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Asymptotic expansion of Feynman integrals

* Evaluating multi-loop Feynman integrals poses significant challenges.

* For Feynman integrals with multiple scales in the external
kinematics, a natural idea is to consider the asymptotic expansion.

Asmall Asmall 2
A~ Ay + Ay + Az + ...

Alarge Alarge

* Moreover, asymptotic expansion offers insights into the intricate
infrared structure of gauge theory.

* Among various techniques of doing asymptotic expansions, one
usual way is the “expansion by regions” (method of regions).




The expansion by regions (EbR)

Statement: 4 “Regions” : Ry, R»., .... R,,, such that

The original integral, I , can be restored by summing over
contributions from the regions.



The expansion by regions (EbR)

Statement: 4 “Regions” : Ry, R»., .... R,,, such that

The original integral, I , can be restored by summing over
contributions from the regions.

For each term on the RHS, the integrand is modified (Taylor exp.)
while the integration measure is unchanged (- ~ +).

* Dimensional regularization is taken.
* Scaleless integrals = 0. Namely, /dﬂk(k2)“ = 0.



The expansion by regions (EbR)

Example: one-loop Sudakov form factor

(Becher, Broggio, Ferroglia 2014)

The on-shell limit kinematics

b 1/2 b 1/2
Pr~@ (LA AT, pp~ QA LA

pi/Q° ~pa/Q* ~A =0

The Feynman integral

I:c-/dﬂk !

(k2 4 i0) ((p; + k)2 +10) ((py + k)2 + 40)

can be evaluated directly, or, we can apply the EbR.




The expansion by regions (EbR)

Step 1: identify 4 regions in total: k
P1

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k" ~ Q(1, A, AY/?) P+ k p2+ k
Collinear-2 region: k* ~ Q(X, 1, AY?)
Soft region: k¥ ~ Q(A, A, \)



The expansion by regions (EbR)

Step 1: identify 4 regions in total: k
P1

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k¥ ~ Q(1, A, )\lﬁ) P+ k po+ k
Collinear-2 region: k* ~ Q(X, 1, AY?)
Soft region: k" ~ Q(A, A, A)

Q
Step 2: perform expansion around each region:
D 1
tn = /d MR 1 i0) (B2 1 2py -k +40) (K2 + 2ps -k +40) T

1
Tc, =C - /de
¢ (k2 + i0) ((p1 + k)2 +40) (2pa - k +i0)
1

C-/de — . —
. (k2 4+ 10) (2p1 - k + 20) ((p2 + k)2 + 20)

1
T =C-[de . . — +
° ~ (k2 4 ¢0) (2p1 - k + p3 + 10) (2p2 - k + p3 + ¢0)

e, =

+ ...




The expansion by regions (EbR)

Step 1. ...

Step 2: ....

Step 3: sum over their contributions, and the original integral is
reproduced:

1 QQ QQ ﬂ.Q
1 =TIg+Zc,+Lc,+Ls = (111 In + — 4+
2\ (—p) (—pd) 3

This equality holds to all orders of A!

More examples are presented in papers in the recent 20 years.



The expansion by regions (EbR)

Statement: 3 “Regions” : Ry, Rs, ..., R, such that

7 =7WR) L 7(R2) . 7(Bn),

The original integral, I , can be restored by summing over
contributions from the regions.

The EbR works for all known examples so far.
However, two fundamental questions remain unanswered today:
* How to prove the EbR? (Why is this technique true?)

* How to identify the regions? (How to use this technique?)



The expansion by regions (EbR)

Statement: 3 “Regions” : Ry, Rs, ..., R, such that

7 =7WR) L 7(R2) . 7(Bn),

The original integral, I , can be restored by summing over
contributions from the regions.

The EbR works for all known examples so far.
However, two fundamental questions remain unanswered today:
* How to prove the EbR? (Why is this technique true?)

* How to identify the regions! (How to use this technique?)

l

our focus today




Euclidean space: region structure understood

* Actually, all-order results have been established for Feynman
integrals with Euclidean kinematics.

®  For original papers, see (Tkachov 1980s; Smirnov 1990)

®* A detailed demonstration can be found in Smirnov's book "Applied Asymptotic
Expansions in Momenta and Masses"

* Each region is characterized by a certain subgraph carrying large
loop momenta.

Expansion by Regions
== "Expansion by Subgraphs".

* However, it would be highly nontrivial to extend this statement to

Minkowski kinematics.
e



The expansion by regions (EbR)

Why is such an extension nontrivial?

 Complicated infrared structure in Minkowski space:

pinch surface o




The expansion by regions (EbR)

Why is such an extension nontrivial?

 Complicated mode structure near singularities:

Recall that at one-loop level, we have

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k* ~ Q(1, A, )\lﬁ)
Collinear-2 region: k* ~ Q(X, 1, AY/?)
Soft region: k" ~ Q (A, A, A)

Question: Can other types of modes, such as
(/\?A‘z‘)}‘l/z)? ()\21)\21)\2)!

become relevant at higher loop orders?

