

The renormalization of the Standard Model effective field theory

Mikael Chala University of Granada

based on 2106.05291, 2106.05291, 2205.03301, 2409.15408

Particle Physics Seminar, Universität Wien; March 4, 2025

1

The SMEFT is the SM extended with effective operators

(Probably) the most reasonable model of new physics

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$$

If probed by experiments at very different scales, RGEs of the theory are needed [Jenkins, Manohar, Trott, Alonso '13].

Interesting theoretical aspects at dimension-8 (positivity, tree-loop mixing, test tools, ...)

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

$$\mathcal{L}_{\rm SM} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + D_{\mu} \phi^{\dagger} D^{\mu} \phi - \lambda |\phi|^4 + \cdots$$

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

$$\beta_{g_1} = \frac{41}{6}g_1^3 + \mathbf{0} \times \boldsymbol{\lambda}$$

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

 μ

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

 $C_{\phi^2 B^2}$

 $c_{\phi^4 D^2}$

 c_{ϕ^6}

$$\dot{c}_{\phi^2 B^2} = c_{\phi^4 D^2} c_{\phi^6}$$

 $\dot{c}_i \equiv \beta_{c_i} = \gamma_{ij} c_j$ $\gamma_{ij} = c_{\phi^4 D^2} \left(\begin{array}{c} \times & \times & \times \\ \times & \times & \times \\ & c_{\phi^6} \end{array} \right) \left(\begin{array}{c} \times & \times & \times \\ \times & \times & \times \end{array} \right)$

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

 $C_{\phi^2 B^2}$

 $C_{\phi^4 D^2}$

 c_{ϕ^6}

Renormalization within simplified SM at dimension-4 and dimension-6 $\,$

 $C_{\phi^2 B^2}$

 $c_{\phi^4 D^2}$

 c_{ϕ^6}

Renormalization within simplified SM at dimension-4 and dimension-6 [Cheung and Shen '15; Craig, Jiang, Li, Sutherland '20]

[Transitions down or to left forbidden]

Renormalization within simplified SM at dimension-4 and dimension-6 [Cheung and Shen '15; Craig, Jiang, Li, Sutherland '20]

Renormalization within simplified SM at dimension-4 and dimension-6 [Cheung and Shen '15; Craig, Jiang, Li, Sutherland '20]

Besides pure theoretical considerations, anomalous dimensions of dimension-8 operators [Murphy '20; Li, Ren, Shu, Xiao, Yu, Zheng '20] not always phenomenologically irrelevant

Simplest example:

Custodial symmetry violation absent at tree-level dimension-6, one-loop dimension-6 and tree-level dimension-8 [MC, Krause, Nardini '18; Durieux, McCullough, Salvioni '22]

$$\mu \frac{d\alpha^{i}}{d\mu} = g_{ij}\alpha^{j} + g'_{ijk}\alpha^{j}\alpha^{k} + g''_{ijkl}\alpha^{j}\alpha^{k}\alpha^{l} + g'''_{ijklm}\alpha^{j}\alpha^{k}\alpha^{l}\alpha^{m}$$

 $\mathcal{O}_{\ell\phi}^{(5)} = \epsilon_{ij} \epsilon_{mn} \left(\ell^i C \ell^m \right) \phi^j \phi^n$

$$\mu \frac{d\alpha^{i}}{d\mu} = g_{ij}\alpha^{j} + g'_{ijk}\alpha^{j}\alpha^{k} + g''_{ijkl}\alpha^{j}\alpha^{k}\alpha^{l} + g'''_{ijklm}\alpha^{j}\alpha^{k}\alpha^{l}\alpha^{m}$$

 $\mu \frac{d\alpha^{i}}{d\mu} = g_{ij}\alpha^{j} + g'_{ijk}\alpha^{j}\alpha^{k} + g''_{ijkl}\alpha^{j}\alpha^{k}\alpha^{l} + g'''_{ijklm}\alpha^{j}\alpha^{k}\alpha^{l}\alpha^{m}$

Grojean et al '13 Elias-Miro et al '13

Jenkins et al '13

Aneesh V. Manohar 2025 recipient For outstanding contributions to the physics of baryons, including deriving many physical properties of nucleons and hyperons in the large number of colors limit of quantum

chromodynamics and deriving the renormalization group evolution of the standard model effective field theory at one loop.

Elizabeth E. Jenkins

2025 recipient

Babu et al '93

Chankowski et al '03

For outstanding contributions to the physics of baryons, including deriving many physical properties of nucleons and hyperons in the large number of colors limit of quantum chromodynamics and deriving the renormalization group evolution of the standard model effective field theory at one loop.

$$\mu \frac{d\alpha^{i}}{d\mu} = g_{ij}\alpha^{j} + g'_{ijk}\alpha^{j}\alpha^{k} + g''_{ijkl}\alpha^{j}\alpha^{k}\alpha^{l} + g'''_{ijklm}\alpha^{j}\alpha^{k}\alpha^{l}\alpha^{m}$$

$$\mu \frac{d\alpha^{i}}{d\mu} = g_{ij}\alpha^{j} + g'_{ijk}\alpha^{j}\alpha^{k} + g''_{ijkl}\alpha^{j}\alpha^{k}\alpha^{l} + g''_{ijklm}\alpha^{j}\alpha^{k}\alpha^{l}\alpha^{m}$$

2106.05291	d_5	d_5^2	d_6	d_5^3	$d_5 imes d_6$	d_7	d_5^4	$d_5^2 imes d_6$	d_6^2	$d_5 \times d_7$	d_8
$d_{\leq 4}$ (bosonic)			✓ [7]						This work		Х
$d_{\leq 4}$ (fermionic)			[7]						Х		X
d_5	✓ [66–68]				[71]	[71]					
d_6 (bosonic)		[30]	✓ [7–9]					Х	This work	Х	Х
d_6 (fermionic)		[30]	✓ [7–9,69]					Х	X	Х	Х
d_7				[71]	[71]	\checkmark [22,70]					
d_8 (bosonic)							Х	Х	This work	X	Х
d_8 (fermionic)							Х	Х	Х	Х	Х

2106.05291	d_5	d_5^2	d_6	d_5^3	$d_5 imes d_6$	d_7	d_5^4	$d_5^2 imes d_6$	d_6^2	$d_5 imes d_7$	d_8
$d_{\leq 4}$ (bosonic)			✓ [7]						This work		X
$d_{\leq 4}$ (fermionic)	000011100		 [7] 						Х		Х
d_5	✓ [66–68]				[71]	[71]					
d_6 (bosonic)		[30]	✓ [7–9]					Х	This work	Х	Х
d_6 (fermionic)		[30]	✓ [7–9,69]					Х	Х	Х	Х
d_7				[71]	✓ [71]	\checkmark [22,70]					
d_8 (bosonic)							Х	Х	This work	Х	Х
d_8 (fermionic)							Х	Х	X	X	Х

More generally, certain aspects of the full anomalous dimension matrix well understood [Craig, Jiang, Li, Sutherland; 2001.00017]

8	X_L^4	$egin{array}{lll} X_L^3 H^2, \ X_L^2 \psi^2 H, \ X_L \psi^4 \end{array}$	$egin{array}{lll} X_L^2 H^4, \ X_L \psi^2 H^3, \ \psi^4 H^2 \end{array}$	$\psi^2 H^5$	H^8	
6		$\begin{array}{c} X_L^2 H^2 D^2,\\ X_L^2 \psi \bar{\psi} D,\\ X_L \psi^2 H D^2,\\ \psi^4 D^2 \end{array}$	$egin{aligned} X_L H^4 D^2, \ X_L^2 ar{\psi}^2 H, \ X_L \psi ar{\psi} H^2 D, \ \psi^2 H^3 D^2, \ X_L \psi^2 ar{\psi}^2, \ \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{ll} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2H^2 \end{array}$	$ar{\psi}^2 H^5$	
4			$egin{aligned} & X_L^2 X_R^2, \ & X_L X_R H^2 D^2, \ & H^4 D^4, \ & X_L X_R \psi ar{\psi} D, \ & X_R \psi^2 H D^2, \ & X_L ar{\psi}^2 H D^2, \ & \psi ar{\psi} H^2 D^3, \ & \psi^2 ar{\psi}^2 D^2 \end{aligned}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar \psi H^2 D, \ &ar \psi^2 H^3 D^2, \ &X_R \psi^2 ar \psi^2, \ &\psi ar \psi^3 H D \end{aligned}$	$egin{array}{lll} X_R^2 H^4, \ X_R ar{\psi}^2 H^3, \ ar{\psi}^4 H^2 \end{array}$	
2				$egin{aligned} X_R^2 H^2 D^2, \ X_R^2 \psi ar \psi D, \ X_R ar \psi^2 H D^2, \ ar \psi^4 D^2 \end{aligned}$	$egin{array}{lll} X_R^3 H^2, \ X_R^2 ar{\psi}^2 H, \ X_R ar{\psi}^4 \end{array}$	
0	0	2	4	6	$\begin{array}{c} X_R^4 \\ 8 \end{array}$	

w

More generally, certain aspects of the full anomalous dimension matrix well understood [Craig, Jiang, Li, Sutherland; 2001.00017]

