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INTRODUCTION

CP-odd terms in effective field theories
Topolagy




CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained:
dp, = (0.0 & L.1gtar £ 0.25y5) X 1072 cm 2020 @ sy

QCD with massive quarks
Ny
1
LD strFu, F* + 3 g (il — mye™? ) gy + BtrFWF“
292
7=1

Believed to cause a neutron electric dipole moment (EDM) d,, ~ 107 1%e cm (9 +2; aj)

[Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

Or does 1t?
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Effective interactions with 6

FWF'“” total derivative — No effects in perturbation theory — Use EFT
SU(Nf)L x SU(Nf)r global symmetry in the limit of massless quarks

Chiral U(1) 4 symmetry of the quarks is anomalous however
—— L Invariant under (rujikawa (1979,80)]

chiral trafo “spurion” trafo
Y — &Py plus m].eiocﬂ5 - mjei(oc;—2ﬁ)75
P — PePrs 6 — 6+2N:p

Spurions break the symmetries explicitly. — Approximate symmetries
This pattern should be replicated by any effective theory.

Rephasing invariant: § = 6 4 &, where & = Z;\Zl aj, — B is an angle



Integrating out gauge fields: Effective interactions
['t Hooft (1976,86)]

Topological effects described by effective 't Hooft vertex (I'y, some coefficient) ... 7 .00

Ny i

L+ BtrFM,,F“” — L —Tpet H(¢jPL¢j) —Tye “ [[(@; Pryy)
As a spurion, § = £ + 2N —
Two options: ¢ = 0 (in general misaligned with masses) — CP violation

P " ¢ = —a (present claim, aligned with mass terms) — no CP violation

xPT at low energies ¢ = 0: xral condensate

ig hiral 70 + 7 Vort aligned with 6
U= erf‘" U()I cnhira $ = - .

condensate Vo —m0+ 7 ¢ = —a: ral condensate aligned

with quark mass phases
£="Tr0,U0*UT + =2 T(1 U + UTIT) + |Ne ¥ £ det U + [N/ det UT M = diag{mue™", mae™}

_ S
Lneutron D _fayﬂaNTa7#75N CP even é
i T
& i
N = <p> sz(§+au+ozd+a5)f\/7r TN CP odd Tl f\!, b
n Jr 4 P xS



Topology in four-dimensional spacetime—winding number An

U= (="t iagr  —br +1ibr
T\ br+ib agr — ia

)ESU( ) for a2 + af + b3 + bf =1

= Homotopy: SU(3) D SU(2) & S® — m3(SU(2)) = m3(S3) = Z

Theta-term/topological term is a total divergence: gauge
gauge 1 . 1 1 1 dependent
invariant [ISSTEITRRC N { A 0uAp + §AyAaAﬁ]

Kl—" = E#ya‘ﬁtr 5

L - %

Topological quantization for pure gauge A, — —é(aﬂ U)U ! at o0 = 53

1 - 1
L = 1672 /d4 TFyy By = ) RCY WM/l Haar measure for pure gauge
g 4 Ny _ 1, (U6, U) (U6, U) (U8, U)]
[see e.g. Coleman, “Aspects of symmetry” (1985)]
gy Clirce)
E.g. take boundary of Q2 = R* as a sphere §3: f4we|. )] = -Sphase

sate.
Or Q= T*(lattice), 2= S*(Euclidean dS): An € Z based on slightly more involved argument



Topology—instantons

mlgmnﬂm
An # 0 implies nontrivial physical field confi-
gurations
__dwt

u
dwst Torz Cf. anti-instanton: A,% = 2

(extended solution to Euclidean EOMs)

ﬂ [Belavin, Polyakov, Schwarz, Tyupkin (1975)]
Surface term decays as 1/|z|> — surface integral
does not need to vanish
dwso 4 oz=1

Theta term contributes to the action though being a total derivative



Topology on spatial hypersurfaces—point compactification, large gauge transformations
Consider temporal gauge A° = 0 (in view of canonical quantization)

Chern-Simons functional:

- 1
WIA] = = 2amk/vd3a;tr

1

ar Y d3m Ko

1
EAiajAk A A, Ak} =
Define Ay = UAU L +iU VU (residual gauge freedom in temporal gauge)

. . . L. @ (free )
With extra constraint U(Z) — const. on 8V (periodic on T3) ffnr— d 7 q
— Point compactification , homotopy V = 83 (V = T3) ﬁ as I»rg:s?
U™): equivalence classes of “large” (v # 0) gauge transformation on spacelike (T = const.)
hypersurface V ~ 8% (V ~ T3) with W[A w] - W[A]=v e Z

However: Extra constaint not enforced by A° = 0 —would require extra provisions




FUNCTIONAL QUANTIZATION

Take tine %o infinity before summing over topological seciois




Euclidean path integral & topology

Topological term F'F total derivative—how can it contribute?
Does interference of sectors have a material effect?

Recall: Euclidean path integral projects on ground state

lim e~ T o lim g 1HT(1-ie) H: Hamiltonian

Tooo e EoT TS 00 e—1B0 T(1-ie) Ey: ground state energy

. _ 4 . - .
—— Consider Q = R* (or different spatial topologies) " ‘i . Cire)
Finite action — pure gauge at infinity ~ E “Sphese

— Topological quantization— Phases e!A™¢ ot

No reason for topological quantization in finite Q C R*

Must take T — oo before 7 — lim i

. lim D¢ e Sel¥l
summing over sectors: N—oo

An——N VT — oo JAn



More technically: Integration contour from Lefschetz thimbles

Parametrization of the path integral through steepest descent contours about classical
saddle points — Contour integration on Lefschetz thimbles

09(v;u) _ S5ad(ziu)] __ _OReSslg(z;w)] _ . . OlmSslp(zw)] _
- ou

Each thimble emerges from a
critical point and corresponds to

J—//—L one An € Z
Keeping VT finite while summing
,J_/ /_L f I,\ over different An (& different
1 : boundary conditions, infinite
o distance in field space) does not
-0 74 /i correspond to a nonsingular
deformation of the Cauchy contour

du dp(z; u) du

Integration contour sweeps over full thimbles first, i.e. VT' — oo before sum over An



Soisité =—aqoré =07

» Take (F(z)F(z)) as measure for CP violation
m Each element in the sequence over N vanishes (not so when limits ordered the other
way around):

N
. Sz
(F(z)F(z)) = lim lim Lin-—n v Zan =0 CP conserved
NNZH%O VT — o0 EAnsz ZAn

Index theorem: An is the difference of the numbers of right and left chiral zero modes

'Left /right chiral quas.,i—zero moc':les (2, 2')= ¢0L ¢0L ¢>\ ¢>\
in spectral representation of fermion me—ia
correlation regulated by 1/(meT'®) ABF0

Contributions from discrete modes to correlation function vanish for VT — oo —
Quark correlations remain aligned with quark mass after interference of An-sectors
=& =—-a

Order of limits matters because series is not positive definite due to phases e!&™?

absolutely summable

, not



Fermion correlations and instantons
Dilute instanton gas (DIGA) picture (to determine phase of 't Hooft vertex—not quantitatively accurate for
actual QCD)
(¥(2)9(z")) =1Soinst(z, 2")

Leading contribution to two-point . d
. . : _ 7 : —ia;y
function (no instantons) 1Soinst(z, 2') = (—y" 8, + imae )/ or

e—ir(z—z')

)% p2 — m2 +ie

Green’s function in n-instanton, 7i-anti-instanton background (DIGA)

Z "pOL z— mov)"/’oL( —Top Z Yor(Z — 20, )¥or(Z' —20,)

me— io meia

1
|
1
28
1
~—
_|_
3
?
—~
b
iy
&\

1Sy 7(z, z') & 1Spinst(z, ')

¢0L r: ‘t Hooft zero modes

Alignment of o in Lagrangian mass and instanton-induced xSB —— No CP violation here

