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Asymptotic expansion of Feynman integrals

1

• Evaluating multi-loop Feynman integrals poses significant challenges.

• For Feynman integrals with multiple scales in the external 
kinematics, a natural idea is to consider the asymptotic expansion.

• Moreover, asymptotic expansion offers insights into the intricate 
infrared structure of gauge theory.

• Among various techniques of doing asymptotic expansions, one 
usual way is the “expansion by regions” (method of regions).



The expansion by regions (EbR)

Statement: such that

The original integral, I , can be restored by summing over 
contributions from the regions.
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The expansion by regions (EbR)

Statement: such that

The original integral, I , can be restored by summing over 
contributions from the regions.

For each term on the RHS, the integrand is modified (Taylor exp.) 
while the integration measure is unchanged (-∞ ~ +∞).

• Dimensional regularization is taken.

• Scaleless integrals = 0. Namely,
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The expansion by regions (EbR)
Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics

The Feynman integral

can be evaluated directly, or, we can apply the EbR.
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The expansion by regions (EbR)
Step 1: identify 4 regions in total:
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The expansion by regions (EbR)
Step 1: identify 4 regions in total:

Step 2: perform expansion around each region:
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The expansion by regions (EbR)

Step 1: ….

Step 2: ….

Step 3: sum over their contributions, and the original integral is 
reproduced:

This equality holds to all orders of λ!

More examples are presented in papers in the recent 20 years.
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The expansion by regions (EbR)

Statement: such that

The original integral, I , can be restored by summing over 
contributions from the regions.

The EbR works for all known examples so far.

However, two fundamental questions remain unanswered today:

• How to prove the EbR? (Why is this technique true?)

• How to identify the regions? (How to use this technique?)
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The expansion by regions (EbR)

Statement: such that

The original integral, I , can be restored by summing over 
contributions from the regions.

The EbR works for all known examples so far.

However, two fundamental questions remain unanswered today:

• How to prove the EbR? (Why is this technique true?)

• How to identify the regions? (How to use this technique?)
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Euclidean space: region structure understood

• Actually, all-order results have been established for Feynman 
integrals with Euclidean kinematics.
• For original papers, see (Tkachov 1980s; Smirnov 1990)

• A detailed demonstration can be found in Smirnov's book "Applied Asymptotic 
Expansions in Momenta and Masses"

• Each region is characterized by a certain subgraph carrying large 
loop momenta.

Expansion by Regions 
== "Expansion by Subgraphs".

• However, it would be highly nontrivial to extend this statement to 
Minkowski kinematics.
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The expansion by regions (EbR)
Why is such an extension nontrivial?

• Complicated infrared structure in Minkowski space:
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The expansion by regions (EbR)
Why is such an extension nontrivial?

• Complicated mode structure near singularities:

Recall that at one-loop level, we have

Question: Can other types of modes, such as

become relevant at higher loop orders?
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Progress on identifying the regions
Progress from 2010: a geometric approach to determine the 
regions systematically. (Pak & Smirnov 2010; Jantzen, Smirnov, Smirnov 2012)

• Each Feynman integral corresponds to an (N+1)-dim polytope.

• The regions corresponds to the lower facets (certain types of 
boundaries) of this polytope.

• For each lower facet, its normal vector (called “region vectors”) 
explicitly shows the scaling of the Lee-Pomeransky parameters in 
the corresponding region.
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• There have been computer codes based on this approach:

Asy2 (Pak & A.Smirnov 2010; Jantzen, A.Smirnov, V.Smirnov 2012)

ASPIRE (Ananthanarayan, Pal, Ramanan, Sarkar 2018)

pySecDec
(Heinrich, Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa 2021)

Identifying regions from polytopes
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However, there is still much to improve.

• All-loop-order results may not be directly available.

Note that dim(polytope) = #(propagators)+1.

• The output of this approach describes regions in parameter space, 
while physically we are interested in their momentum-space 
interpretation.

• This geometric approach may miss some regions, which are 
“hidden” inside the polytope.
• This problem has been noticed in (Jantzen, A.Smirnov, V.Smirnov 2012), 

and the geometric approach has been modified accordingly (Asy → Asy2).