\overline{w}	8	X_L^4	$egin{array}{lll} X_L^3 H^2,\ X_L^2 \psi^2 H,\ X_L \psi^4 \end{array}$	$\begin{array}{c} X_L^2 H^4,\\ X_L \psi^2 H^3,\\ \psi^4 H^2 \end{array}$	$\psi^2 H^5$	H^8
	6		$egin{aligned} &X_L^2 H^2 D^2,\ &X_L^2 \psi ar \psi D,\ &X_L \psi^2 H D^2,\ &\psi^4 D^2 \end{aligned}$	$egin{aligned} & X_L H^4 D^2, \ & X_L^2 ar{\psi}^2 H, \ & X_L \psi ar{\psi} H^2 D, \ & \psi^2 H^3 D^2, \ & X_L \psi^2 ar{\psi}^2, \ & \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{l} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2 H^2 \end{array}$	$ar{\psi}^2 H^5$
	4			$X_L^2 X_R^2, \ X_L X_R H^2 D^2, \ H^4 D^4, \ X_L X_R \psi \bar{\psi} D, \ X_R \psi^2 H D^2, \ X_L \bar{\psi}^2 H D^2, \ \psi \bar{\psi} H^2 D^3, \ \psi^2 \bar{\psi}^2 D^2$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar \psi H^2 D, \ &ar \psi^2 H^3 D^2, \ &X_R \psi^2 ar \psi^2, \ &\psi ar \psi^3 H D \end{aligned}$	$X_R^2 H^4, \ X_R ar{\psi}^2 H^3, \ ar{\psi}^4 H^2$
	2				$egin{aligned} & X_R^2 H^2 D^2, \ & X_R^2 \psi ar{\psi} D, \ & X_R ar{\psi}^2 H D^2, \ & ar{\psi}^4 D^2 \end{aligned}$	$egin{aligned} X_R^3 H^2,\ X_R^2 ar{\psi}^2 H,\ X_R ar{\psi}^4 \end{aligned}$
	0					X_R^4
		0	2	4	6	8
				w		

More generally, certain aspects of the full anomalous dimension matrix well understood [Craig, Jiang, Li, Sutherland; 2001.00017]

	8	X_L^4	$X_L^3 H^2, \ X_L^2 \psi^2 H.$	$egin{array}{lll} X_L^2 H^4, \ X_I \psi^2 H^3. \end{array}$	$\psi^2 H^5$	H^8
\overline{w}			$X_L \psi^4$	$\psi^4 H^2$		
	6		$egin{aligned} &X_L^2H^2D^2,\ &X_L^2\psiar\psi D,\ &X_L\psi^2HD^2,\ &\psi^4D^2 \end{aligned}$	$egin{aligned} &X_L H^4 D^2,\ &X_L^2 ar{\psi}^2 H,\ &X_L \psi ar{\psi} H^2 D,\ &\psi^2 H^3 D^2,\ &X_L \psi^2 ar{\psi}^2,\ &\psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{l} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2H^2 \end{array}$	$ar{\psi}^2 H^5$
	4			$egin{aligned} X_L^2 X_R^2, \ X_L X_R H^2 D^2, \ H^4 D^4, \ X_L X_R \psi ar \psi D, \ X_R \psi^2 H D^2, \ X_L ar \psi^2 H D^2, \ \psi ar \psi H^2 D^3, \ \psi^2 ar \psi^2 D^2 \end{aligned}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar \psi H^2 D, \ &ar \psi^2 H^3 D^2, \ &X_R \psi^2 ar \psi^2, \ &\psi ar \psi^3 H D \end{aligned}$	$X_R^2 H^4, \ X_R ar{\psi}^2 H^3, \ ar{\psi}^4 H^2$
	2				$egin{aligned} &X_R^2 H^2 D^2, \ &X_R^2 \psi ar{\psi} D, \ &X_R ar{\psi}^2 H D^2, \ &ar{\psi}^4 D^2 \end{aligned}$	$egin{aligned} X_R^3 H^2,\ X_R^2 ar{\psi}^2 H,\ X_R ar{\psi}^4 \end{aligned}$
	0					X_R^4
	on (20	0	2	4	6	8
				w		

More generally, certain aspects of the full anomalous dimension matrix well understood [Craig, Jiang, Li, Sutherland; 2001.00017]

8 w	X_L^4	$egin{array}{lll} X_L^3 H^2,\ X_L^2 \psi^2 H,\ X_L \psi^4 \end{array}$	$\begin{array}{c} X_L^2 H^4,\\ X_L \psi^2 H^3,\\ \psi^4 H^2 \end{array}$	$\psi^2 H^5$	H^8	$\overline{7}^{0}$	
6		$egin{aligned} & X_L^2 H^2 D^2, \ & X_L^2 \psi ar{\psi} D, \ & X_L \psi^2 H D^2, \ & \psi^4 D^2 \end{aligned}$	$egin{aligned} & X_L H^4 D^2, \ & X_L^2 ar{\psi}^2 H, \ & X_L \psi ar{\psi} H^2 D, \ & \psi^2 H^3 D^2, \ & X_L \psi^2 ar{\psi}^2, \ & \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{l} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2 H^2 \end{array}$	$ar{\psi}^2 H^5$	$\mu \frac{dc_{B^2\phi^2 D^2}^{(1)}}{d\mu} \sim \gamma c_{e^2\phi^2 D^2}^{(1)} + any signature{2}{\rm signature{1}}$	 gn
4			$\begin{array}{c} X_{L}^{2}X_{R}^{2},\\ X_{L}X_{R}H^{2}D^{2},\\ H^{4}D^{4},\\ X_{L}X_{R}\psi\bar{\psi}D,\\ X_{R}\psi^{2}HD^{2},\\ X_{L}\bar{\psi}^{2}HD^{2},\\ \psi\bar{\psi}H^{2}D^{3},\\ \psi^{2}\bar{\psi}^{2}D^{2} \end{array}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar \psi H^2 D, \ &ar \psi^2 H^3 D^2, \ &X_R \psi^2 ar \psi^2, \ &\psi ar \psi^3 H D \end{aligned}$	$\begin{array}{l} X_R^2 H^4, \\ X_R \bar{\psi}^2 H^3, \\ \bar{\psi}^4 H^2 \end{array}$		
2				$egin{aligned} &X_R^2 H^2 D^2, \ &X_R^2 \psi ar{\psi} D, \ &X_R ar{\psi}^2 H D^2, \ &ar{\psi}^4 D^2 \end{aligned}$	$egin{array}{lll} X_R^3 H^2, \ X_R^2 ar{\psi}^2 H, \ X_R ar{\psi}^4 \end{array}$		
0					X_R^4		
	0	2	4	6	8		22

23

More generally, certain aspects of the full anomalous dimension matrix well understood [Craig, Jiang, Li, Sutherland; 2001.00017]

8 70	X_L^4	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} X_L^2 H^4,\\ X_L \psi^2 H^3,\\ \psi^4 H^2 \end{array}$	$\psi^2 H^5$	H^8	$\overline{}^{0}$
6		$egin{aligned} &X_L^2 H^2 D^2,\ &X_L^2 \psi ar \psi D,\ &X_L \psi^2 H D^2,\ &\psi^4 D^2 \end{aligned}$	$egin{aligned} & X_L H^4 D^2, \ & X_L^2 ar{\psi}^2 H, \ & X_L \psi ar{\psi} H^2 D, \ & \psi^2 H^3 D^2, \ & X_L \psi^2 ar{\psi}^2, \ & \psi^3 ar{\psi} H D \end{aligned}$	$egin{array}{ll} H^6D^2,\ \psiar\psi H^4D,\ \psi^2ar\psi^2H^2 \end{array}$	$ar{\psi}^2 H^5$	$\mu \frac{dc_{B^{2}\phi^{2}D^{2}}^{(1)}}{d\mu} \sim \gamma c_{e^{2}\phi^{2}D^{2}}^{(1)} + \cdots$ any sign
4			$egin{aligned} X_L^2 X_R^2, \ X_L X_R H^2 D^2, \ H^4 D^4, \ X_L X_R \psi ar \psi D, \ X_R \psi^2 H D^2, \ X_L ar \psi^2 H D^2, \ \psi ar \psi H^2 D^3, \ \psi^2 ar \psi^2 D^2 \end{aligned}$	$egin{aligned} &X_R H^4 D^2, \ &X_R^2 \psi^2 H, \ &X_R \psi ar \psi H^2 D, \ &ar \psi^2 H^3 D^2, \ &X_R \psi^2 ar \psi^2, \ &\psi ar \psi^3 H D \end{aligned}$	$egin{array}{lll} X_R^2 H^4, \ X_R ar{\psi}^2 H^3, \ ar{\psi}^4 H^2 \end{array}$	$\gamma = 0$
2				$egin{aligned} & X_R^2 H^2 D^2, \ & X_R^2 \psi ar \psi D, \ & X_R ar \psi^2 H D^2, \ & ar \psi^4 D^2 \end{aligned}$	$egin{aligned} X_R^3 H^2,\ X_R^2 ar{\psi}^2 H,\ X_R ar{\psi}^4 \end{aligned}$	conservation [Jian, Shu, Xiao, Zheng 2001.04481], but positivity further restricts the signs [MC 2301.09995; MC, Li 2309.16611]
0					X_R^4	
	0	2	4 w	6	8	24

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c_{l^4D^2}^{(1)}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2 e^2 D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	+	+	+	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	_	_	0	_
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2\phi^2D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	_	0	-	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	-	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	_	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2\phi^2D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+	×	×	0	$-\frac{4 Y ^2}{2}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	3 ×	×	×	0	-	-	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$C_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2e^2D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

	$c^{(1)}_{\phi^4 D^4}$	$c^{(2)}_{\phi^4 D^4}$	$c^{(3)}_{\phi^4 D^4}$	$ ilde{c}^{(1)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	$ ilde{c}^{(1)}_{l^2\phi^2D^3}$	$ ilde{c}^{(2)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(3)}_{l^2 \phi^2 D^3}$	$ ilde{c}^{(4)}_{l^2 \phi^2 D^3}$	$c_{e^4D^2}$	$c^{(1)}_{l^4D^2}$	$c_{l^4D^2}^{(2)}$	$c^{(1)}_{l^2 e^2 D^2}$	$c^{(2)}_{l^2e^2D^2}$
$c^{(1)}_{B^2 \phi^2 D^2}$	$\frac{g^2}{3}$	$\frac{g^2}{2}$	$\frac{g^2}{6}$	0	_	0	_	0	_	0	0	0	0	0
$c^{(1)}_{W^2 \phi^2 D^2}$	+	+	+	0	0	0	-	0	-	0	0	0	0	0
$ ilde{c}^{(2)}_{e^2 \phi^2 D^3}$	+	+	+ 9	$g^2 - Y ^2$	2 ×	0	$-\frac{4 Y ^2}{2}$	0	-	-	0	0	0	-
$ ilde{c}^{(2)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	3 ×	×	×	0	-	-	0	-
$ ilde{c}^{(4)}_{l^2\phi^2D^3}$	+	+	+	0	-	×	×	×	×	0	-	-	0	-
$c_{e^2B^2D}$	0	0	0	0	-	0	0	0	0	-	0	0	0	-
$c_{l^2B^2D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	-
$c_{e^2W^2D}$	0	0	0	0	-	0	0	0	0	0	0	0	0	-
$c^{(1)}_{l^2 W^2 D}$	0	0	0	0	0	0	-	0	-	0	-	-	0	0
$c^{(2)}_{l^2 e^2 D^2}$	0	0	0	0	-	0	-	0	-	-	-	-	×	×