10



Progress on identifying the regions

Progress from 2010: a geometric approach to determine the
regions systematically. (Pak & Smirnov 2010; Jantzen, Smirnov, Smirnov 2012)

Each Feynman integral corresponds to an (N+1)-dim polytope.

The regions corresponds to the lower facets (certain types of
boundaries) of this polytope.

For each lower facet, its normal vector (called “region vectors”)

explicitly shows the scaling of the Lee-Pomeransky parameters in
the corresponding region.

11



Progress on identifying the regions

Progress from 2010: a geometric approach to determine the
regions systematically. (Pak & Smirnov 2010; Jantzen, Smirnov, Smirnov 2012)

 Each Feynman integral corresponds to an (N+1)-dim polytope.

 The regions corresponds to the lower facets (certain types of
boundaries) of this polytope.

 For each lower facet, itsnormal vector)called “region vectors”)

explicitly shows the scaling of #he Lee-Pomeransky parameters in
the corresponding region.

P

0.0,0,1) — o1 ~x2 ~ T3~ Al (hard region)

(
. —1.0,—1,1) — 1 ~x3 ~ AL, 25 ~ A? (collinear-1 region
p+k
(0,—1,—1,1) — xo2 ~x3 ~ AL 2y~ A0 (collinear-2 region)
(

—1,—1,—-2,1) — Ty ~ Ty ~ AL 2y~ A2 (soft region)

11



Identifying regions from polytopes

* There have been computer codes based on this approach:
ASY2 (Pak & A.Smirnov 2010; Jantzen, A.Smirnov, V.Smirnov 2012)
ASPIRE (Ananthanarayan, Pal, Ramanan, Sarkar 2018)

pySecDec
(Heinrich, Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa 2021)

UsF)

12



Identifying regions from polytopes

However, there is still much to improve.

* All-loop-order results may not be directly available.
Note that dim(polytope) = #(propagators)+1.

* The output of this approach describes regions in parameter space,
while physically we are interested in their momentum-space
interpretation.

* This geometric approach may miss some regions, which are
“hidden” inside the polytope.

* This problem has been noticed in (Jantzen, A.Smirnov, V.Smirnov 2012),
and the geometric approach has been modified accordingly (Asy - Asy2).

* However, such modifications work only for relatively simple cases.

13



More recent progress

Progress from 2022: all-order region analysis in both
parameter & momentum space.

(Gardi, Herzog, Jones, Ma, Schlenk 2022; Ma 2023; Gardi, Herzog, Jones, Ma 2024)
 Two types of regions: “facet regions” and “hidden regions”.

* For a given Feynman integral, most regions are facet regions,
which correspond to lower facets of the polytope.

* For certain types of asymptotic expansions, we have understood
the facet region structure to all loop orders.

* For massless scattering, facet regions all feature a single and
connected subgraph, exchanging an off-shell (hard or Glauber)
momentum.

14



More recent progress

Progress from 2022: all-order region analysis in both
parameter & momentum space.

(Gardi, Herzog, Jones, Ma, Schlenk 2022; Ma 2023; Gardi, Herzog, Jones, Ma 2024)

Two types of regions: “facet regions” and “hidden regions”.

!

Additionally, there may be hidden regions residing within the
interior of the polytope.

For each given graph, we have developed an algorithm telling
whether or not any hidden regions might exist.

For massless scattering, hidden regions all feature multiple and
disconnected subgraphs, each exchanging an off-shell (hard or
Glauber) momentum.

15



Simplest examples

* Facet regions

* The hard, collinear-1, collinear-2, and soft regions for the
Sudakov form factor.

Hard region: k¥ ~ Q(1,1,1)
Collinear-1 region: k" ~ Q(1, A, }klﬁ)
Collinear-2 region: k" ~ Q(A, 1, )\”2)
Soft region: k' ~ Q(A, A, A\)

1z



Simplest examples

* Facet regions

g2 ~ ~ 43
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(Jaskiewicz, Jones, Szafron, Ulrich, arXiv:2501.00587)



Simplest examples

Hidden regions
* The Glauber region in the 1-loop 5-point graph:

14
P1+ P2
1 (Glauber)

fj[ -+ I'j-_}

1

(Jantzen, A.Smirnov, V.Smirnov, arXiv:1206.0546)
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Simplest examples

MITP-24-046

Hidden regions August 19, 2024

Factorization restoration through Glauber gluons

Thomas Becher®, Patrick Hager”, Sebastian Jaskiewicz®. Matthias Neubert™®, and Dominik Schwienbacher®
"Instibul e Theoretische Physik & AEC, Umiversilal Bern, Sidlersfrasse 5, CH-3012 Bern, Swilzerland
"PRISMAY Cluster of Ercellence & MITP, Johannes Gulenbery University, 55099 Mainz, Germany
“ Department of Physics, LEPP, Cornell Universily, Hthaca, NY 14855, U5 A.