Sum/interference over DIGA configurations

> nnen($(2)P(2)an

W(z)d(a')) =lim lim S e (W(2) () )an

(¥(z)P(z')) = lim lim

N
TE e S P VIZooleR An=—n ZAn
=iSoimet (2, ') + ikh(z, &' )m te =iSoinst (2, 2') + ikA(z, 2')m e

— & = —a (alignment) — & = 0 (destructive interference)




CANONICAL QUANTIZATION
Dene consistenitly without extra gauge constraint, point cornpactification
Properly normalizable physical states




Theta vacuum, standard story
Take A° = 0, assume in addition l—L
For || — co: A(Z) =1U (Z)VU(&) and U(Z) — const. —[eumduiab ks

Consider initial and final states, taking =4 — +o0
— Ansatz: Construct from pure gauge configurations on these surfaces, with

Horee)
1 3 Chern—Simons number point com- 7""“’ @
4m2 not gauge invariant pactification *
z4=+00 @ (Hree )
N oo — M) . '(’m' aé‘i—ﬂ/
Prevacua: (field eigenstates) & Bownilory
Neo — (M|

. . o —iné [Callan, Dashen, Gross (1976);
Gauge Invariant (up to phase) state |9> — Ze |’)’L> Jackiw, Rebbi (1976); Jackiw (1980)]

A\ States not normalizable in the proper sense: (§(*)[g0)) = Z 5(6( — 60) 1 27rn)

[cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st Dirac—von Neumann axiom of quantum mechanics.
[Dirac 1932, von Neumann 1932]



Thet4

Take A° = 0, assume in addition:
For |Z| — oo: A(Z) =iU Y(Z)V U(

Consider initial and final states, tak
— Ansatz: Construct from pure gai

1 Cher
= d*cK, € Z
Moo = / TELEL ot g
z4¢=%o00
Prevacua: = ® ) (field eigens

Neo — (M|

Gauge invariant (up to phase) state

/\ States not normalizable in the pr
[cf. e.g. Callan, Dashen, Gross (1976); issue taken by

Without ado, this contradicts 1st D

In this section, I shall remain with the formalism as
developed thus far, and study further the action of the
gauge symmetry. We have remarked already on the
invariance of the quantized theory, when A°=0, under
transformations which in infinitesimal form are des-
cribed by Eq. (31), and in finite form by

A-UTAU —éU"VU . (36a)
Here U is a 2 X 2 unitary, c¢-number SU(2) matrix, de-
pending on position, but not on time. We shall make a
very important hypothesis concerning the physically
admissible finite transformations. While some plaus-
ible arguments can be given in support of this hypo-
thesis (see below) in the end we must recognize it as
an assumption, without which the subsequent develop-
ment cannot be made. We shall assume that the allowed
gauge transformation matrices U tend to a definite
limit as » passes to infinity.

lim U(r)=U, .

y -reo

(36b)

[Jackiw, Introduction to the Yang—Mills quantum theory (1980)]

[Dirac 1932, von Neumann 1932]

T
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Take A° = 0, assume in addition:

AY

Theta vacuum, standard story

|

crr 1l oNTT Tl 1 LTL =)\

For |Z| — oo: A(4

Consider initial an
— Ansatz: Consti

Prevacua:

Gauge invariant (1

B. STATEMENT OF THE POSTULATES

1. Description of the state of a system

In chapter I, we introduced the concept of the quantum state of a particle.
We first characterized this state at a given time by a square-integrable wave
function. Then, in chapter II, we associated a ket of the state space &, with
each wave function : choosing | ) belonging to &, is equivalent to choosing
the corresponding function ¥(r) = {r|y ». Therefore, the quantum state of
a particle at a fixed time is characterized by a ket of the space &, In this
form, the concept of a state can be generalized to any physical system.

First Postulate: At a fixed time 7, the state of a physical system is defined
by specifying a ket | ¥/(¢,) > belonging to the state space &.

