction → millions of Gbytes / exp. / year
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LHC accelerator, beam delivery, and experiments
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LHC equipment in real life
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Experiments at the LHC:

ATLAS – A Toroidal LHC ApparatuS
CMS – Compact Muon Solenoid
LHCb – LHC-beauty
ALICE – A Large Ion Collider Experiment
TOTEM – Total Cross Section, Elastic Scattering and Diffraction Dissociation
LHCf – LHC-forward

ATLAS & CMS (∼ 1800 scientists from ∼ 150 institutes each)

→֒ general-purpose experiment for recording proton-proton collisions
• searches for Higgs bosons and alternative schemes for the spontaneous

symmetry-breaking mechanism
• searches for new particles

(supersymmetric particles, new gauge bosons, leptoquarks, etc.)

• study possible quark and lepton compositeness
• physics of the top quark
• study physics of B mesons (CP violation, rare decays, spectroscopy, mixing)
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The ATLAS detector
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ATLAS in real life

“Wheel” of the muon system Mounting of the endcap
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The CMS detector
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CMS in real life

Hadronic calorimeter endcap

Tracking system
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Particle detection at CMS
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How Higgs production might look at the LHC...

H → ZZ → µ+µ−µ+µ− at CMS (=a “clean” event)

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 13



2 Our present understanding of elementary particle physics

Gauge bosons (spin 1) for

elmg. interaction

strong interaction

weak interaction
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Structure of the Electroweak Standard Model

Comparison of the Standard Model (SM) and QED:

QED SM

matter fields (spin 1

2
) e± leptons + quarks

gauge symmetry U(1)em SU(2) × U(1)

→ gauge bosons (spin 1) γ γ, Z0, W±

Differences to QED:
• non-abelian gauge group

→ gauge-boson self-interactions
• spontaneous symmetry breaking SU(2) × U(1) → U(1)em

→ massive gauge bosons Z0, W±

Higgs boson H (spin 0)

⇒ Common description of electromagnetic and weak interactions
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Structure of the Electroweak Standard Model and QCD

Comparison of the Standard Model (SM) and QED:

QED SM

matter fields (spin 1

2
) e± leptons + quarks

gauge symmetry U(1)em SU(3) × SU(2) × U(1)

→ gauge bosons (spin 1) γ γ, Z0, W± , g

Differences to QED:
• non-abelian gauge group

→ gauge-boson self-interactions
• spontaneous symmetry breaking SU(2) × U(1) → U(1)em

→ massive gauge bosons Z0, W±

Higgs boson H (spin 0)

⇒ Common description of electromagnetic and weak interactions
as well as strong interactions
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Higgs mechanism and electroweak symmetry breaking

SM: all particles receive their mass via interaction
with the vacuum expectation value of the Higgs field

→֒ “a quantum-field theoretical ether theory”

but: “medium Higgs field” has its own particle excitation = Higgs boson

Important ingredient: “spontaneous symmetry breaking”

→֒ non-vanishing vacuum expectation value of a scalar field

SM: “ad hoc” introduced Higgs potential drives symmetry breaking

Investigation of Higgs self-interaction
→֒ window to mechanism of

symmetry breaking

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 16



CERN’s down-to-earth explanation:

The Higgs field is like a room full of physicists chattering quietly:
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A particle is a well-known scientist walking in, attracting a cluster of
admirers, thereby receiving resistance to movement (“mass”).
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CERN’s down-to-earth explanation:

The Higgs field is like a room full of physicists chattering quietly:

A particle is a well-known scientist walking in, attracting a cluster of
admirers, thereby receiving resistance to movement (“mass”).

The Higgs boson is like a rumor crossing the room, creating the same kind
of clustering, but this time among the scientists themselves.
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Theoretical and experimental facts about the Higgs field / boson:
• Higgs boson not yet found,

e+e− /−→ ZH at LEP2 ⇒ MH > 114.4 GeV (95% C.L.)
LEPHIGGS ’02

• SM fit to precision measurements (µ decay, LEP1, LEP2, SLC, Tevatron)

MH enters perturbative predictions ⇒ MH < 144 GeV (95% C.L.)
LEPEWWG Winter ’07

• theoretical bound from “triviality” and unitarity arguments: MH
<
∼

1 TeV

• Higgs field rescues renormalizability and unitarity
of the gauge theory with massive gauge bosons