We analyze the low-enersy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase [actors in the hard amplitudes spoil collinear cancellations and lead to double | “super-
leading” ) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF [actorization below the gap veto scale. The Glauber contribu-
tions we identifly are unambiguously delined without regulators beyond dimensional regularization.

F = —x1x3593 — 174 851 — T3T5 545

A3 A—3 A-3
— L5 ?Tl2 — IaTy 834 — Fal5812 . (15)
A3 A-2 A—2

The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form

F=(—g. 2+ (p. —q)as) (Fas —plaa) . (16)

e .

A—2 A-t
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Wide-angle



The “on-shell expansion”

e Let’s consider the following asymptotic expansion:

pr~AQ (i=1,...

small virtuality

p'ﬂ’h

P1

large virtuality

/,fprrw,—l— 1

massless

Diy - Diy ~ Q% (i1 # i2).

wide-angle scattering

1L



The “on-shell expansion”

e Let’s consider the following asymptotic expansion:

Pm //pm-—l-l
massless
.
p1 Pk
2 2 2 2 (. 2 -
PP~ (i=1,....K), @~Q* (j=1,...,L), pi, pi,~@Q (i1 #i2).
small virtuality large virtuality wide-angle scattering

* Result: the possibly relevant modes are

ki~ Q(1,1,1), k. ~ Q(L,AAY?), K~ QA A N).

1L



Facet regions in the on-shell expansion

 More precisely, the general structure of each facet region is

. kg ~ Q(1,1,1),
H-T-_/‘l\jm kgz ™~ Q(I’ Af’ Al/z)?

k' ~ Q(A, A A).

with additional requirements on the subgraphs H, J, and S.
This conclusion was proposed in [Gardi, Herzog, Jones, YM, Schlenk, |HEP07(2023)197],

and later proved in [YM, |JHEP09(2024)197].

19



Some remarks

1. This picture is natural

k”H ~ Q(]-a ]-:« ]-):-

k.~ Q(1, M, A13),

PK

k' ~ Q(A, A A).

because it describes neighborhoods of the singularities of the
integrand.

YM, JHEP09(2024)197 20



Some remarks

2. This picture is highly nontrivial

kﬂH ~ Q(]‘! ]‘! 1)"
_H_J\ | kgt ~ Q(L, A, )\1/2)?

KA~ QA A, A).

because the small parameter A is unique.
- This further validates SCET1!

YM, JHEP09(2024)197 21



Some remarks

3. This picture is independent of the spin or spacetime dimension.

kﬂH ~ Q(]‘! ]‘! 1)"
_H_J\ | kgt ~ Q(L, A, )\1/2)?

k' ~ Q(A, A A).

Meanwhile, regulators may affect the list of regions.

YM, JHEP09(2024)197 22



Hidden regions in the on-shell expansion

 Most of the regions are facet regions:
* most graphs have only facet regions;

* for the remaining graphs, hidden regions are very few
compared with the facet regions.

* For the 2->2 massless wide-angle scattering graphs,
* one loop: no graphs with hidden regions;
* two loops: =100 graphs, none with hidden regions;
* three loops: 1000 graphs, 10 of them have hidden regions.



Hidden regions in the on-shell expansion

 Most of the regions are facet regions:
* most graphs have only facet regions;

* for the remaining graphs, hidden regions are very few
compared with the facet regions.

* For the 2->2 massless wide-angle scattering graphs,
* one loop: no graphs with hidden regions;
* two loops: =100 graphs, none with hidden regions;
* three loops: 1000 graphs, 10 of them have hidden regions.

/ \

same origin only 1 for each graph;
“Landshoff scattering”




Hidden regions in the on-shell expansion

* The “Landshoff scattering”:

P2 P

/ ki
P1

* Inscalar theory, from straightforward power counting, above is the
only region that contributes to the leading asymptotic behavior. So

this region must be included.
* This region cannot be detected by any computer codes.

Gardi, Herzog, Jones, YM, JHEP08(2024)127 24



Power counting details

 To see why this region is leading:

k= Q (mg‘ + AT+ VT + \/Zmﬁ) . i=1.2.3.4.
2 P1 (Botts & Sterman, 1989)
//
i 1 o 0
¥ £y =& — E\/Xcosg(f?) (tan (5) A7 — cot (5) ZT) + AMK2 — K1),

1 0
E3 =& + Eﬁtan (5) AT + Nk — Kaq),

l\'-_g
/ll.l

P1 P3

1 0
Ea =& — E\/Xcot (5) Y1+ AMKk2 — K3).