• However, such modifications work only for relatively simple cases.

Identifying regions from polytopes
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More recent progress
Progress from 2022: all-order region analysis in both 
parameter & momentum space.
(Gardi, Herzog, Jones, Ma, Schlenk 2022; Ma 2023; Gardi, Herzog, Jones, Ma 2024)

• Two types of regions: “facet regions” and “hidden regions”.

• For a given Feynman integral, most regions are facet regions, 
which correspond to lower facets of the polytope.

• For certain types of asymptotic expansions, we have understood 
the facet region structure to all loop orders.

• For massless scattering, facet regions all feature a single and 
connected subgraph, exchanging an off-shell (hard or Glauber) 
momentum. 14



More recent progress
Progress from 2022: all-order region analysis in both 
parameter & momentum space.
(Gardi, Herzog, Jones, Ma, Schlenk 2022; Ma 2023; Gardi, Herzog, Jones, Ma 2024)

• Two types of regions: “facet regions” and “hidden regions”.

• Additionally, there may be hidden regions residing within the 
interior of the polytope. 

• For each given graph, we have developed an algorithm telling 
whether or not any hidden regions might exist.

• For massless scattering, hidden regions all feature multiple and 
disconnected subgraphs, each exchanging an off-shell (hard or 
Glauber) momentum. 15



• Facet regions

• The hard, collinear-1, collinear-2, and soft regions for the 
Sudakov form factor.

Simplest examples
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• Facet regions

Simplest examples

16
(Jaskiewicz, Jones, Szafron, Ulrich, arXiv:2501.00587)



• Hidden regions

• The Glauber region in the 1-loop 5-point graph:

Simplest examples
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(Jantzen, A.Smirnov, V.Smirnov, arXiv:1206.0546)

(Glauber)



• Hidden regions
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Simplest examples



Wide-angle 

kinematics



• Let’s consider the following asymptotic expansion:

The “on-shell expansion”

18

small virtuality large virtuality wide-angle scattering

massless



• Let’s consider the following asymptotic expansion:

• Result: the possibly relevant modes are

The “on-shell expansion”

small virtuality large virtuality wide-angle scattering

massless
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• More precisely, the general structure of each facet region is

with additional requirements on the subgraphs H, J, and S.

This conclusion was proposed in [Gardi, Herzog, Jones, YM, Schlenk, JHEP07(2023)197],

and later proved in [YM, JHEP09(2024)197].

Facet regions in the on-shell expansion
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1. This picture is natural

because it describes neighborhoods of the singularities of the 
integrand.

Some remarks

20YM, JHEP09(2024)197



2. This picture is highly nontrivial

because the small parameter λ is unique.

→ This further validates SCETI !

Some remarks

21YM, JHEP09(2024)197



3. This picture is independent of the spin or spacetime dimension.

Meanwhile, regulators may affect the list of regions.

Some remarks

22YM, JHEP09(2024)197



• Most of the regions are facet regions:

• most graphs have only facet regions;

• for the remaining graphs, hidden regions are very few 
compared with the facet regions.

• For the 2->2 massless wide-angle scattering graphs,

• one loop: no graphs with hidden regions;

• two loops: ≈100 graphs, none with hidden regions;

• three loops: ≈1000 graphs, 10 of them have hidden regions.

Hidden regions in the on-shell expansion
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• Most of the regions are facet regions:
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same origin only 1 for each graph;

“Landshoff scattering”



• The “Landshoff scattering”:

• In scalar theory, from straightforward power counting, above is the 
only region that contributes to the leading asymptotic behavior. So 
this region must be included.

• This region cannot be detected by any computer codes.

Hidden regions in the on-shell expansion

24Gardi, Herzog, Jones, YM, JHEP08(2024)127



• To see why this region is leading:

• With this parameterization,

• Under change of variables ,

Power counting details

25

(Botts & Sterman, 1989)

Gardi, Herzog, Jones, YM, JHEP08(2024)127



• To see why this region is leading:

• Power counting result:

• Meanwhile, μ ≥ 0 for all the other regions.