[Cohen-Tanoudji, Diu, Lalog]

... 1.0 |cf Jackiw

(1980)]

with

7 . Clerce )

E - -Sphast

porce

7 z (Hree )
a7y sphex
& U zcomsT.

o an

976);

kiw (1980)]

A\ States not normalizable in the proper sense: (8(*)|90))
[cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

= 8(6() — 9U) 4 27n)

Without ado, this contradicts 1st Dirac—von Neumann axiom of quantum mechanics.
[Dirac 1932, von Neumann 1932]



Theta vacuum, standard story

0 _ . oy .
Take A” = 0, assume in addition: —

For |f| — 00 ;4'(;\ S Ir=1(2\TT TTL2) A ITL2) L

Dank werher?  Cf- Jackiw
(1980)]

with

Consider initial an
— Ansatz: Consti

1 - - Sphase
Ntoco ) face
4_ z (Hiree )
of=too 72’:7’:/'”:7’4 @Sf““
o & U zcomsT.
Prevacua: o Bourdlory
-~ —
. . 976);
Gauge invariant (1 Kiw (1980)]

A\ States not normalizable in the proper sense: (§(*)[g0)) = Z 5(6( — 60) 1 27rn)

[cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st Dirac—von Neumann axiom of quantum mechanics.
[Dirac 1932, von Neumann 1932]



Canonical quantization of the gauge field
Minkowski spacetime, temporal gauge A° = 0, no sources —
gE% =—8/8t A°
B =V x A® — 1/2 5% 4o x AP

Canonical momentum conjugate to A*: | g No constraints on 8V accounted for —

—

W[A] must be defined for U(Z)+#const. on 8V

gﬁa =-E®+ ~0B° m Residual gauge dofs.: Throw out unphysical states
(leading to gauge dependence)

The corresponding operator must “First quantize, then constrain”

observe the commutation relations:

[A%4(&), I (2")] = 1676%6%(& — 2'), [I*'(&),I(z)] =0, takeeg II*= 153’«1

Hamiltonian density:

2
=1 (B2 + (B*)?) = % ((g 6 _ 89;9?3“> + (éa)2>

[e.g. Jackiw (1980)] 2



Wave functional in gauge theory (temporal gauge A, = 0)

Since [U(™, H] = 0, can find states V10! [A(U(l))n] = ei”"(i)\lfe(i) [Zl]

Wave functionals not properly normalizable because of summation over gauge
redundancies:

EIOaP IO TR 3 o—i(0O—0D Y WAl+v) y(a)*1 F105(8) 1 7
/DA\I’a?o (A%, [A] = > /0<W[21]<1DAe Ay (Al [4]

:27”5(9(1) _ 9(3’)) /0<W[;1]<1 DA e_i(e(i)_e(]))W[A}"ng))*[A]"l}é?]‘)) [Zl]
=276 (8 — 6064 Bloch theorem

How about gauge fizing if we must sum over dedundancies?
What about gauge transformations with U(Z) # const. on 8V ?
What about the first postulate?

Cf. T*/lattice/finite T

Z = DA U [Ale PHGLD)

(%) (1) [A]

Not properly normalizable either o



Crystal or circle?

Functionals ‘Ifg(A) with above periodicity properties can be compared with Bloch states

Bloch states live on a crystal: In contrast: In gauge theory
AU(U is a different site than A Vi A o is a redundant
4
Vi descrlptlon of the configuration

W A—correspondlng to

@ — @+ 27mn on a circle
On a crystal: Bloch states do not correpsond to normalized wave functions, these are rather
wave packets made up of Bloch states. Packets, however, not translation (gauge) invariant

On a circle: Truncation of the inner product according to a single period leads to properly
normalizable states, corresponding here to gauge fizing A € A so that each physical
configuration appears one time and one time only:

/ DA fal ,Zi] ((9(1)) [ A] g (])) [ ,Zi] Note: Under gauge fixed inner product \If(g(l)),
A gauge invariant \Ifgz(?) no longer orthogonal for §(1) # gU

under change of A




Form of the wave functional & Constraining the Hilbert space
Require: Gauge invariance & should remain Hermitian under restricted inner product

(*)

5A(*)
\If(“) Algi exp 1g0[\va1id for all U(Z) (also nonconstant on boundary)
independent of state (a)