3

* With this parameterization, /dﬂkldﬂkgd%g - Q:"D/Hdgidﬁidndui
i=1

e Under change of variables {§2, &3} — {x4, 74},

det (@) — \3/2 cos(#) cot().
(K, 7a) Gardi, Herzog, Jones, YM, JHEP08(2024)127 25



Power counting details

 To see why this region is leading:

k' =@ (&?}f + AT 4 VAl + \/Xym*"*) : i =1,2,3,4.

P2 P1 (Botts & Sterman, 1989)

> 4
/1'-_3
//l.l

P1 P3

> &
g

b b 3 1 3
/11< 7 /Hd& drdridy; = C / d&, (/H (Adﬁi){/\%dn)()\%dyz)l_gﬁ)
/ k i=1 0 i=1

)\f::ﬂﬁ
(‘)(52753)
\ ./dﬁ.4dT4 det (8{h:4,7'4)> |

/
k3

N —_

Ny
A3/2

* Power counting result:

1
INA'U', ’J,:—E—?)E-

* Meanwhile, p 20 for all the other regions.
Gardi, Herzog, Jones, YM, JHEPQ08(2024)127 25



Numerical evidences

“Landshoff scattering’] region

/ ~ A_1/2

full integral Y

107 -
10* 4
_ ]
e
S
ol
2 10°% 4
S |
-
102 4
102 104

Graph by Stephen Jones

103 102 101
Tﬁ2

Gardi, Herzog, Jones, YM, JHEP08(2024)127
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Numerical evidences

40000 -
30000 -
=
20000 A
|ii|
0]
10000 -
0 -
10° 104 1073 102 10~1!
TTF%

Graph by Stephen Jones Gardi, Herzog, Jones, YM, JHEP08(2024)127 26



All the 3-loop graphs with hidden regions

e All the 3-loop graphs

//%%



All the 3-loop graphs with hidden regions

* Corresponding hidden regions 7

Fi M i 1
(h) & 1) e ) G
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Regions in the on-shell expansion

Conjecture:

G441 .. FhE

A 2,
e R
s s,
> "_."" - : '..' ",
-~ l'.---:" ’ ) -
| .
L T
L .
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J] \ JK ™,
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- -\"-.__ e
xzfz x"-\.
y :

” B J2 PK

P1

P2

facet region hidden region

Gardi, Herzog, Jones, YM, JHEPQ08(2024)127 2L



The “soft expansion”

* Including some soft external momenta
b lu

Pm ' _APm+1

massless
P PK
q1 qL
exactly on-shell large virtuality exactly on-shell
: . 2
pz?=0 (t=1,...,K), q?NQQ (.;"= L) Ek=0 (k=1?ﬂ’f)
. . 2 2
Piy *Piy ~ Q% (v #42), il ~ @ le ~AQ7, iy -y ~ N°Q% (k1 # k).
wide-angle scattering soft momenta

YM, JHEP09(2024)197 29



Regions in the soft expansion

* Result: the possibly relevant modes are:
ki~ Q(1,1,1), k. ~ Q(L,AAY?), K~ QA A N).

* Interesting feature: additional requirements for the subgraphs.
YM, JHEP09(2024)197 =0



Regions in the soft expansion

* The interactions between the soft subgraph and the jets follow the
“information-delivery” picture.

* Some external soft information must be delivered to each jet.

* Any soft component adjacent to 23 jets can be a messenger.
 Example:

P1 P1

P4 lo [y P3 P4 L1 P3

X

YM, JHEPQ9(2024)197 30



Spacelike collinear



Spacelike collinear external momenta

Given two collinear momenta pi and p2, we call them
* timelike collinear: if they are both in the initial or final state;

* spacelike collinear: if one is initial and the other is final.

Feynman graphs with spacelike collinear external momenta possibly
feature Glauber singularities, which are responsible for factorization
breaking. (Catani, de Florian & Rodrigo 2011; Forshaw, Seymour & Siodmok 2012; ...)

Note that Glauber singularities are absent in wide-angle kinematics:
one can always deform the momentum-space integration contour to
avoid them. (coltins & Sterman 1981)

=21



The “Regge—-limit expansion”

kinematic limit:
2 2 2 2
Pl =Dy = p3 = py = 0,
it < s~ |ul,

(p1+1p2)” = s,
(p1 +p3)* =1,
(p1 + pa)® = u,

Gardi, Herzog, Jones, YM, JHEP08(2024)127 =2



The “Regge—-limit expansion”

Modes in facet regions:
H, Ci, Cy,

P2 1

14| P3

(p1+1p2)” = s,
(p1 +p3)” =t,

(p1 +pa)° = u,

|- and 2-loop

kinematic limit:

9 2 9 9
p1 =p3 =p3 =py =0,
it < s ~ |ul,

Gardi, Herzog, Jones, YM, JHEP08(2024)127 =2



The “Regge—-limit expansion”