The current status of the SMEFT renormalization [MC, Gueds, Ramos, Santiago 2106.05291; Bakshi, MC, Diaz-Carmona, Guedes 2205.03301; Bakshi, MC, Diaz-Carmona, Ren, Vilches 2409.15408]

See also [Zhang 2310.11055; 2306.03008; Bakshi and Diaz-Carmona 2301.07151; Boughezal, Huang, Petriello 2408.15378]

3	d_5	d_5^2	d_6	d_5^3	$d_5 imes d_6$	d_7	d_5^4	$d_5^2 \times d_6$	d_6^2	($d_5 \times d_7$	d_8
$d_{\leq 4}$ (bosonic)			✓ [7]						\checkmark			7
$d_{\leq 4}$ (fermionic)			✓ [7]						\checkmark			\checkmark
d_5	✓ [66–68]				✓ [71]	[71]						
d_6 (bosonic)		[30]	✓ [7–9]					\checkmark	\checkmark		\checkmark	\checkmark
d_6 (fermionic)		[30]	✓ [7–9,69]					Х	\checkmark		Х	\checkmark
d_7				[71]	✓ [71]	\checkmark [22,70]						
d_8 (bosonic)							\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
d_8 (fermionic)							Х	X	\checkmark		X	√.

Some other partial results:

Accettulli Huber, De Angelis; 2108.03669 Helset, Jenkins, Manohar; 2212.03253 Asteriadis, Dawson, Fontes; 2212.03258 Bakshi, Diaz-Carmona; 2301.07151 Assi, Helset, Manohar, Pagès, Chia-Hsien Shen; 2307.03187

Boughezal, Huang, Petriello; 2408.15378

How do we organize the computation?

We match the UV divergences of Green's functions onto a basis of off-shell-independent operators

But off-shellness requires introducing more operators than physically independent:

$$\mathcal{L} = c_1 (\phi^{\dagger} \phi)^2 (\phi^{\dagger} D^2 \phi + \text{h.c.}) + c_2 (\phi^{\dagger} \phi)^2 (D^{\mu} \phi^{\dagger} D_{\mu} \phi) + \cdots$$

$$\phi \to c_1 (\phi^{\dagger} \phi)^2 \phi \Rightarrow \delta \mathcal{L} = c_1 |\phi|^8$$
 31

First challenge: building a basis of off-shellindependent operators [MC, Diaz-Carmona, Guedes 2112.12724]

$$\begin{aligned} \mathcal{O}_{1} &= -D_{\mu}(\phi^{\dagger}\phi)D^{\mu}B^{\rho\nu}B_{\nu\rho} - D_{\mu}(\phi^{\dagger}\phi)D^{\rho}B^{\nu\mu}B_{\nu\rho} \\ &= -D_{\mu}(\phi^{\dagger}\phi)D^{\mu}B^{\rho\nu}B_{\nu\rho} - D_{\mu}(\phi^{\dagger}\phi)D^{\rho}B^{\mu\rho}B_{\nu\rho} \\ &= -D_{\mu}(\phi^{\dagger}\phi)D^{\mu}B^{\rho\nu}B_{\nu\rho} - \mathcal{O}_{1} \end{aligned} \\ \Rightarrow \mathcal{O}_{1} &= -\frac{1}{2}D_{\mu}(\phi^{\dagger}\phi)D^{\mu}B^{\rho\nu}B_{\nu\rho} \\ &= \frac{1}{2}D^{2}(\phi^{\dagger}\phi)B^{\rho\nu}B^{\nu\rho} - \frac{1}{2}D_{\mu}(\phi^{\dagger}\phi)B^{\rho\nu}D^{\mu}B_{\nu\rho} \\ &= \frac{1}{2}D^{2}(\phi^{\dagger}\phi)B^{\rho\nu}B_{\nu\rho} - \mathcal{O}_{1} \end{aligned} \\ \Rightarrow \mathcal{O}_{1} &= \frac{1}{4}D^{2}(\phi^{\dagger}\phi)B^{\rho\nu}B_{\nu\rho} \\ &= -\frac{1}{4}(D^{2}\phi^{\dagger}\phi + \phi^{\dagger}D^{2}\phi)B^{\nu\rho}B_{\nu\rho} - \frac{1}{4}(2D_{\mu}\phi^{\dagger}D^{\mu}\phi)B^{\nu\rho}B_{\nu\rho} \\ &= -\frac{1}{4}\mathcal{O}_{2} - \frac{1}{2}\mathcal{O}_{3} \,. \end{aligned}$$

First challenge: building a basis of off-shellindependent operators [MC, Diaz-Carmona, Guedes 2112.12724]

Strategy: compute amplitudes evaluated at off-shell momenta

Matrix of coefficients with det(M)=2 $\phi^{\dagger}\phi \rightarrow BB$

$$\begin{aligned} \mathcal{A} &= -ic_1(\kappa_{3334} + 2\kappa_{3434} + \kappa_{3444} - \kappa'_{4333} - 2\kappa'_{4334} - \kappa'_{4344}) \\ &+ 4ic_2(2\kappa_{2234} + 2\kappa_{2334} + 2\kappa_{2434} + \kappa_{3334} + 2\kappa_{3434} + \kappa_{3444} - 2\kappa'_{4322} - 2\kappa'_{4323}) \\ &- 2\kappa'_{4324} - \kappa'_{4333} - 2\kappa - 2\kappa'_{4334} - \kappa_{4344}) \\ &- 4ic_3(\kappa_{2234} + \kappa_{2334} + \kappa_{2434} - \kappa'_{4322} - \kappa_{4323} - \kappa_{4324}); \end{aligned}$$

$$\kappa_{ijkl} = \epsilon_3 \cdot \epsilon_4 (p_i \cdot p_j) (p_k \cdot p_l)$$
³³

A basis of off-shell-independent bosonic operators:

	Operator	Notation	Operator	Notation
φ8	$(\phi^{\dagger}\phi)^4$	\mathcal{O}_{ϕ^8}		
03	$(\phi^{\dagger}\phi)^2(D_{\mu}\phi^{\dagger}D^{\mu}\phi)$	$\mathcal{O}^{(1)}_{\phi^6}$	$(\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)(D_{\mu}\phi^{\dagger}\sigma^{I}D^{\mu}\phi)$	$\mathcal{O}^{(2)}_{\phi^6}$
φ ₆	$(\phi^{\dagger}\phi)^2(\phi^{\dagger}D^2\phi + h.c.)$	$\mathcal{O}^{(3)}_{\phi^6}$	$(\phi^{\dagger}\phi)^2 D_{\mu}(\phi^{\dagger}\mathrm{i}\overleftrightarrow{D}^{\mu}\phi)$	$\mathcal{O}^{(4)}_{\phi^6}$
	$(D_{\mu}\phi^{\dagger}D_{\nu}\phi)(D^{\nu}\phi^{\dagger}D^{\mu}\phi)$	$\mathcal{O}^{(1)}_{\phi^4}$	$(D_\mu \phi^\dagger D_\nu \phi) (D^\mu \phi^\dagger D^\nu \phi)$	$\mathcal{O}^{(2)}_{\phi^4}$
	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)(D^{\nu}\phi^{\dagger}D_{\nu}\phi)$	$\mathcal{O}^{(3)}_{\phi^4}$	$D_{\mu}\phi^{\dagger}D^{\mu}\phi(\phi^{\dagger}D^{2}\phi + \text{h.c.})$	$\mathcal{O}_{\phi^4}^{(4)}$
-	$D_{\mu}\phi^{\dagger}D^{\mu}\phi(\phi^{\dagger}iD^{2}\phi + h.c.)$	$\mathcal{O}_{\phi^4}^{(5)}$	$(D_{\mu}\phi^{\dagger}\phi)(D^{2}\phi^{\dagger}D_{\mu}\phi) + \text{h.c.}$	$\mathcal{O}_{\phi^4}^{(6)}$
4D	$(D_{\mu}\phi^{\dagger}\phi)(D^{2}\phi^{\dagger}\mathrm{i}D_{\mu}\phi) + \mathrm{h.c.}$	$\mathcal{O}_{\phi^4}^{(7)}$	$(D^2 \phi^{\dagger} \phi) (D^2 \phi^{\dagger} \phi) + \text{h.c.}$	$\mathcal{O}_{\phi^4}^{(8)}$
¢	$(D^2\phi^{\dagger}\phi)(\mathrm{i}D^2\phi^{\dagger}\phi) + \mathrm{h.c.}$	$\mathcal{O}^{(9)}_{\phi^4}$	$(D^2\phi^{\dagger}D^2\phi)(\phi^{\dagger}\phi)$	$O_{\phi^4}^{(10)}$
	$(\phi^{\dagger}D^{2}\phi)(D^{2}\phi^{\dagger}\phi)$	$\mathcal{O}^{(11)}_{\phi^4}$	$(D_{\mu}\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}D^{2}\phi) + \text{h.c.}$	$O_{\phi^4}^{(12)}$
	$(D_{\mu}\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}\mathrm{i}D^{2}\phi) + \mathrm{h.c.}$	$\mathcal{O}^{(13)}_{\phi^4}$		
$X^3 \phi^2$	$f^{ABC}(\phi^{\dagger}\phi)G^{A, u}_{\mu}G^{B, ho}_{ u}G^{C,\mu}_{ ho}$	$O_{G^{3\phi^2}}^{(1)}$	$f^{ABC}(\phi^{\dagger}\phi)G^{A,\nu}_{\mu}G^{B, ho}_{\nu}\tilde{G}^{C,\mu}_{ ho}$	$\mathcal{O}^{(1)}_{G^{3}\phi^{2}}$
	$\epsilon^{IJK}(\phi^{\dagger}\phi)W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ u}$	$\mathcal{O}^{(1)}_{W^{3}\phi^{2}}$	$\epsilon^{IJK}(\phi^{\dagger}\phi)W^{I\nu}_{\mu}W^{J ho}_{\nu}\widetilde{W}^{K\mu}_{ ho}$	$O_{W^3\phi^2}^{(2)}$
	$\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}\phi)B^{\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}^{(1)}_{W^2B\phi^2}$	$\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}\phi)(\widetilde{B}^{\mu\nu}W^{J}_{\nu\rho}W^{K\rho}_{\mu}+B^{\mu\nu}W^{J}_{\nu\rho}\widetilde{W}^{K\rho}_{\mu})$	${\cal O}^{(2)}_{W^2 B \phi^2}$
54	$(\phi^{\dagger}\phi)^2 G^A_{\mu u} G^{A\mu u}$	$O^{(1)}_{G^2 \phi^4}$	$(\phi^{\dagger}\phi)^2\widetilde{G}^A_{\mu u}G^{A\mu u}$	$O^{(2)}_{G^2\phi^4}$
	$(\phi^{\dagger}\phi)^2 W^I_{\mu u} W^{I\mu u}$	$\mathcal{O}^{(1)}_{W^2\phi^4}$	$(\phi^{\dagger}\phi)^2\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	$\mathcal{O}^{(2)}_{W^2 \phi^4}$
X^2q	$(\phi^{\dagger}\sigma^{I}\phi)(\phi^{\dagger}\sigma^{J}\phi)W^{I}_{\mu\nu}W^{J\mu\nu}$	$\mathcal{O}^{(3)}_{W^2 \phi^4}$	$(\phi^{\dagger}\sigma^{I}\phi)(\phi^{\dagger}\sigma^{J}\phi)\widetilde{W}^{I}_{\mu\nu}W^{J\mu\nu}$	$\mathcal{O}^{(4)}_{W^2\phi^4}$
	$(\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)W^{I}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}^{(1)}_{WB\phi^4}$	$(\phi^{\dagger}\phi)(\phi^{\dagger}\sigma^{I}\phi)\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}^{(2)}_{WB\phi^4}$
	$(\phi^{\dagger}\phi)^{2}B_{\mu u}B^{\mu u}$	$\mathcal{O}^{(1)}_{B^2\phi^4}$	$(\phi^{\dagger}\phi)^{2}\widetilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}^{(2)}_{B^2\phi^4}$
$X \phi^2 D^4$	$i(D_{\nu}\phi^{\dagger}\sigma^{I}D^{2}\phi - D^{2}\phi^{\dagger}\sigma^{I}D_{\nu}\phi)D_{\mu}W^{I\mu\nu}$	$O_{W\phi^2D^4}^{(1)}$	$(D_{\nu}\phi^{\dagger}\sigma^{I}D^{2}\phi + D^{2}\phi^{\dagger}\sigma^{I}D_{\nu}\phi)D_{\mu}W^{I\mu\nu}$	$O_{W\phi^2 D^4}^{(2)}$
	$i(D_{\rho}D_{\nu}\phi^{\dagger}\sigma^{I}D^{\rho}\phi - D^{\rho}\phi^{\dagger}\sigma^{I}D_{\rho}D_{\nu}\phi)D_{\mu}W^{I\mu\nu}$	$O_{W\phi^2D^4}^{(3)}$		
	$i(D_{\nu}\phi^{\dagger}D^{2}\phi - D^{2}\phi^{\dagger}D_{\nu}\phi)D_{\mu}B^{\mu\nu}$	$\mathcal{O}^{(1)}_{B\phi^2D^4}$	$(D_{\nu}\phi^{\dagger}D^{2}\phi + D^{2}\phi^{\dagger}D_{\nu}\phi)D_{\mu}B^{\mu\nu}$	$O_{B\phi^2D^4}^{(2)}$
	$i(D_{\rho}D_{\nu}\phi^{\dagger}D^{\rho}\phi - D^{\rho}\phi^{\dagger}D_{\rho}D_{\nu}\phi)D_{\mu}B^{\mu\nu}$	$\mathcal{O}^{(3)}_{B\phi^2D^4}$		
D^2	$i(\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)W^{I}_{\mu\nu}$	$O_{W\phi^4D^2}^{(1)}$	$i(\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)\widetilde{W}^{I}_{\mu\nu}$	$O_{W\phi^4D^2}^{(2)}$
	$i\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}\phi)(D^{\mu}\phi^{\dagger}\sigma^{J}D^{\nu}\phi)W^{K}_{\mu\nu}$	$\mathcal{O}^{(3)}_{W\phi^4D^2}$	$i\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}\phi)(D^{\mu}\phi^{\dagger}\sigma^{J}D^{\nu}\phi)\widetilde{W}^{K}_{\mu\nu}$	$\mathcal{O}^{(4)}_{W\phi^4D^2}$
Kφ4	$(\phi^{\dagger}\phi)D_{\nu}W^{I\mu\nu}(D_{\mu}\phi^{\dagger}\sigma^{I}\phi + h.c.)$	$O_{W\phi^4D^2}^{(5)}$	$(\phi^{\dagger}\phi)D_{\nu}W^{I\mu\nu}(D_{\mu}\phi^{\dagger}\mathrm{i}\sigma^{I}\phi + \mathrm{h.c.})$	$\mathcal{O}^{(4)}_{W\phi^4D^2} \\ \mathcal{O}^{(6)}_{W\phi^4D^2}$
4	$\epsilon^{IJK} (D_{\mu} \phi^{\dagger} \sigma^{I} \phi) (\phi^{\dagger} \sigma^{J} D_{\nu} \phi) W^{K \mu \nu}$	$O_{W\phi^4D^2}^{(7)}$	$i(\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\nu}$	$\mathcal{O}^{(1)}_{B\phi^4D^2}$
	$i(\phi^{\dagger}\phi)(D^{\mu}\phi^{\dagger}D^{\nu}\phi)\widetilde{B}_{\mu\nu}$	$\mathcal{O}^{(2)}_{B\phi^4D^2}$	$(\phi^{\dagger}\phi)D_{\nu}B^{\mu\nu}(D_{\mu}\phi^{\dagger}\mathrm{i}\phi+\mathrm{h.c.})$	$\mathcal{O}^{(3)}_{B\phi^4D^2}$
D^6	$D^2 \phi^{\dagger} D D D^{\mu} D^{\nu} \phi$	0		