→֒ SM is closed theory down to arbitrarily small scales (“UV closure”)
(though this requires some “fine-tuning” in the renormalization of the Higgs sector)
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Theoretical description of particle interactions and proc esses

Starting point: quantum field theory defines model

• each particle corresponds to a field φi

• Lagrangian L(φi) for free motion & interactions

Perturbative evaluation of quantum field theories

Transition amplitude 〈f |S|i〉 = Σ Feynman graphs for |i〉 → |f〉
Form graphs following Feynman rules:

free propagators: vertices = elementary interactions:

γ, Z, W

g

f

H etc.

propagators & vertices ←→ terms in L(φi)

Perturbative series for g → 0

= power series in gn

= power series in ~
m

= expansion in # loops in diagrams

9

>

=

>

;

⇒ loop diagrams

= quantum corrections

etc.
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Elementary couplings of electroweak interaction:

gauge-boson self-interaction: Higgs self-interaction:

gauge-boson–Higgs interation: fermionic interaction:

Elementary couplings of the strong interaction:

gluon self-interation: quark–gluon interaction:
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The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

= not yet directly tested SM sector

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 21



The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

non-standard ν’s
(Majorana?)

heavy generations ?

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 21



The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

non-standard ν’s
(Majorana?)

heavy generations ?

non-minimal Higgs sectors ? Hi, A, H±

more CP ?

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 21



The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

non-standard ν’s
(Majorana?)

heavy generations ?

non-minimal Higgs sectors ? Hi, A, H±

more CP ?

extensions / unifications ? more gauge bosons: Z
′, W

′, X, Y

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 21



The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

non-standard ν’s
(Majorana?)

heavy generations ?

non-minimal Higgs sectors ? Hi, A, H±

more CP ?

extensions / unifications ? more gauge bosons: Z
′, W

′, X, Y

SUSY ?

neutralinos/charginos χ̃0/χ̃± sfermions f̃

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 21



The Standard Model and ideas beyond

fermions bosons

Matter:
(chiral) quarks+leptons

Gauge bosons:
γ, Z, W±, g

SU(3)×SU(2)×U(1)
gauge interactions

Yukawa interactions
CKM mixing, small CP

Higgs sector:
EW symmetry breaking

driven by self-interactions

non-standard ν’s
(Majorana?)

heavy generations ?

non-minimal Higgs sectors ? Hi, A, H±

more CP ?

extensions / unifications ? more gauge bosons: Z
′, W

′, X, Y

SUSY ?

neutralinos/charginos χ̃0/χ̃± sfermions f̃

+ more exotic ideas (extra dimensions, little Higgs, . . . )
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Electroweak (EW) issues at the LHC → covered in this lecture series

• Higgs physics:
Higgs discovery, analysis of its quantum numbers, decay channels, first studies

of couplings, extended Higgs sectors

• production of single EW gauge bosons:
EW precision physics (calibration, MW, sin2 θlept

eff ), strengthen SM consistentcy

check and indirect bounds on MH, search for new gauge bosons W′, Z′

• EW gauge-boson pair production:

find or constrain non-standard couplings among EW gauge bosons

• triple gauge-boson production and WLWL →WLWL:

behaviour of longitudinal weak gauge bosons
weakly (as in Higgs models) or strongly coupled WL

Theoretical requirements: → partially developed in this lecture

• electroweak theory
→֒ SM, Higgs mechanism, basics of EW precision physics, unstable particles

• understand hadronic environment
→֒ QCD-improved parton model, radiative corrections “No QCD, no party!”
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3 Physics at the LHC

Inelastic hadronic collisions:

Parton content of the proton:

valence quarks uud,
sea quarks u, d, c, s, (+b, )

gluons g (+photons γ)

“Parton distribution functions” (PDF) fi/p(x, Q)

determine fraction x of the p momentum

carried by parton i at “factorization scale” Q

= non-perturbative input (from exp.),

but process independent

Hard interaction of partons
→֒ perturbative QCD applicable,

model for hard interactions
(apart from QCD) enters only here
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Parton model description of hadronic collisions

σ̂

fb/B

fa/A

C

A

B

a

b

hadronic momenta: pA, pB

hadronic CM energy:
√

s = EA + EB

partonic momenta: pa = xApA, pb = xBpB

partonic CM energy:
√

ŝ =
√

xAxBs

Hadronic cross section for AB → C + X: (X = any hadronic remnant/activity)

σAB→C+X(s) =

Z 1

0

dxA

Z 1

0

dxB

X

a,b

fa/A(xA, Q) fb/B(xB , Q) σ̂ab→C(ŝ, Q)

Factorization scale Q separates soft from hard contributions.