Modes in facet regions:
H, Ci, Cy,
.y S, S:ClI, Ci12, S:C2, C22,

P2 1

14| P3

(p1 ‘|'}'J:3)2 — 8,
(p1 +p3)° =t,
(p1 +pa)° = u,

|- and 2-loop
3- and 4-loop

kinematic limit:

9 2 9 9
p1 =p3 =p3 =py =0,
it < s ~ |ul,

Gardi, Herzog, Jones, YM, JHEP08(2024)127 =2



The “Regge—-limit expansion”

Modes in facet regions:
H, Ci, Cy,

.y S, S:ClI, Ci12, S:C2, C22,
...y S2:C1, C13, §2-C2, C23,

P2 1

14| P3

(p1 —|‘}'»':3)2 — 8,
(p1 +p3)° =t,
(p1 +pa)° = u,

|- and 2-loop
3- and 4-loop
5- and 6-loop

“cascade of modes”

kinematic limit:

9 2 9 9
p1 =p3 =p3 =py =0,
it < s ~ |ul,

Gardi, Herzog, Jones, YM, JHEP08(2024)127 =2



The “Regge—-limit expansion”

Example:

12 P4

Nz\/

14 73

Gardi, Herzog, Jones, YM, JHEPQ08(2024)127 ==



The “Regge—-limit expansion”

Modes in hidden regions:
... + Glauber

T

(A, Ay AY/2)

Starting from 3 loops:
D2 D4

P1 p3
Gardi, Herzog, Jones, YM, JHEPQ08(2024)127 =4



The “Regge—-limit expansion”

Modes in hidden regions:
... + Glauber

T

(A, Ay AY/2)

Starting from 3 loops:

Gardi, Herzog, Jones, YM, JHEPQ08(2024)127 =4



The “Regge—-limit expansion”

35



The “Regge—-limit expansion”
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Main conclusions

1. The regions corresponding to a given graph can be
predicted from the infrared picture!

— on-shell expansion: hard, collinear, soft.
— soft expansion: hard, collinear, soft.

— Regge limit: hard, collinear, soft, Glauber, (collinear)?,
soft +collinear, ...

with the mode interactions following certain patterns.
2. Landshoff scattering in the wide—angle kinematics
I "spacelike collinearization"

Glauber singularities in the spacelike collinear limit
26



The "Landshoff-Glauber correspondence"

2— 3 scattering in the spacelike collinear limit
(1+2—3+4+5, with p2//p3):

in collaboration with W.Chen, E.Gardi, R.Ma, Y.Zhang, Z.Zhu =%



The "Landshoff-Glauber correspondence"

2— 3 scattering in the spacelike collinear limit
(1+2—3+4+5, with p2//p3):

Factorization breaking effects emerge from two loop level

5 1

in collaboration with W.Chen, E.Gardi, R.Ma, Y.Zhang, Z.Zhu =%



The "Landshoff-Glauber correspondence"

2— 3 scattering in the spacelike collinear limit
(1+2—3+4+5, with p2//p3):

Factorization breaking effects emerge from two loop level
5 1
.
2 3

in collaboration with W.Chen, E.Gardi, R.Ma, Y.Zhang, Z.Zhu =%

5 1
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Conclusions and outlook

The following related topics can be investigated further.

Inclusion of massive propagators.

Generalize to phase-space integrals.

SCET, Glauber-SCET, SCET gravity, etc.

Local infrared subtractions.

Can one even justify the EbR with the help of our results?

Landau analysis of singularities.

S~ @ gUTE G iy, TN f—s

Mathematical studies of convex/tropical geometry, etc.



Conclusions and outlook

The following related topics can be investigated further.

Inclusion of massive propagators.

Generalize to phase-space integrals.

SCET, Glauber-SCET, SCET gravity, etc.

Local infrared subtractions.

Can one even justify the EbR with the help of our results?

Landau analysis of singularities.

S~ @ gUTE G iy, TN f—s

Mathematical studies of convex/tropical geometry, etc.

THANK YOW!






The expansion by regions (EbR)

* These two questions are related.
|. How to prove the EbR? (Why is this technique true?)
2. How to identify the regions! (How to use this technique?)

Recall the statement
4 “Regions” : Ry, Ro, ..., R, such that

1 = I(Rl) + I(Rﬁ) 4.4 I(Rn)



The expansion by regions (EbR)

* These two questions are related.
|. How to prove the EbR? (Why is this technique true?)
2. How to identify the regions! (How to use this technique?)

Recall the statement

@;Regio@ Ry, Ra, ..., R,, such that
1 = I(Rl) + I(Rﬁ) 4.4 I(Rn)

* Moreover, Jantzen showed that the EbR works to all orders,
provided that the regions satisfy certain requirements.

(Jantzen 2011)



The expansion by regions (EbR)

* Usually, regions are determined based on heuristic examples or
experience.