	Operator	Notation	Operator	Notatio
	$(D^{\mu}\phi^{\dagger}D^{\nu}\phi)W^{I}_{\mu\rho}W^{I\rho}_{\nu}$	$\mathcal{O}^{(1)}_{W^2\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)W^{I}_{\nu\rho}W^{I\nu\rho}$	$\mathcal{O}^{(2)}_{W^2\phi^2D^2}$
	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)W^{I}_{\nu\rho}\widetilde{W}^{I\nu\rho}$	$\mathcal{O}^{(3)}_{W^2\phi^2D^2}$	$i\epsilon^{IJK} (D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)W^{J}_{\mu\rho}W^{K\rho}_{\nu}$	$\mathcal{O}^{(4)}_{W^2\phi^2D^2}$
	$\epsilon^{IJK} (D^{\mu} \phi^{\dagger} \sigma^{I} D^{\nu} \phi) (W^{J}_{\mu\rho} \widetilde{W}^{K\rho}_{\nu} - \widetilde{W}^{J}_{\mu\rho} W^{K\rho}_{\nu})$	$\mathcal{O}^{(5)}_{W^2 \phi^2 D^2}$	$i\epsilon^{IJK} (D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)(W^{J}_{\mu\rho}\widetilde{W}^{K\rho}_{\nu} + \widetilde{W}^{J}_{\mu\rho}W^{K\rho}_{\nu})$	$\mathcal{O}^{(6)}_{W^2 \phi^2 D^2}$
	$i\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}D^{\nu}\phi - D^{\nu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}W^{J\mu\rho}\widetilde{W}_{\nu\rho}^{K}$	$\mathcal{O}^{(7)}_{W^2 \phi^2 D^2}$	$\epsilon^{IJK}\phi^{\dagger}\sigma^{I}\phi D_{\nu}D_{\mu}W^{J\mu\rho}\widetilde{W}^{K\nu}_{\ \rho}$	$O_{W^2\phi^2D^2}^{(8)}$
	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}W^{I\mu\rho}\widetilde{W}^{I\nu}_{\rho}$	$\mathcal{O}^{(9)}_{W^2 \phi^2 D^2}$	$(\phi^{\dagger} D_{\nu} \phi + D_{\nu} \phi^{\dagger} \phi) D_{\mu} W^{I \mu \rho} \widetilde{W}^{I \nu}_{\ \rho}$	$\mathcal{O}^{(10)}_{W^2 \phi^2 D^2}$
	$(\phi^{\dagger}D_{\nu}\phi + D_{\nu}\phi^{\dagger}\phi)D_{\mu}W^{I\mu\rho}W^{I\nu}{}_{\rho}$	$\mathcal{O}^{(11)}_{W^2 \phi^2 D^2}$	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}W^{I\mu\rho}W^{I\nu}_{\ \rho}$	$\mathcal{O}^{(12)}_{W^2\phi^2D^2}$
	$\phi^{\dagger}\phi D_{\mu}W^{I\mu\rho}D_{\nu}W^{I\nu}_{\ \rho}$	$\mathcal{O}_{W^2 \phi^2 D^2}^{(13)}$	$(D_{\mu}\phi^{\dagger}\phi + \phi^{\dagger}D_{\mu}\phi)W^{I\nu\rho}D^{\mu}W^{I}_{\nu\rho}$	$\mathcal{O}^{(14)}_{W^2\phi^2D^2}$
	$i(D_{\mu}\phi^{\dagger}\phi-\phi^{\dagger}D_{\mu}\phi)W^{I\nu\rho}D^{\mu}W^{I}_{\nu\rho}$	$O_{W^2\phi^2D^2}^{(15)}$	$(D_{\mu}\phi^{\dagger}\phi+\phi^{\dagger}D_{\mu}\phi)D^{\mu}W^{I\nu\rho}\widetilde{W}^{I}_{\nu\rho}$	$\mathcal{O}^{(16)}_{W^2\phi^2D^2}$
	$i(D_{\mu}\phi^{\dagger}\phi - \phi^{\dagger}D_{\mu}\phi)D^{\mu}W^{I\nu\rho}\widetilde{W}^{I}_{\nu\rho}$	$\mathcal{O}^{(17)}_{W^2 \phi^2 D^2}$	$\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}D^{\nu}\phi + D^{\nu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}W^{J\mu\rho}W^{K}_{\nu\rho}$	$\mathcal{O}^{(18)}_{W^2 \phi^2 D^2}$
	$i\epsilon^{IJK}(\phi^{\dagger}\sigma^{I}D^{\nu}\phi - D^{\nu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}W^{J\mu\rho}W^{K}_{\nu\rho}$	$\mathcal{O}^{(19)}_{W^2\phi^2D^2}$		
	$(D^{\mu}\phi^{\dagger}\sigma^{I}D_{\mu}\phi)B_{\nu\rho}W^{I\nu\rho}$	$\mathcal{O}^{(1)}_{WB\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}\sigma^{I}D_{\mu}\phi)B_{\nu\rho}\widetilde{W}^{I\nu\rho}$	$\mathcal{O}^{(2)}_{WB\phi^2D^2}$
	$i(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)(B_{\mu\rho}W^{I\rho}_{\nu}-B_{\nu\rho}W^{I\rho}_{\mu})$	$\mathcal{O}^{(3)}_{WB\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)(B_{\mu\rho}W^{I\rho}_{\nu}+B_{\nu\rho}W^{I\rho}_{\mu})$	$\mathcal{O}^{(4)}_{WB\phi^2D^2}$
	$i(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)(B_{\mu\rho}\widetilde{W}_{\nu}^{I\rho}-B_{\nu\rho}\widetilde{W}_{\mu}^{I\rho})$	$\mathcal{O}^{(5)}_{WB\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}\sigma^{I}D^{\nu}\phi)(B_{\mu\rho}\widetilde{W}_{\nu}^{I\rho}+B_{\nu\rho}\widetilde{W}_{\mu}^{I\rho})$	$O_{WB\phi^2D^2}^{(6)}$
	$i(\phi^{\dagger}\sigma^{I}D^{\mu}\phi - D^{\mu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}B^{\nu\rho}W^{I}_{\nu\rho}$	$\mathcal{O}^{(7)}_{WB\phi^2D^2}$	$(\phi^{\dagger}\sigma^{I}D^{\nu}\phi + D^{\nu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}B^{\mu\rho}W^{I}_{\nu\rho}$	$\mathcal{O}^{(8)}_{WB\phi^2D^2}$
	$i(\phi^{\dagger}\sigma^{I}D^{\nu}\phi - D^{\nu}\phi^{\dagger}\sigma^{I}\phi)D_{\mu}B^{\mu\rho}W^{I}_{\nu\rho}$	$\mathcal{O}^{(9)}_{WB\phi^2D^2}$	$(\phi^{\dagger}\sigma^{I}\phi)D^{\mu}B_{\mu\rho}D_{\nu}W^{I\nu\rho}$	$O_{WB\phi^2D^2}^{(10)}$
	$(D_{\nu}\phi^{\dagger}\sigma^{I}\phi + \phi^{\dagger}\sigma^{I}D_{\nu}\phi)B_{\mu\rho}D^{\mu}W^{I\nu\rho}$	$\mathcal{O}^{(11)}_{WB\phi^2D^2}$	$i(D_{\nu}\phi^{\dagger}\sigma^{I}\phi - \phi^{\dagger}\sigma^{I}D_{\nu}\phi)B_{\mu\rho}D^{\mu}W^{I\nu\rho}$	$\mathcal{O}_{WB\phi^2D^2}^{(12)}$
	$(\phi^{\dagger}\sigma^{I}\phi)B_{\mu\rho}D_{\nu}D^{\mu}W^{I\nu\rho}$	$O^{(13)}_{WB\phi^2D^2}$	$i(D_{\nu}\phi^{\dagger}\sigma^{I}\phi - \phi^{\dagger}\sigma^{I}D_{\nu}\phi)D^{\mu}B_{\mu\rho}\widetilde{W}^{I\nu\rho}$	$\mathcal{O}^{(14)}_{WB\phi^2D^2}$
	$i(\phi^{\dagger}\sigma^{I}D_{\mu}\phi-D_{\mu}\phi^{\dagger}\sigma^{I}\phi)D^{\mu}B_{\nu\rho}\widetilde{W}^{I\nu\rho}$	$O_{WB\phi^2D^2}^{(15)}$	$(\phi^{\dagger}\sigma^{I}\phi)(D^{2}B^{\nu\rho})\widetilde{W}^{I}_{\nu\rho}$	$\mathcal{O}^{(16)}_{WB\phi^2D^2}$
	$(\phi^{\dagger}\sigma^{I}\phi)(D^{\rho}D_{\mu}W^{I\mu\nu})\widetilde{B}_{\nu\rho}$	$O_{WB\phi^2D^2}^{(17)}$	$i(D^{\nu}\phi^{\dagger}\sigma^{I}\phi-\phi^{\dagger}\sigma^{I}D^{\nu}\phi)\widetilde{B}^{\mu\rho}D_{\mu}W^{I}_{\nu\rho}$	$O_{WB\phi^2D^2}^{(18)}$
	$(D^{\nu}\phi^{\dagger}\sigma^{I}\phi+\phi^{\dagger}\sigma^{I}D^{\nu}\phi)\widetilde{B}^{\mu\rho}D_{\mu}W^{I}_{\nu\rho}$	$\mathcal{O}^{(19)}_{WB\phi^2D^2}$		
	$(D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}{}^{\rho}$	$\mathcal{O}^{(1)}_{B^2\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)B_{\nu\rho}B^{\nu\rho}$	$\mathcal{O}^{(2)}_{B^2\phi^2D^2}$
	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)B_{\nu\rho}\widetilde{B}^{\nu\rho}$	$\mathcal{O}^{(3)}_{B^2\phi^2D^2}$	$(D_{\mu}\phi^{\dagger}\phi+\phi^{\dagger}D_{\mu}\phi)D_{\nu}B^{\mu\rho}B^{\nu}_{\ \rho}$	$\mathcal{O}^{(4)}_{B^2\phi^2D^2}$
	$i(\phi^{\dagger}D_{\mu}D_{\nu}\phi - D_{\mu}D_{\nu}\phi^{\dagger}\phi)B^{\mu\rho}B^{\nu}{}_{\rho}$	$\mathcal{O}_{B^2 \phi^2 D^2}^{(5)}$	$\phi^{\dagger}\phi D_{\mu}D_{\nu}B^{\mu\rho}B^{\nu}_{\ \rho}$	$\mathcal{O}^{(6)}_{B^2\phi^2D^2}$
	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}B^{\mu\rho}B^{\nu}{}_{\rho}$	$\mathcal{O}^{(7)}_{B^2 \phi^2 D^2}$	$(\phi^{\dagger}D_{\nu}\phi + D_{\nu}\phi^{\dagger}\phi)D_{\mu}B^{\mu\rho}B^{\nu}{}_{\rho}$	$\mathcal{O}^{(8)}_{B^2 \phi^2 D^2}$
	$(\phi^{\dagger}D^{2}\phi + D^{2}\phi^{\dagger}\phi)B^{\nu\rho}\widetilde{B}_{\nu\rho}$	$\mathcal{O}^{(9)}_{B^2 \phi^2 D^2}$	$i(\phi^{\dagger}D^{2}\phi - D^{2}\phi^{\dagger}\phi)B^{\nu\rho}\widetilde{B}_{\nu\rho}$	$\mathcal{O}^{(10)}_{B^2 \phi^2 D^2}$
	$(\phi^{\dagger}D_{\nu}\phi + D_{\nu}\phi^{\dagger}\phi)D_{\mu}B^{\mu\rho}\widetilde{B}^{\nu}_{\ \rho}$	$\mathcal{O}^{(11)}_{B^2\phi^2D^2}$	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}B^{\mu\rho}\widetilde{B}^{\nu}_{\ \rho}$	$\mathcal{O}^{(12)}_{B^2\phi^2D^2}$
	$(D^{\mu}\phi^{\dagger}D_{\nu}\phi)G^{A}_{\mu\rho}G^{A\nu\rho}$	$\mathcal{O}^{(1)}_{G^2\phi^2D^2}$	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)G^{A}_{\nu\rho}G^{A\nu\rho}$	$\mathcal{O}^{(2)}_{G^2\phi^2D^2}$
	$(D^{\mu}\phi^{\dagger}D_{\mu}\phi)G^{A}_{\nu\rho}\widetilde{G}^{A\nu\rho}$	$\mathcal{O}^{(3)}_{G^2\phi^2D^2}$	$(D_{\mu}\phi^{\dagger}\phi + \phi^{\dagger}D_{\mu}\phi)D_{\nu}G^{A\mu\rho}G^{A\nu}_{\ \rho}$	$\mathcal{O}^{(4)}_{G^2\phi^2D^2}$
	$i(\phi^{\dagger}D_{\mu}D_{\nu}\phi - D_{\mu}D_{\nu}\phi^{\dagger}\phi)G^{A\mu\rho}G^{A\nu}_{\ \rho}$	$\mathcal{O}_{G^2 \phi^2 D^2}^{(5)}$	$\phi^{\dagger}\phi D_{\mu}D_{\nu}G^{A\mu\rho}G^{A\nu}_{\ \rho}$	$\mathcal{O}^{(6)}_{G^2\phi^2D^2}$
	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}G^{A\mu\rho}G^{A\nu}_{\ \rho}$	$\mathcal{O}^{(7)}_{G^2\phi^2D^2}$	$(\phi^{\dagger}D_{\nu}\phi + D_{\nu}\phi^{\dagger}\phi)D_{\mu}G^{A\mu\rho}G^{A\nu}_{\ \rho}$	$\mathcal{O}^{(8)}_{G^2\phi^2D^2}$
	$(\phi^{\dagger}D^{2}\phi + D^{2}\phi^{\dagger}\phi)G^{A\nu\rho}\widetilde{G}^{A\nu}_{\ \rho}$	$\mathcal{O}_{G^2 \phi^2 D^2}^{(9)}$	$i(\phi^{\dagger}D^{2}\phi-D^{2}\phi^{\dagger}\phi)G^{A\nu\rho}\widetilde{G}^{A}_{\nu\rho}$	$\mathcal{O}^{(10)}_{G^2\phi^2D^2}$
	$(\phi^{\dagger}D_{\nu}\phi + D_{\nu}\phi^{\dagger}\phi)D_{\mu}G^{A\mu\rho}\widetilde{G}^{A\nu}_{\rho}$	$O_{G^2\phi^2D^2}^{(11)}$	$i(\phi^{\dagger}D_{\nu}\phi - D_{\nu}\phi^{\dagger}\phi)D_{\mu}G^{A\mu\rho}\widetilde{G}^{A\nu}_{\ \rho}$	$\mathcal{O}_{G^2 \phi^2 D^2}^{(12)}$