— w(o[4] =

gauge invariant



Form of the wave functional & Constraining the Hilbert space
Require: Gauge invariance & should remain Hermitian under restricted inner product

(*)

6

\If(“) Algi exp 1g0[\valid for all U(Z) (also nonconstant on boundary)
independent of state (a)

— w(o[4] =

gauge invariant

]
Now / d3ztrB - 53 leads to mixing of pure gauge and other directions — Separation?
i



Form of the wave functional & Constraining the Hilbert space
Require: Gauge invariance &

OVAE ( 5 should remain Hermitian under restricted inner product

= q;(a)[;i] © (“) Algi exp 1g0[\valid for all U(Z) (also nonconstant on boundary)
independent of state (a)

]
Now / d3ztrB - 53 leads to mixing of pure gauge and other directions — Separation?
i

— “Diagonalize” H: V'[A] = _iew[z}\If[A] ,
B 2
) B H —e WA ggowld _ 1 /d3a: tr l—gz% + B?
wiA] = -2 B(z) 2 g2 1° b oA
3 2
E/d ztr B, 0 € {0gauge, 0|}

SA(Z g2 __9
(7) > 5;12(0)+



Form of the wave functional & Constraining the Hilbert space
Require: Gauge invariance &

— yla )[ ] = © \If(“) Algi exp 1g0[\valid for all U(Z) (also nonconstant on boundary)
independent of state (a)

]
Now / d3ztrB - — leads to mixing of pure gauge and other directions — Separation?

OVAE ( 5 should remain Hermitian under restricted inner product

i0A
— “Diagonalize” H: V[A] =e O WIAg[4],
B 2
5 D H —e WA ggowld _ 1 /d3a: tr l—gz% + B?
iz WA = 55 B@) UL B A s
(ZE) E— 7 5;1'2(0-) + 5 /d ztrB*, o € {Ugaugex0||}

Only trivial one-dimensional representations of SU(2)
V[Ay] =e¥4VIg[A] (eigenstate of U), Us = Uy Uy

ei(P[A‘U;;} :ei‘p[;iUz]ei‘p[;iUﬂ = ei‘p[AUQUJ _ ei‘p[AU1 Uz] =0

= W'[4] is gauge invariant (*¥*)




Form of the wave functional & Constraining the Hilbert space
Require: Gauge invariance & OVAE ( 5 should remain Hermitian under restricted inner product

— yla )[ ] = © \If(“) Algi exp 1g0[\valid for all U(Z) (also nonconstant on boundary)

independent of state (a)

]
Now / d3ztrB - — leads to mixing of pure gauge and other directions — Separation?

i0A
— “Diagonalize” H: V[A] =e O WIAg[4],
_ 2
1 —e—0WiA gpgewid _ L [ 4a —925— LB
5 o 9 & § A2
5A(7) WIA] = @B(x) 92 62 n /ds tr B2, o { }
=—==>—= = ztrB°, o € {o o
2 F542(0) 2 gauge, 9|
Only trivial one-dimensional representations of SU(2) T -
U[Ay] =e¥!4v1 [ 4] (eigenstate of U), Us= Uz Us satisfying (*, ) out
eilp[AUB] _ ei(p[zyz] eitp[;lul} N enp[zuz vl _ enp[AUl vl — 0 of the Hilbert space

= ¥ [;1] is gauge invariant (**) — CP conserved




GauB’ law in the constrained Hilbert space

For Q(Z) an infinitesimal generator of gauge transformations
— Noether charge:
Q(Q) :—/dsa:tr (D) :/ dztr || -B'+ 6B | D'Q
% 8
By R )
v 8m

g
:/d3:ctr QD' | E'— = 6B’
8m?
For Q(Z) = 0 when Z € 0V and since ¥’ is gauge invariant
— GauR’ law: D - E¥'[A] =0

Usually, the argument is made the other way around: Impose Gauf’ law to throw states
out of the Hilbert space [Jackiw (1980)] (automatic in Dirac formalism)

—

Since [Q(2), W[A]] = 0 for Q(Z) = 0 when Z € 0V this also holds when
V'[A] — ?WIAIY/[ 4], so imposing Gau®’ law does not fix §, does not tell us about large
gauge transformations




Nondiagonal basis

Redefining derivatives w.r.t. A as
- - ) g = .
D~\IJA:i<——9 B)\I’A
AVIA] =i (2 4]

corresponds to a canonical transformation of the momentum operator.