Power counting details

25

(Botts & Sterman, 1989)

Gardi, Herzog, Jones, YM, JHEP08(2024)127



Numerical evidences

26

“Landshoff scattering” region

full integral

Graph by Stephen Jones Gardi, Herzog, Jones, YM, JHEP08(2024)127



Numerical evidences

26Graph by Stephen Jones Gardi, Herzog, Jones, YM, JHEP08(2024)127



• All the 3-loop graphs

All the 3-loop graphs with hidden regions
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• Corresponding hidden regions

All the 3-loop graphs with hidden regions
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Regions in the on-shell expansion
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Conjecture:

facet region hidden region

Gardi, Herzog, Jones, YM, JHEP08(2024)127



• Including some soft external momenta

The “soft expansion”
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exactly on-shell large virtuality

wide-angle scattering

massless

exactly on-shell

soft momenta

YM, JHEP09(2024)197



• Result: the possibly relevant modes are:

• Interesting feature: additional requirements for the subgraphs.

Regions in the soft expansion

30YM, JHEP09(2024)197



• The interactions between the soft subgraph and the jets follow the 
“information-delivery” picture.

• Some external soft information must be delivered to each jet.

• Any soft component adjacent to ≥3 jets can be a messenger.

• Example:

Regions in the soft expansion

30YM, JHEP09(2024)197



Spacelike collinear 

kinematics



Spacelike collinear external momenta

31

Given two collinear momenta p1 and p2, we call them

• timelike collinear: if they are both in the initial or final state;

• spacelike collinear: if one is initial and the other is final.

Feynman graphs with spacelike collinear external momenta possibly 
feature Glauber singularities, which are responsible for factorization 
breaking. (Catani, de Florian & Rodrigo 2011; Forshaw, Seymour & Siodmok 2012; ...)

Note that Glauber singularities are absent in wide-angle kinematics: 
one can always deform the momentum-space integration contour to 
avoid them. (Collins & Sterman 1981)



kinematic limit:

32Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”



Modes in facet regions:

H, C1, C2, 1- and 2-loop

kinematic limit:

32Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”



Modes in facet regions:

H, C1, C2, 1- and 2-loop

…, S, S·C1, C12, S·C2, C22, 3- and 4-loop

kinematic limit:

32Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”



Modes in facet regions:

H, C1, C2, 1- and 2-loop

…, S, S·C1, C12, S·C2, C22, 3- and 4-loop

…, S2 ·C1, C13, S2 ·C2, C23, 5- and 6-loop

… … “cascade of modes”

kinematic limit:

32Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”



Example:

33Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”

S·C1

C2



34Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”
Modes in hidden regions:

… + Glauber

Starting from 3 loops:



34Gardi, Herzog, Jones, YM, JHEP08(2024)127

The “Regge-limit expansion”
Modes in hidden regions:

… + Glauber

Starting from 3 loops:
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The “Regge-limit expansion”
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The “Regge-limit expansion”



1. The regions corresponding to a given graph can be 
predicted from the infrared picture!
- on-shell expansion: hard, collinear, soft.
- soft expansion: hard, collinear, soft.
- Regge limit: hard, collinear, soft, Glauber, (collinear)2, 
soft ∙collinear, ...

with the mode interactions following certain patterns.

2. Landshoff scattering in the wide-angle kinematics

Glauber singularities in the spacelike collinear limit

Main conclusions

36

"spacelike collinearization"



2→3 scattering in the spacelike collinear limit
(1+2→3+4+5, with p2//p3):

The "Landshoff-Glauber correspondence"

37in collaboration with W.Chen, E.Gardi, R.Ma, Y.Zhang, Z.Zhu
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2→3 scattering in the spacelike collinear limit
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The "Landshoff-Glauber correspondence"
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The following related topics can be investigated further.

1. Inclusion of massive propagators.

2. Generalize to phase-space integrals.

3. SCET, Glauber-SCET, SCET gravity, etc.

4. Local infrared subtractions.

5. Can one even justify the EbR with the help of our results?

6. Landau analysis of singularities.

7. Mathematical studies of convex/tropical geometry, etc.

…

Conclusions and outlook

39
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Backup slides



The expansion by regions (EbR)

• These two questions are related.