* Soft-Collinear Effective Theory (SCET): an effective theory
describing the interactions of soft and collinear degrees of freedom
in the presence of a hard interaction.

* For example, the SCET describing ete™ — ~* — dijets
b

n%'QW

n-collinear =
jet

n-collinear
jet

(Bauer & Stewart, SCET Lecture Notes 2013)

|
|
|
|
|
soft

involves the hard mode (integrated out), the collinear modes, and the
soft mode. 9



The expansion by regions (EbR)

Usually, regions are determined based on heuristic examples or
experience.

* Soft-Collinear Effective Theory (SCET): an effective theory
describing the interactions of soft and collinear degrees of freedom
in the presence of a hard interaction.

* The SCETi Lagrangian (leading order):

L: = Z (L:n{ + Cng;) + ‘Cx\'uﬂ.

n
S | RN
. we-P ¢ ( - . [) + 1,) ‘ ]) ) «
— ¢ n : i n | “nl n
; < - \ L1 - [)II : / .)g

—

l o : o . .
+.)llz'l‘1‘{ [¢D",:D,|"} + TTx{[2DL, Apnul”} + 2Tr{b,[2 DL, [¢D,, cr]] })
|

+ P ilDsthps — —Tr{G" Gs v} + 7 Tr{(i8,A")?} + 2Tr{bsid,iD"cs} .

o

9



Parametric representation

P

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

B I'(D/2) e ~D/2
O = S+ 0D2 = ) e T ) / (H(m ) (P(@.2)

ecG

Plx,s)=U(x) + F(x, s),

— Z H Te, f(af:, S) = — ZSTQ H Te +U(:L‘) Z'Tngxe :

T! e¢T! T2 e T2 e
spanning trees spanning 2-trees

nooY = r]+ a9 + 13, F = {—p%).’fl.’f:; + {—p%).:rg.:r;:; + {—q%).:rl.:r.g

(x:.
o r1—1 wvo—1 1g9—1
I—C/ dzidxodrsx] x5 x4
0

Lo
D/2

% ($1 T X9+ T3 — P1$1$3 — p2$2$3 — q1$1$25
P2 &



Parametric representation

oy P

The Lee-Pomeransky representation (Lee & Pomeransky 2013)

B ['(D/2) o e —D/2
O = S+ 0D2 = ) e T ) /n (H e l) el

ec(

Plx,s)=U(x) + F(x, s),

U(x) = Z H Te, Flx,s) =— ZSTQ H Te +U(x) Zmﬁire .

T! e¢T! T2 e T2 e
spanning trees spanning 2-trees

Each region - a certain scaling of the x

Hard region : @1, a2, z3 ~ A\’
Collinear region to py : @1, 23 ~ A1, x5 ~ A"
Collinear region to ps : 1 ~ )\D, To, Ly ~ A1
Soft region : &1, xo ~ A7l g~ A2




Regions in different representations

* Momentum space:
Hard region: k" ~ Q(1,1,1)
Collinear-1 region: k¥ ~ Q(1, A, )klﬁ)
Collinear-2 region: k* ~ Q(X, 1, A/?)
Soft region: k" ~ Q(A, A, A)

* Parameter space:

Hard region : z1,x3, 3 ~ A\’
Collinear region to py : ©1, @3 ~ AL, @y ~ X’
Collinear region to ps : 1 ~ }\D, To, Ty ~ A1
Soft region : 1, xs ~ AL oz~ AT

* Relation between the scalings:
—1
e ~ (D)



Identifvying regions from Newton polytopes

* Given the Lee-Pomeransky polynomial,
Plx:s) =U(x) + F(x: s),
take the exponents of each term:

Sii‘ﬂ';rlw;g . e LU:;.” — (UI;UQ; . ;UT?.; {1) lf S ~ /\\L’LQQ

a1

73(:13, 3) =T+ T2+ T3 — PIT1T3 — PyT2T3 — q1T1T2

(1,0,0;0) | (0,0,1;0) (1,0,1:1) (1,1,0:0)

N _ ~, (0,1,0;0) 0.1.1:1)

Construct a Newton polytope, defined as the convex hull of the points.

Regions <-> the lower facets of this Newton polytope.

(Entries of the vector normal to a lower facet are precisely the scalings of x1, x2, ....)



Identifvying regions from Newton polytopes

Regions <-> the lower facets of this Newton polytope

Given a graph with N propagators, the Newton polytope A is N+1
dimensional.

Facets: the N-dimensional boundaries of A.

Lower facets: those facets whose inward-pointing normal vectors v
satisfy Un+1>0.

P

-

(0,1)

P,

n
1.2 F*
3¢ F*

3 n;

1 ny

3 Pr

(LL0) 2 (2.0)

The vector v is usually referred to as the region vector, and its
entries show the scaling of x.