$+ \dots$ other classes

34

We have also worked out how physical terms are shifted upon removing redundant ones; caveat only linear terms -equations of motion [Criado, Perez-Victoria '18]

e.g.

$$\begin{split} c_{\phi^6}^{(1)} &\to c_{\phi^6}^{(1)} + \frac{3}{2} c_{B^2 D^4} g_1^2 g_2^2 - \frac{3 c_{B^2 \phi^2 D^2}^{(8)} g_1^2}{4} - 3 c_{B\phi^2 D^4}^{(1)} g_1 \lambda - \frac{3}{4} c_{B\phi^2 D^4}^{(3)} g_1 g_2^2 + 3 c_{B\phi^2 D^4}^{(3)} g_1 \lambda \\ &- \frac{3 c_{B\phi^4 D^2}^{(3)} g_1}{2} + \frac{3}{2} c_{\phi^2} g_1^2 \lambda + \frac{5}{2} c_{\phi^2} g_2^2 \lambda + 8 c_{\phi^2} \lambda^2 + 4 c_{\phi^4}^{(12)} \lambda - 4 c_{\phi^4}^{(4)} \lambda - 2 c_{\phi^4}^{(6)} \lambda \\ &+ \frac{3}{2} c_{W^2 D^4} g_1^2 g_2^2 + \frac{5 c_{W^2 D^4} g_2^4}{4} - \frac{5 c_{W^2 \phi^2 D^2}^{(11)} g_2^2}{4} + \frac{5 c_{W^2 \phi^2 D^2}^{(12)} g_2^2}{4} + \frac{5 c_{W^2 \phi^2 D^2}^{(13)} g_2^2}{2} \\ &+ \frac{5 c_{W^3 D^2}^{(1)} g_2^3}{2} - \frac{5 c_{W^3 D^2}^{(2)} g_2^3}{4} + \frac{7 c_{W B \phi^2 D^2}^{(10)} g_1 g_2}{4} + \frac{3 c_{W B \phi^2 D^2}^{(11)} g_2 g_1 g_2}{4} - \frac{3 c_{W B \phi^2 D^2}^{(13)} g_2 g_1 g_2}{2} \\ &+ \frac{5 c_{W B \phi^2 D^2}^{(8)} g_1 g_2}{4} - 5 c_{W \phi^2 D^4}^{(1)} g_2 \lambda - \frac{3}{4} c_{W \phi^2 D^4}^{(3)} g_1^2 g_2 + 5 c_{W \phi^2 D^4}^{(3)} g_2 \lambda - \frac{5 c_{W \phi^4 D^2}^{(6)} g_2}{2} \\ &- \frac{3 c_{W \phi^4 D^2}^{(7)} g_2}{2} , \end{split}$$

For later works we use most modern methods for computing Green's bases [Fonseca 2307.08745; Ren, Yu, 2211.01420]

We also worked out new methods for removing unphysical terms (more on this later)

How to organize the full computation? First bosonic sector, then two-fermions, then four-fermions:

Some results for dim-6 \times dim-6 \rightarrow dim-8

$\gamma'_{\mathbf{c}^{(1)}_{\mathbf{B}^{2}\phi^{4}}}$	c_{ϕ}	$c_{\phi D}$	$c_{\phi \Box}$	$c^{(1)}_{\phi\psi_L}$	$c^{(3)}_{\phi\psi_L}$	$c_{\phi\psi_R}$	$c_{\phi ud}$	$c_{\psi_R\phi}$	$\gamma'_{\mathbf{c}_{\phi}^{8}}$	c_{ϕ}	$c_{\phi D}$	$c_{\phi\square}$	$c^{(1)}_{\phi\psi_L}$	$c^{(3)}_{\phi\psi_L}$	$c_{\phi\psi_R}$	$c_{\phi ud}$	$c_{\psi_R\phi}$
c_{ϕ}	0	0	0	0	0	0	0	0	c_{ϕ}	×	×	×	0	×	0	×	×
$c_{\phi D}$		×	0	0	0	0	0	0	$c_{\phi D}$		×	×	×	×	×	×	×
$c_{\phi \Box}$			0	0	0	0	0	0	$c_{\phi\square}$			×	0	×	0	×	×
$c^{(1)}_{\phi\psi_L}$				×	0	0	0	0	$c^{(1)}_{\phi\psi_L}$				×	×	×	0	×
$c^{(3)}_{\phi\psi_L}$					×	0	0	0	$c^{(3)}_{\phi\psi_L}$					×	×	0	×
$c_{\phi\psi_R}$						×	0	0	$c_{\phi\psi_R}$						×	0	×
$c_{\phi ud}$							×	0	$c_{\phi ud}$							×	0
$c_{\psi_R \phi}$								0	$c_{\psi_R\phi}$								×

 $\dot{\lambda} \supset \left(5c_{\phi D}^2 - 24c_{\phi D}c_{\phi \Box} + 24c_{\phi \Box}^2\right) \frac{\mu^4}{\Lambda^4} \qquad \dot{c}_{\phi D} \supset \left(10c_{\phi D}^2 - 4c_{\phi D}c_{\phi \Box}\right) \frac{\mu^2}{\Lambda^2} \qquad 37$

Some immediate implications

1. Loop-generated operators are not renormalized

2. Peskin-Takeuchi parameters are not renormalized

$$\frac{1}{16\pi}S = \frac{v^2}{\Lambda^2} \left[c_{\phi WB} + c_{WB\phi^4}^{(1)} \frac{v^4}{\Lambda^4} \right], \quad \frac{1}{16\pi}U = \frac{v^4}{\Lambda^4} c_{W^2\phi^4}^{(3)}$$

3. Some anomalous dimensions significantly large

$$\dot{c}_{\phi^4}^{(3)} = \frac{1}{3} \left(32 \operatorname{Tr}[(c_{\phi l}^{(3)})^{\dagger} c_{\phi l}^{(3)}] + 96 \operatorname{Tr}[(c_{\phi q}^{(3)})^{\dagger} c_{\phi q}^{(3)}] + 24 \operatorname{Tr}[(c_{\phi u d})^{\dagger} c_{\phi u d}] - 16 c_{\phi D} c_{\phi \Box} + 7 c_{\phi D}^2 - 40 c_{\phi \Box}^2 \right),$$

Some immediate implications

4. Positivity bounds are preserved

$$c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$$

$$a_2 = \frac{1}{\pi} \int_{m^2}^{\infty} \frac{\sigma s}{s^2} \ge 0$$

Some immediate implications

4. Positivity bounds are preserved

$$c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0 \qquad a_2 = \frac{1}{\pi} \int_{m^2}^{\infty} \frac{\sigma s}{s^2} \ge 0$$

 $\mathcal{A}(s) = a_{0} + a_{2}s^{2} + a_{3}s^{2} + a_{3}s^{2}$

$$\begin{split} 16\pi^2 c_{\phi^4}^{(2)} &= \frac{1}{3} (5c_{\phi D}^2 + 16c_{\phi D}c_{\phi \Box} + 16c_{\phi \Box}^2) \log \frac{M}{\mu} > 0 \,, \\ 16\pi^2 \left[c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \right] &= \frac{16}{3} (c_{\phi D}^2 - c_{\phi D}c_{\phi \Box} + 2c_{\phi \Box}^2) \log \frac{M}{\mu} > 0 \,, \\ 16\pi^2 \left[c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \right] &= 3 (c_{\phi D}^2 + 8c_{\phi \Box}^2) \log \frac{M}{\mu} > 0 \,; \end{split}$$