1. How to prove the EbR? (Why is this technique true?)

2. How to identify the regions? (How to use this technique?)

Recall the statement

such that
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The expansion by regions (EbR)

• These two questions are related.

1. How to prove the EbR? (Why is this technique true?)

2. How to identify the regions? (How to use this technique?)

Recall the statement

such that

• Moreover, Jantzen showed that the EbR works to all orders, 
provided that the regions satisfy certain requirements.

(Jantzen 2011)
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The expansion by regions (EbR)
• Usually, regions are determined based on heuristic examples or 

experience.

• Soft-Collinear Effective Theory (SCET): an effective theory 
describing the interactions of soft and collinear degrees of freedom 
in the presence of a hard interaction.

• For example, the SCET describing 

involves the hard mode (integrated out), the collinear modes, and the 
soft mode. 9

(Bauer & Stewart, SCET Lecture Notes 2013)



The expansion by regions (EbR)
• Usually, regions are determined based on heuristic examples or 

experience.

• Soft-Collinear Effective Theory (SCET): an effective theory 
describing the interactions of soft and collinear degrees of freedom 
in the presence of a hard interaction.

• The SCETI Lagrangian (leading order):

9



Parametric representation

6

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

spanning trees spanning 2-trees

-



Parametric representation

6

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

Each region → a certain scaling of the x

spanning trees spanning 2-trees



• Momentum space:

• Parameter space:

• Relation between the scalings:

Regions in different representations

7



Identifying regions from Newton polytopes
• Given the Lee-Pomeransky polynomial,

take the exponents of each term:

Construct a Newton polytope, defined as the convex hull of the points.

Regions <-> the lower facets of this Newton polytope.

(Entries of the vector normal to a lower facet are precisely the scalings of x1, x2, ….)

(1,0,0;0)

(0,1,0;0)

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)



Identifying regions from Newton polytopes
Regions <-> the lower facets of this Newton polytope

Given a graph with N propagators, the Newton polytope △ is N+1
dimensional.

• Facets: the N-dimensional boundaries of △.

• Lower facets: those facets whose inward-pointing normal vectors v
satisfy vN+1>0.

• The vector v is usually referred to as the region vector, and its 
entries show the scaling of x.

1

2

3

9+1



Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the hard facet, with vh = (0,0,0;1).

In comparison,

(1,0,0;0)

(0,1,0;0)

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the collinear-1 facet, with vC1 = (-1,0,-1;1).

(1,0,0;0) (0,0,1;0) (1,0,1;1) (1,1,0;0)
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

These points are in the collinear-2 facet, with vC2 = (0,-1,-1;1).

(0,1,0;0)

(0,0,1;0)

(0,1,1;1)

(1,1,0;0)
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Identifying regions from Newton polytopes
Back to our example:

Each region (hard, collinear-1, collinear-2, soft) corresponds to a 
specific facet containing certain points.

(0,0,1;0) (1,0,1;1)

(0,1,1;1)

(1,1,0;0)

These points are on the soft facet, with vS = (-1,-1,-2;1).
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Infrared structures of wide-angle scattering

• The Landau equations

are necessary conditions for infrared singularity. The solutions of 
the Landau equations are called pinch surfaces.

• The pinch surfaces of hard processes has been studied in detail 
in the past decades.

• Motivation: it looks that the infrared regions are in one-to-one 
correspondence with the pinch surfaces!



E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197

• Each solution of the Landau equations corresponds to a region, 
provided that some requirements of H, J, and S are satisfied.

Regions in the on-shell expansion
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• Based on this conclusion, we can construct a graph-finding 
algorithm to unveil all the regions.

• A fishnet example

Step 1: constructing the “primitive jets”:

19

A graph-finding algorithm

E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197



• Based on this conclusion, we can construct a graph-finding 
algorithm to unveil all the regions.

• A fishnet example

Step 2: overlaying the “primitive jets”:

Step 3: removing pathological configurations.

This algorithm does not involve constructing Newton polytopes, 
and can be much faster.

A graph-finding algorithm

19E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197



• Each region (except the hard region) must correspond to an 
infrared singularity, satisfying the Landau equations:

• Therefore, F having both positive and negative terms does not 
necessarily imply a region, because the Landau equation above 
may not be satisfied.