9+1



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’l’flﬂf‘g — ])%:IJQ;’I;‘;g — (}%;’1’31.’1’.‘2
(1,0,0;0) | (0,0,1:0) (1,0,1;1) (1,1,0:0)

0:1.0:0) (0.1,1;1)
These points are in the hard facet, with va=(0,0,0;1).

In comparison,

Hard region : x1,x2,x3 ~ A’



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — P1X1X3 — Polo2Xy — (1 X1X2

(1,0,0;0) (0,0,1;0) (1,0,1;1) (1,1,0;0)

These points are in the collinear-1 facet, with ver = (-1,0,-1;1).

Collinear region to p; : 1, @3 ~ AL, oy ~ X0



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’lﬁlﬂf‘g — pg:ﬁg;’lﬁg — (}%;’1’31.’1’.‘2
(©.0.1:9) (1,1,0;0)

(0,1,0;0) (0,1,1;1)

These points are in the collinear-2 facet, with ve2 = (0,-1,-1;1).

Collinear region to ps : 1 ~ X, x9, 25 ~ A71



Identifying regions from Newton polytopes

Back to our example:

Each region (hard, collinear-1, , soft) corresponds to a
specific facet containing certain points.

73(33, S) =T+ X9 + T3 — p%;’lﬁlf}f‘g — pgﬂig;’l}g — (}%;’1’31.’1’.‘2

(0,1,1;1)
These points are on the soft facet, with vs = (-1,-1,-2;1).

Soft region: xy, Ty ~ AL, x5 ~ A2



Infrared structures of wide-angle scattering

* The Landau equations . ?(k.p.q)=0 VeeG
0
Ok,

D(k,p,q;a) =0 Vae{l,...,L}.

are necessary conditions for infrared singularity. The solutions of
the Landau equations are called pinch surfaces.

* The pinch surfaces of hard processes has been studied in detail
in the past decades.

* Motivation: it looks that the infrared regions are in one-to-one
correspondence with the pinch surfaces!



Regions in the on-shell expansion

E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEP07(2023)197

* Each solution of the Landau equations corresponds to a region,
provided that some requirements of H, J, and S are satisfied.

e Requirement of H: all the internal propagators of H,.q, which is the reduced form
of H, are off-shell.

o Requirement of J: all the internal propagators of J; req. which ts the reduced form of

I
the contracted graph .J;, carry eractly the momentum pf .

e Requirement of S: every connected component of S must connect at least two different
jet subgraphs J; and J;.

12



A graph-finding algorithm

* Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

* Afishnet example

Step 1: constructing the “primitive jets”:

P P2 41 2
Tla - Y2 -

P p3 P4 p3

P1 P2 P1 D9
V3b - Y4 :

P4 p3 P4 P3

E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEPQ7(2023)197

19



A graph-finding algorithm

* Based on this conclusion, we can construct a graph-finding
algorithm to unveil all the regions.

* Afishnet example
Step 2: overlaying the “primitive jets”:

P1 p2

P4 p3

Step 3: removing pathological configurations.

This algorithm does not involve constructing Newton polytopes,

and can be mUCh faSter' E.Gardi, F.Herzog, S.Jones, YM, J.Schlenk, JHEPQ7(2023)197 @



Landau analysis of cancellations

Each region (except the hard region) must correspond to an
infrared singularity, satisfying the Landau equations:

Fla;s) =0,
Vi, a; =0 or 9F/0a; = 0.

Therefore, &F having both positive and negative terms does not

necessarily imply a region, because the Landau equation above
may not be satisfied.

* For example,




Landau analysis of cancellations

* For example,

Flag s)

g (g + a5 + ag + a7) + asayar)

asaz(ay + a5 + ag + ar) + asasog)
(

agas(a) + a2 + as + ag + a7) + ajasar + asagog)

asar(ar + a2 + a3 + as + as) + arasoe + azasar]

—
oo
——
™
ot
b
-4
-
o
e
=]
—
e
Ll 1
M=
. —
2
b
™
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Landau analysis of cancellations

For example,

One can check that any possible cancellation within & is not
compatible with the Landau equations.

Therefore, all the regions are from the lower facets of the Newton
polytope.

Actually, as one can check in this way, most cases where & is
indefinite does not have regions due to cancellations.



All the 3-loop graphs with hidden regions

To identify these regions BVAR

systematically:

Dissect the original polytope X
into several distinct sectots,

such that these regions, which T T

are hidden inside the original | ./ e

(e) Gas (£} G (2) Guu

volytope, appear as lower y
. _' ) {r s

. | /] -
facets of the new sub-polytopes. ._[_. __‘_ g ﬂ, I

P P s i
(h) {7y (1) €4y () Giu
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Regions in the soft expansion

I
I|.!l

i
P

PT
Iz 7
Il
L 1 [
Py Ps Ps3
(a) v
ph
/ .
\ s I*
1y 1 2
| ,. ,, YM, JHEP09(2024)197
Py Py P JZ N A Py Py 2

(a) >< (b) > (¢) < (d) >< 2L



Regions in the soft expansion

* This study may also go beyond QCD.