•• Q dependence of PDFs fa/A(xA, Q) ruled by DGLAP evolution equations

• Q dependence of hard scattering cross section σ̂ab→C(ŝ, Q) universal

• Q drops out in “all-order” calculations for σAB→C+X(s)

→֒ residual Q dependence in finite-order predictions reflects theoretical uncertainty
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Kinematical range in terms of PDF variables

M = parton–parton invariant mass

y = rapidity of partonic CM frame
(y=0 partonic CM frame not boosted)

LHC explores new territory in (x, Q)

→֒ PDF extrapolation from existing

data not sufficient, LHC data have
to be included in new PDF fits
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Parton distribution functions

• DGLAP evolution to larger Q shifts PDFs to lower x

→֒ enhancement of sea-quark and gluon PDFs

• Processes with both gg and qq̄ channels (e.g. tt̄ production)

Tevatron: qq̄ often dominates by ∼ 90%

LHC: gg often much more important than qq̄
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An idea about PDF uncertainties:

Uncertainties estimated
from eigenvector analysis of χ2 fit

uncertainties ∼ 5−10%

for x ∼ 10−4−10−1
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Some Standard Model cross sections at the Tevatron (pp̄) and the LHC (pp)

# events = σ × luminosity

design luminosity: 100 fb−1a−1/exp.

2 experiments in 5 years:

σ ∼ 1 pb → ∼ 106 events

→֒ precision physics
(systematics dominates uncertainty)

σ ∼ 1 fb → ∼ 103 events
→֒ good prospects for searches

(statistics dominates uncertainty)

BUT:

inclusive cross sections reduced
by branching ratios, event selection,

experimental efficiencies, etc.
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Production probability versus experimental reconstruction

Realistic event numbers do not follow from total cross sections for various reasons

• hadronically decaying particles (W, Z, t, H) cannot be reconstructed without

additional signature

e.g. BR(W→ leptons) ≈ 1/3, BR(W→ hadrons) ≈ 2/3,

similar for t→ bW with subsequent W decay

• no full coverage of detectors

e.g. ATLAS: |y| < 2.5(inner tracker), 2.7(muons), 3.2(em.cal.), 4.9(had.cal.)

• event selection cuts might be necessary to reduce background

e.g. in Higgs production via “vector-boson fusion”:
σH+2jets reduced by factor 2−3 (2 antipodal hard jets with rapidity gap)

• tagging efficiencies are not 100%

e.g. b tagging in vertex detectors ∼ 30−60%

Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC – Introductory Lecture – 29



An example: Higgs discovery potential of ATLAS and CMS

Signal significance

• does not follow total hierarchy of

cross sections for different channels

• differs between ATLAS and CMS

σ(pp→H+X) [pb]
√s = 14 TeV

Mt = 175 GeV

CTEQ4M
gg→H

qq→Hqq
qq

_
’→HW

qq
_
→HZ

gg,qq
_
→Htt

_

gg,qq
_
→Hbb

_
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 H  →  γ γ 
 ttH (H  →  bb)
 H   →  ZZ (*)   →  4 l
 H   →  WW (*)   →  lνlν
 qqH   →  qq WW(*)

 qqH   →  qq ττ

Total significance

  ∫ L dt = 30 fb-1

 (no K-factors)

ATLAS
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Parton model and “reality”

Theoretical separation of “hard” and “soft” interaction not possible in events !

→֒ “Soft” physics has to be understood:

• “Underlying events” (UE): everything except for the hard process of interest
(more than one definition for UE on the market)

⋄ UE are not independent from hard scattering (colour and momentum correlated)

⋄ UE comprise: – ISR/FSR (coherent emission belongs to the hard process)

– multiple parton interactions

– beam remnants and interaction with beam remnants

⋄ UE increase with collider energy, large effects expected for jets at the LHC

• “Minimum bias events” (MBE): elastic, soft inelastic and diffractive events
Tevatron: 1% of all MBE events have a jet with pT > 10GeV

• “pile-up events”:
accumulating activity from multiple proton scattering per bunch crossing

Little theoretical understanding, extrapolation from Tevatron to LHC very uncertain

→֒ Measurements and modelling necessary at the LHC !
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A simulated event at the LHC

... before event reconstruction:
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A simulated event at the LHC

... before event reconstruction:

... after event reconstruction:
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