• For example,

Landau analysis of cancellations



• For example,

Landau analysis of cancellations



• For example,

One can check that any possible cancellation within F is not 
compatible with the Landau equations.

• Therefore, all the regions are from the lower facets of the Newton 
polytope.

• Actually, as one can check in this way, most cases where F is 
indefinite does not have regions due to cancellations.

Landau analysis of cancellations



To identify these regions 

systematically:

Dissect the original polytope 

into several distinct sectors, 

such that these regions, which 

are hidden inside the original 

polytope, appear as lower 

facets of the new sub-polytopes.

All the 3-loop graphs with hidden regions
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Regions in the soft expansion

28

YM, JHEP09(2024)197



Regions in the soft expansion

29

(Beneke, Hager, Szafron, “Soft-Collinear Gravity and Soft Theorems”)
See also
(Beneke, Hager, Szafron, 2021)
(Beneke, Hager, Schwienbacher, 2022)
(Beneke, Hager, Sanfilippo, 2023) et al.

• This study may also go beyond QCD.

• For example, some rules for the “Soft-Collinear Gravity” coincide 
with what we have found:



• The heavy-to-light decay process:

• In addition to the hard, collinear, and soft modes, more 
complicated modes can be present.

The “mass expansion”

32

large mass small mass

YM, JHEP09(2024)197



• More modes are included:

hard mode Q(1,1,1),

collinear mode Q(1,λ,λ½ ),

soft mode Q(λ,λ,λ),

soft·collinear mode Q(λ,λ2,λ3/2),

soft2 mode Q(λ2,λ2,λ2), ….

semihard mode Q(λ½ ,λ½ ,λ½ ),

semihard·collinear, semihard·soft, ….,

semicollinear mode Q(1,λ1/2,λ1/4),

semihard·semicollinear, ….

Regions in the mass expansion

33

Starting from

1 loop

1 loop

2 loops

3 loops

4 loops

2 loops

3 loops, nonplanar

3 loops, nonplanar

4 loops, nonplanar

YM, JHEP09(2024)197



• Examples

Regions in the mass expansion

34



• For planar graphs, each region can be depicted as a “terrace”.

A formalism for planar graphs

35YM, JHEP09(2024)197



• For planar graphs, each region can be depicted as a “terrace”.

A formalism for planar graphs

35YM, JHEP09(2024)197



The regions corresponding to a given graph can be predicted 
from the infrared picture!
- on-shell expansion: hard, collinear, soft.
- soft expansion: hard, collinear, soft.
- Regge limit: hard, collinear, soft, Glauber, (collinear)2, 
soft ∙collinear, ...

with the mode interactions following certain patterns.

Above shows the "expansion-by-subgraphs" prescription in 
each given external kinematics.

Can we unify these results?
(a prescription for generic asymptotic expansions?)

Main conclusion 1

36
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To unify these prescriptions
• Understand the mode structure

• Wide-angle kinematics

- The mode structure depends on the virtualities of the external momenta.

- There is a finite number of modes in general.

• Spacelike-collinear kinematics

- The mode structure can be obtained from above + “spacelike collinearization”.

- When there are multiple collinear directions, there are infinite modes in general 
---“cascade of modes”.

• Understand the mode interactions
• How do the mode subgraphs connect to each other?

• Any further requirements of these subgraphs? (necessary and sufficient 
condition for a region)

• Develop a graph-finding algorithm to obtain the regions directly 
from the graphs



• Aim: construct counterterms removing both IR and UV singularities 
at the level of integrand.

• We need the “hard-collinear” and “soft-collinear” approximations 
that are exactly used for the method of regions.

• Main differences: ① no hard region. ② more nested approx.

• Recent progresses at two loops:

- 2-loop 2→2 wide-angle scattering (Anastasiou & Sterman 2018)

- 2-loop                                    (Anastasiou, Haindl, Sterman, Yang, Zeng 2020)

- 2-loop                               (Anastasiou & Sterman 2022)

- 2-loop                           (Anastasiou, Karlen, Sterman, Venkata 2023)

Local infrared subtractions

37