Induces translation as . .
gauge invariant

TIAZ] U[A] = e O(WIA+AA-WIA) g1 | AZ] BEEEENREGN

8 in ¥y is pinned to 8 in H so that CP is conserved




Conclusion

There is no CP violation in QCD.
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Flaws in the standard calculation and resolutions:

m Taking T" — oo after summing over sectors corresponds to an inequivalent deformation of the
integration contour
Maintain Cauchy contour and order of limits

m No point compactification/topology in temporal gauge w/o extra constraint U(Z) ‘#|—> const.
T|— 00
Define ¥ for all temporal gauges
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integration contour
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These two points are the only way in
which we differ from the standard lore.
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Giving up point compactification can integrate over each physical configuration one
time and one time only
—No need to give up Dirac—von Neumann axioms or gauge fixing



Conclusion

There is no CP violation in QCD.

Flaws in the standard calculation and resolutions:
m Taking T" — oo after summing over sectors corresponds to an inequivalent deformation of the
integration contour
Maintain Cauchy contour and order of limits

m No point compactification/topology in temporal gauge w/o extra constraint U(Z) H—> const.
T|—00

Define ¥ for all temporal gauges

m f-vacua are not properly normalizable — not physical states according to postulates of QM
Giving up point compactification can integrate over each physical configuration one
time and one time only
—No need to give up Dirac—von Neumann axioms or gauge fixing

THANK YOU!



Effective chiral Lagrangian (xPT)

U= erffrq> Uy: chiral condensate
o _ 7 +n V2t
T V2rm a0+ 1
Chiral Lagrangian (lowest order terms) inherits “ ” symmetries:

2 2B . .
c:%’ﬁa# Us# UT+f”2—°’ﬁ( U+ U+ | Ae  fidet U + | A" f2det UT
HNGN — (myNUPLN +icNU'PLUN + dNIITPLN + eNUBI UPLN +h.c.)

M = diag{m,e'“*, mqe'“?, mse'*:}

i
FrF nucleon doublet N = [
M, U reduced to subspace (u, d) n

Effective interaction o< det U cannot be quantitatively reliably handled in xPT but yet represents pattern of
broken axial symmetry.



Neutron electric dipole moment

; Ve
: : = i : "
M= — 21D(q2)EZ(Q)usf(p’)Z[7",7”] 15 us(P) é .
n- ~
—Leg =D(0)7 Fyui[v”,'y”]ivs n AN
| — 4/ 4 &;;
CSE
m xPT value: d, = 3.2 x 10 15(¢ + a)ecm

Experimental bound: |d,| < 1.8 x 10 2°ecm (90% c.1.) msou/esi (2020))

m Calculations e.g. of neutron EDM implicitly assume £ = 8

[e.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]
m However £ = —& also perfectly valid by arguments used to this end
m Another signature—weaker bounds: ' — w7



Fermion correlations

The effective vertex generates the following correlation functions at tree level:

H"/}] Zj 'lpj )1nst—< 1£HPL +€£HPR]> 1131,...,33{,...)

Goal: Compute correlation function and compare with EFT answer above to fix ¢

Cf. leading contribution to two-point function
(¥i(2)¥;(")) =iSoinst 1 (z, ')
dp

. : ! 5
s N N u s —iogy® —ip(z—2')__ Yy
1S0inst l](m7 z ) _( Y a,u +1m;e )/ (2,”.)4 p2 _ mf + ie

So ¢ = 0/¢ = —a implies CP-violation/no CP-violation

Only one explicit calculation based on dilute instanton gas (DIGA) finding £ = 6

['t Hooft (1986)]



Fermion correlations

m Obtain correlation functions from Green’s functions in fixed background of instantons
and anti-instantons
m Interfere all instanton configurations
m First, within one topological sector
m Then over the different sectors