Some results for dimension-8 \rightarrow dimension-8

	$ \phi^4 D^4$	$B\phi^4 D^2$	$W \phi^4 D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$	$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8			
$B^2 \phi^2 D^2$	g_1^2	0	0	0	0	0	0	0	0	-		
$W^2 \phi^2 D^2$	g_2^2	0	0	0	0	0	0	0	0			
$WB\phi^2D^2$	$g_1 g_2$	0	0	0	0	0	0	0	0		lo	pop-level
$G^2 \phi^2 D^2$	0	0	0	0	0	0	0	0	0	>	► g	enerated
$W^3 \phi^2$	0	0	0	0	0	0	0	0	0		0	perators
$W^2 B \phi^2$	0	0	0	0	0	0	0	0	0		0	perators
$G^3 \phi^2$	0	0	0	0	0	0	0	0	0			
$\phi^4 D^4$	g_2^2	0	0	0	0	0	0	0	0			
$B\phi^4 D^2$	$g_1 g_2^2$	λ	0	0	0	0	0	0	0			
$W \phi^4 D^2$	g_2^3	0	g_2^2	0	0	0	0	0	0			
$B^2 \phi^4$	$g_1^2 g_2^2$	$g_1\lambda$	$g_1^2 g_2$	λ	0	g_1g_2	0	0	0			
$W^2 \phi^4$	g_2^4	$g_1 g_2^2$	g_2^3	0	λ	$g_1 g_2$	0	0	0			
$WB\phi^4$	$g_1 g_2^3$	$g_2\lambda$	$g_1\lambda$	g_1g_2	g_1g_2	λ	0	0	0			
$G^2 \phi^4$	0	0	0	0	0	0	g_3^2	0	0			
$\phi^6 D^2$	g_2^4	$g_1\lambda$	$g_2\lambda$	0	0	0	0	λ	0			
ϕ^8	λ^3	$g_1\lambda^2$	$g_2\lambda^2$	$g_1^2\lambda$	$g_2^2\lambda$	$g_1g_2\lambda$	0	λ^2	λ			

Some results for dimension-8 \rightarrow dimension-8

	$ \phi^4 D^4$	$B\phi^4 D^2$	$W \phi^4 D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$	$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8	-
$B^2 \phi^2 D^2$	g_1^2	0	0	0	0	0	0	0	0	
$W^2 \phi^2 D^2$	g_2^2	0	0	0	0	0	0	0	0	
$WB\phi^2D^2$	$g_1 g_2$	0	0	0	0	0	0	0	0	loop-level
$G^2 \phi^2 D^2$	0	0	0	0	0	0	0	0	0	> generated
$W^3 \phi^2$	0	0	0	0	0	0	0	0	0	operators
$W^2 B \phi^2$	0	0	0	0	0	0	0	0	0	operators
$G^3 \phi^2$	0	0	0	0	0	0	0	0	0	
$\phi^4 D^4$	g_2^2	0	0	0	0	0	0	0	0	
$B\phi^4 D^2$	$g_1 g_2^2$	λ	0	0	0	0	0	0	0	
$W \phi^4 D^2$	g_2^3	0	g_2^2	0	0	0	0	0	0	sizable departure
$B^2 \phi^4$	$g_1^2 g_2^2$	$g_1\lambda$	$g_{1}^{2}g_{2}$	λ	0	g_1g_2	0	0	0	from NDA
$W^2 \phi^4$	g_2^4	$g_1 g_2^2$	g_2^3	0	λ	$g_1 g_2$	0	0	0	
$WB\phi^4$	$g_1 g_2^3$	$g_2\lambda$	$g_1\lambda$	$g_1 g_2$	$g_1 g_2$	λ	0	0	0	
$G^2 \phi^4$	0	0	0	0	0	0	g_3^2	0	0	
$\phi^6 D^2$	g_2^4	$g_1\lambda$	$g_2\lambda$	0	0	0	0	λ	0	
ϕ^8	λ^3	$g_1\lambda^2$	$g_2\lambda^2$	$g_1^2\lambda$	$g_2^2\lambda$	$g_1g_2\lambda$	0	λ^2	λ	

Some results for dimension-8 \rightarrow dimension-8

	$ \phi^4 D^4$	$B\phi^4 D^2$	$W \phi^4 D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$	$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8	
$B^2 \phi^2 D^2$	g_1^2	0	0	0	0	0	0	0	0	
$W^2 \phi^2 D^2$	g_2^2	0	0	0	0	0	0	0	0	
$WB\phi^2D^2$	$g_1 g_2$	0	0	0	0	0	0	0	0	loop-level
$G^2 \phi^2 D^2$	0	0	0	0	0	0	0	0	0	> generated
$W^3 \phi^2$	0	0	0	0	0	0	0	0	0	operators
$W^2 B \phi^2$	0	0	0	0	0	0	0	0	0	operators
$G^3 \phi^2$	0	0	0	0	0	0	0	0	0	
$\phi^4 D^4$	g_{2}^{2}	0	0	0	0	0	0	0	0	
$B\phi^4 D^2$	$g_1 g_2^2$	λ	0	0	0	0	0	0	0	
$W \phi^4 D^2$	g_2^3	0	g_2^2	0	0	0	0	0	0	sizable departure
$B^2 \phi^4$	$g_1^2 g_2^2$	$g_1\lambda$	$g_{1}^{2}g_{2}$	λ	0	g_1g_2	0	0	0	from NDA
$W^2 \phi^4$	g_2^4	$g_1 g_2^2$	g_2^3	0	λ	$g_1 g_2$	0	0	0	
$WB\phi^4$	$g_1 g_2^3$	$g_2\lambda$	$g_1\lambda$	$g_1 g_2$	$g_1 g_2$	λ	0	0	0	
$G^2 \phi^4$	0	0	0	0	0	0	g_3^2	0	0	
$\phi^6 D^2$	g_2^4	$g_1\lambda$	$g_2\lambda$	0	0	0	0	λ	0	
ϕ^8	λ^3	$g_1\lambda^2$	$g_2\lambda^2$	$g_1^2\lambda$	$g_2^2\lambda$	$g_1g_2\lambda$	0	λ^2	λ	

 $\dot{c}_{\phi^4}^{(3)} = -g_2^2 (12c_{\phi^4}^{(1)} + \frac{29}{3}c_{\phi^4}^{(2)} + 14c_{\phi^4}^{(3)}) - 56(c_{q^2\phi^2D^3}^{(4)})_{\alpha_1,\alpha_2} y^u_{\alpha_2,\alpha_3}(y^u)^*_{\alpha_3,\alpha_1} + \cdots$

Some results for dimension-8 \rightarrow dimension-8

	$ \psi^2 B \phi^3$	$\psi^2 W \phi^3$	$\psi^2 G \phi^3$	$\psi^2 \phi^2 D^3$	$\psi^2 \phi^5$	$\psi^2 \phi^4 D$	$\psi^2 B \phi^2 D$	$\psi^2 W \phi^2 D$	$\psi^2 G \phi^2 D$	$\psi^2 \phi^3 D^2$
$B^2 \phi^2 D^2$	0	0	0	g_1^2	0	0	0	0	0	0
$W^2 \phi^2 D^2$	0	0	0	g_2^2	0	0	0	0	0	0
$W B \phi^2 D^2$	0	0	0	$g_1 g_2$	0	0	0	0	0	0
$G^2 \phi^2 D^2$	0	0	0	g_3^2	0	0	0	0	0	0
$W^3 \phi^2$	0	0	0	0	0	0	0	0	0	0
$W^2 B \phi^2$	0	0	0	0	0	0	0	0	0	0
$G^3 \phi^2$	0	0	0	0	0	0	0	0	0	0
$\phi^4 D^4$	0	0	0	$ y^{t} ^{2}$	0	0	0	0	0	0
$B\phi^4 D^2$	0	0	0	$ g_1 y^t ^2$	0	0	$ y^t ^2$	0	0	g_1y^t
$W\phi^4D^2$	0	0	0	$g_2 y^t ^2$	0	0	0	$ y^t ^2$	0	$g_2 y^t$
$B^2 \phi^4$	g_1y^t	0	0	$g_1^2 y^t ^2$	0	0	$g_1 y^t ^2$	0	0	$g_1^2 y^t$
$W^2 \phi^4$	0	$g_2 y^t$	0	$g_2^2 y^t ^2$	0	0	0	$g_2 y^t ^2$	0	$g_2^2 y^t$
$WB\phi^4$	$g_2 y^t$	$g_1 y^t$	0	$g_1g_2 y^t ^2$	0	0	$g_2 y^t ^2$	$g_1 y^t ^2$	0	$g_1g_2y^t$
$G^2 \phi^4$	0	0	g_3y^t	0	0	0	0	0	0	0
$\phi^6 D^2$	0	0	0	$g_{2}^{2} y^{t} ^{2}$	0	$ y^t ^2$	$g_1 y^t ^2$	$g_2 y^t ^2$	0	$y^t y^t ^2$
ϕ^8	0	0	0	$\lambda y^t ^4$	$y^t y^t ^2$	$\lambda y^t ^2$	$g_1\lambda y^t ^2$	$g_2\lambda y^t ^2$	0	$\lambda y^t y^t ^2$

 $\dot{c}_{\phi^4}^{(3)} = -g_2^2 (12c_{\phi^4}^{(1)} + \frac{29}{3}c_{\phi^4}^{(2)} + 14c_{\phi^4}^{(3)}) - 56(c_{q^2\phi^2D^3}^{(4)})_{\alpha_1,\alpha_2} y^u_{\alpha_2,\alpha_3} (y^u)^*_{\alpha_3,\alpha_1} + \cdots$

Lower-dimensional operators renormalize too:

$$\dot{\lambda} = -94\lambda\mu^4 c_{\phi^4}^{(3)} - 16g_2\mu^4 c_{W\phi^4 D^2}^{(1)} - 28\mu^4 \left[(c_{q^2\phi^2 D^3}^{(3)} + c_{q^2\phi^2 D^3}^{(4)})_{\alpha_1,\alpha_2} y^u_{\alpha_2,\alpha_3} (y^u)^*_{\alpha_3,\alpha_1} \right] + \cdots$$