For example, some rules for the “Soft-Collinear Gravity” coincide
with what we have found:

t:lur ALl AL A L s LS A rul!—f‘J AL E L F Rl Rs R

The above argument generalises to the following all-order statement: In soft loop-
corrections to the soft theorem, contrary to the tree-level case, the emitted soft gravi-
ton must always attach to a purely-soft vertex, and never directly to any of the en-
ergetic particle lines. The reason is that soft-collinear interactions involve the soft
field at the multipole-expanded point x* to any order in the A-expansion. Hence, if
the emitted graviton couples directly to an energetic line, one can always route its
momentum such that the entire loop integral will depend only on n; _k ni /2 of a
single collinear direction, i, and no soft invariant can be formed to provide a scale
to the loop diagram.

Mantinmnine vanth f1mra 0afk lasame svrhanairras tha Aiacerans Aasntains o oasaand saaealss

(Beneke, Hager, Szafron, “Soft-Collinear Gravity and Soft Theorems”)
See also

(Beneke, Hager, Szafron, 2021)

(Beneke, Hager, Schwienbacher, 2022)

(Beneke, Hager, Sanfilippo, 2023) et al.
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The “mass expansion”

* The heavy-to-light decay process:
1)

P

PP=M*~ Q% p*=m?>~)Q% P-p~Q>

large mass small mass

* |n addition to the hard, collinear, and soft modes, more
complicated modes can be present.

YM, JHEP09(2024)197 32



Regions in the mass expansion

* More modes are included: Starting from
hard mode Q(1,1,1), 1 loop
collinear mode Q(1,A\,A), 1 loop
soft mode Q(A,AAN), 2 loops
soft-collinear mode Q(A,A2,A\3/2), 3 loops
) e 4 loops
semihard mode Q(A”,A\2,N\%), 2 loops
semihard-collinear, semihard-soft, ...., 3 loops, nonplanar
, 3 loops, nonplanar
semihard-semicollinear, .... 4 loops, nonplanar

YM, JHEP09(2024)197 33



Regions in the mass expansion

 Examples




A formalism for planar graphs

For planar graphs, each region can be depicted as a “terrace”.

el

—
—
- ——

-~

(f)
YM, JHEP09(2024)197
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A formalism for planar graphs

* For planar graphs, each region can be depicted as a “terrace”.

. ¢ j\"\\ L =
g N
d S e L o
‘» N — - ——
- 7 T T L\ SRR 4 L . TS
L TR g il
- o

~
§c

)

,,“s:u!fftﬁmﬁf?:mﬁz;mgg@%_m S e iy

“;’: A :3&&7"‘:"“ et e e
e e e

ST  T L L iiﬁm%luw e
— 3 ‘— " “'- 3! iu‘wm & 1 “ﬁ!ﬁ}}!”{ .————— _'.?,; ' ,

(d) AR s :

YM, JHEP09(2024)197



Main conclusion 1

The regions corresponding to a given graph can be predicted
from the infrared picture!

— on-shell expansion: hard, collinear, soft.
— soft expansion: hard, collinear, soft.

— Regge limit: hard, collinear, soft, Glauber, (collinear)?,
soft +collinear, ...

with the mode interactions following certain patterns.

Above shows the "expansion—-by-subgraphs" prescription in
each given external Kinematics.

Can we unify these results?
(a prescription for generic asymptotic expansions?)

Y2



T o unify these prescriptions

Understand the mode structure
* Wide-angle kinematics
- The mode structure depends on the virtualities of the external momenta.
- There is a finite number of modes in general.
* Spacelike-collinear kinematics
- The mode structure can be obtained from above + “spacelike collinearization”.

- When there are multiple collinear directions, there are infinite modes in general
---“cascade of modes”.

Understand the mode interactions
* How do the mode subgraphs connect to each other?

* Any further requirements of these subgraphs? (necessary and sufficient
condition for a region)

Develop a graph-finding algorithm to obtain the regions directly

from the graphs =5



Local infrared subtractions

 Aim: construct counterterms removing both IR and UV singularities
at the level of integrand.

* We need the “hard-collinear” and “soft-collinear” approximations
that are exactly used for the method of regions.

* Main differences: @ no hard region. @ more nested approx.

 Recent progresses at two loops:

- 2-loop 222 wide-angle scattering (Anastasiou & Sterman 2018)

- 2-loopete” — W, Z,~" (Anastasiou, Haindl, Sterman, Yang, Zeng 2020)
- 2-loop q@ — W, Z,~™ (Anastasiou & Sterman 2022)

- 2-loop gg — h - -+ h(Anastasiou, Karlen, Sterman, Venkata 2023) =7