DIGA to dermine CP phase of 't Hooft

vertex—not quantitatively accurate for
actual QCD

Green’s function in n-instanton, 7-anti-instanton background (DIGA)

>

Pov(z — 20,5 (2 —20,7) . an Por(z —20,)Pip(z' —0,)

3 Y ~ g /
1Sn,ﬁ(:c, T ) ~ 1SO1nst($; z )+ me—ic meia

v=1

<1
Il
i

"JJOL,RZ ‘t Hooft zero modes

Comments:
m For small masses, zero modes dominate close to the cores of instantons, far away from
instantons the solution goes to the zero-instanton configuration [piaxonov, Petrov (1986))
m Alignment of phase o between Lagrangian mass and instanton-induced ySB — No
indication of CP violation here
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. s B d4p : 1 1
1Soinst (2, 2') = (—=7#8y + ime ™7 )/ e e
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Interferences within the topological sectors

Within a topological sector, interfere/sum/integrate over
m all instanton/anti-instanton numbers n + 7 with An = n — 7 fixed
m locations of all instantons/anti-instantons

® remaining collective coordinates

— Dilute instanton gas approximation (skip technicalities)

Can also obtain coincident fermion correlations using the index theorem and anomalous
current only



Correlation function for fixed An

W an =) i [Ae ) (S Put 2 PR) (VI 4 iSoima(e,2') (VD)7

x (1K)ﬁ+n(— 1)n+ﬁeiAn(cx+9)

= [(ei‘ﬂrAnJrl (2ik VT) Py, + 6 ®Ian_1(2i VT) Pr) * h(z,2) + Ian(2ik VT)iSomst (2, z')]
m x (—1)Angiln(ato)
Instantons per spacetime volume: ik o« e~5B

XSB rank-two spinor-tensor from integrating quark zero-modes over the locations of the instantons: h(z, z’)
Modified Bessel function: I, (z)

Sum is dominated by particular value of n /& 7: [Diakonov, Petrov (1986)]

V)"
<n)_—w0n(nn') =k VT {{n = {n))*) = L im —————~ =
T o BV ’ (n) VEVT' Tz [ay(ize0)
— No relative CP phase between mass and instanton induced breaking
of xral symmetry—alignment in infinite-volume limit




Correspondingly, partition function for fixed An: (et Leutwyler, Smilga (1992)]
Znn = Inp (216 VT) (—1)A7etAn(e0)

Note: The topological phase e2™+8) multiplies (1(z)%(z'))an and Za, entirely—not just
the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...) are calculated
from the Feynman diagram with the Green’s function in the n instanton, 7 anti-instanton
background.

Then it remains to average over n, 7, locations and remaining collective coordinates.

There is no CP violation/misalignment of phases to this end. It remains to consider the
interference between the topological sectors.



Interferences among topological sectors (are immaterial)

Topological quantization <+ Interference between sectors for V1" — oo

Fermion correlator

W@)I() =lim lim San=—nH(@)P())an

N
N

1_—iay®

=iSoimst(z, ') + ikh(z,z')m e (same as for fixed An)

. . . 4 . ,
Recall: iSpinst(, ') = (—7#8, + 1me*1°‘75) / (gTz){feﬂp(miz )m

— No relative CP-phase between mass and instanton term
— €= —«
— CRP is conserved




Limits ordered the other way around

First sum over all An as well:
o [ Ale, &) (R m ™€ P+ mom e Pr) (V)" Soinas (2, 2') (V)]

7,n>0 ﬁ+neiAn(a+9)

X (—mik)

= [— (e7Pr + € Pr) %E(m, z') + 1Soinst (2, :c’)] e VT cos(ato)

7 Z_ ,nllﬁ!(_iK’ VT)ﬁ+ne—i(ﬁ—n)(a+€) — e—ZiKVTcos(a—i—H)
n,f

Then, VT — oo trivial as VT-dependence cancels
— Relative CP phase leading to CP-violating observables

However: Changing the order does not correspond to a nonsingular integration contour.