	$\phi^4 D^4$	$B\phi^4 D^2$	$W\phi^4D^2$	$B^2 \phi^4$	$W^2 \phi^4$	$WB\phi^4$	$G^2 \phi^4$	$\phi^6 D^2$	ϕ^8
ϕ^2	μ^6	0	0	0	0	0	0	0	0
ϕ^4	$\lambda \mu^4$	$g_1\mu^4$	$g_2\mu^4$	0	0	0	0	μ^4	0
$B^2 \phi^2$	$g_1^2 \mu^2$	$g_1\mu^2$	0	μ^2	0	0	0	0	0
$W^2 \phi^2$	$g_2^2 \mu^2$	0	$g_2\mu^2$	0	μ^2	0	0	0	0
$WB\phi^2$	$g_1g_2\mu^2$	$g_2\mu^2$	$g_1\mu^2$	0	0	μ^2	0	0	0
$G^2 \phi^2$	0	0	0	0	0	0	μ^2	0	0
$\phi^4 D^2$	$\lambda \mu^2$	$g_1\mu^2$	$g_2\mu^2$	0	0	0	0	μ^2	0
ϕ^6	$\lambda^2 \mu^2$	$\lambda g_1 \mu^2$	$\lambda g_2 \mu^2$	$g_1^2 \mu^2$	$g_2^2 \mu^2$	$g_1 g_2 \mu^2$	0	$\lambda \mu^2$	μ^2

Important implication: Certain positivity bounds are broken [see also MC, Santiago 2110.01624]

$$c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0 \,, \ c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$$

$$\begin{split} 16\pi^2\beta_{H^4D^4}^{(1)} &= \frac{1}{6} \left[\left(30c_{H^4D^4}^{(1)} + 41c_{H^4D^4}^{(2)} + 15c_{H^4D^4}^{(3)} \right)g_2^2 - \left(16c_{H^4D^4}^{(1)} + 7c_{H^4D^4}^{(2)} + 15c_{H^4D^4}^{(3)} \right)g_1^2 \right. \\ &\quad + 16 (3c_{H^4D^4}^{(1)} + c_{H^4D^4}^{(2)} + c_{H^4D^4}^{(3)})\lambda \right], \\ 16\pi^2\beta_{H^4D^4}^{(2)} &= \frac{1}{6} \left[\left(28c_{H^4D^4}^{(1)} + 43c_{H^4D^4}^{(2)} + 15c_{H^4D^4}^{(3)} \right)g_2^2 + \left(14c_{H^4D^4}^{(1)} + 33c_{H^4D^4}^{(2)} + 15c_{H^4D^4}^{(3)} \right)g_1^2 \right. \\ &\quad + 16 (c_{H^4D^4}^{(1)} + 3c_{H^4D^4}^{(2)} + c_{H^4D^4}^{(3)})\lambda \right], \\ 16\pi^2\beta_{H^4D^4}^{(3)} &= -\frac{1}{3} \left[\left(36c_{H^4D^4}^{(1)} + 29c_{H^4D^4}^{(2)} + 42c_{H^4D^4}^{(3)} \right)g_2^2 + \left(8c_{H^4D^4}^{(1)} + 2c_{H^4D^4}^{(2)} + 9c_{H^4D^4}^{(3)} \right)g_1^2 \right. \\ &\quad - 16 (3c_{H^4D^4}^{(1)} + 2c_{H^4D^4}^{(2)} + 5c_{H^4D^4}^{(3)})\lambda \right]. \end{split}$$

Important implication: Certain positivity bounds are broken [see also MC, Santiago 2110.01624]

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

So far, we have addressed dim- $6 \times \dim -6 \to \dim -8$, while dim- $8 \to \dim -8$ is ongoing

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

<mark>(</mark> * Dim-8 (Green's basis *)
(* Psi^2 H	i^5 *)
(********* OleH5 OquH5 OqdH5	:= ExpandIndices[aleH5[f1,f2] Phibar[i1] Phi[i1] Phibar[i2] Phi[i2] LLbar[sp1,i3,f1] ER[sp1,f2] Phi[i3]] := ExpandIndices[aquH5[f1,f2] Eps[i3,i4] Phibar[i1] Phi[i1] Phibar[i2] Phi[i2] QLbar[sp1,i3,c1,f1] UR[sp1,c1,f2] Phibar[i4]] := ExpandIndices[aqdH5[f1,f2] Phibar[i1] Phi[i1] Phibar[i2] Phi[i2] QLbar[sp1,i3,c1,f1] DR[sp1,c1,f2] Phi[i3]]
(* Psi^2 H	1 ^{^2} D ^{^3} *)
Ol2H2D31 Ol2H2D32 Ol2H2D33 Ol2H2D33 Ol2H2D34	:= ExpandIndices[al2H2D31[f1,f2] I LLbar[sp1,i1,f1] Ga[mu,sp1,sp2] DC[LL[sp2,i1,f2],nu] (DC[DC[Phibar[i2],nu],mu]+DC[DC[Phibar[i2],mu],nu]) Phi[i2]] := ExpandIndices[al2H2D32[f1,f2] I LLbar[sp1,i1,f1] Ga[mu,sp1,sp2] DC[LL[sp2,i1,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])) := ExpandIndices[al2H2D33[f1,f2] I LLbar[sp1,i1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[LL[sp2,i2,f2],nu] (DC[DC[Phibar[i3],nu],mu]+DC[DC[Phibar[i3],mu],nu]) 2 Ta[j1,i3,i4] Ph := ExpandIndices[al2H2D33[f1,f2] I LLbar[sp1,i1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[LL[sp2,i2,f2],nu] (DC[DC[Phibar[i3],nu],mu]+DC[DC[Phibar[i3],mu],nu]) 2 Ta[j1,i3,i4] Ph := ExpandIndices[al2H2D34[f1,f2] I LLbar[sp1,i1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[LL[sp2,i2,f2],nu] Phibar[i3] 2 Ta[j1,i3,i4] (DC[DC[Phi[i4],nu],mu]+DC[DC[Phi[i4],nu],mu]+DC[DC[Phi[i4],nu],mu]+DC[DC[Phi[i4],nu],mu]+DC[DC[Phi[i4],mu],mu]+DC[DC[DC[Phi[i4],mu],mu]+DC[DC[DC[Phi[i4],mu],mu]+DC[DC[DC[Phi[i4],mu],mu]+DC[DC[DC[Phi[i4],mu],mu]+DC[DC[DC[
0e2H2D31 0e2H2D32	:= ExpandIndices[ae2H2D31[f1,f2] I ERbar[sp1,f1] Ga[mu,sp1,sp2] DC[ER[sp2,f2],nu] (DC[DC[Phibar[i2],nu],mu]+DC[DC[Phibar[i2],mu],nu]) Phi[i2]] := ExpandIndices[ae2H2D32[f1,f2] I ERbar[sp1,f1] Ga[mu,sp1,sp2] DC[ER[sp2,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])]
Oq2H2D31 Oq2H2D32 Oq2H2D33 Oq2H2D34	:= ExpandIndices[aq2H2D31[f1,f2] I QLbar[sp1,i1,c1,f1] Ga[mu,sp1,sp2] DC[QL[sp2,i1,c1,f2],nu] (DC[DC[Phibar[i2],nu],mu]+DC[DC[Phibar[i2],mu],nu]) Phi[i2]] := ExpandIndices[aq2H2D32[f1,f2] I QLbar[sp1,i1,c1,f1] Ga[mu,sp1,sp2] DC[QL[sp2,i1,c1,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])] := ExpandIndices[aq2H2D33[f1,f2] I QLbar[sp1,i1,c1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[QL[sp2,i2,c1,f2],nu] (DC[DC[Phibar[i3],nu],mu]+DC[DC[Phibar[i3],mu],nu]) 2 Ta[j1,i3, := ExpandIndices[aq2H2D33[f1,f2] I QLbar[sp1,i1,c1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[QL[sp2,i2,c1,f2],nu] (DC[DC[Phibar[i3],nu],mu]+DC[DC[Phibar[i3],mu],nu]) 2 Ta[j1,i3, := ExpandIndices[aq2H2D34[f1,f2] I QLbar[sp1,i1,c1,f1] 2 Ta[j1,i1,i2] Ga[mu,sp1,sp2] DC[QL[sp2,i2,c1,f2],nu] Phibar[i3] 2 Ta[j1,i3,i4] (DC[DC[Phi[i4],nu],mu]+DC[DC[Phi[i4])
Ou2H2D31 Ou2H2D32	:= ExpandIndices[au2H2D31[f1,f2] I URbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[UR[sp2,c1,f2],nu] (DC[DC[Phibar[i2],nu],mu]+DC[DC[Phibar[i2],mu],nu]) Phi[i2]] := ExpandIndices[au2H2D32[f1,f2] I URbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[UR[sp2,c1,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])]
Od2H2D31 Od2H2D32	:= ExpandIndices[ad2H2D31[f1,f2] I DRbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[DR[sp2,c1,f2],nu] (DC[DC[Phibar[i2],nu],mu]+DC[DC[Phibar[i2],mu],nu]) Phi[i2]] := ExpandIndices[ad2H2D32[f1,f2] I DRbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[DR[sp2,c1,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])]
(* OudH2D3	31 := ExpandIndices[audH2D31[f1,f2] I URbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[DR[sp2,c1,f2],nu] Eps[i3,i2] Phi[i2] (DC[DC[Phi[i3],nu],mu]+DC[DC[Phi[i3],mu],nu])] *)
OudH2D31	:= Sum[ExpandIndices[audH2D31[f1,f2] I URbar[sp1,c1,f1] Ga[mu,sp1,sp2] DC[DR[sp2,c1,f2],nu] Eps[i3,i2] Phi[i2] (DC[DC[Phi[i3],nu],mu]+DC[DC[Phi[i3],mu],nu])],{i2,1,2},{i3,1>
(* Redunda 012H2D35	ant *) := ExpandIndices[rl2H2D35[f1.f2] LLbar[sp1.i1.f1] Ga[mu.sp1.sp2] DC[LL[sp2.i1.f2].nu] (DC[DC[Phibar[i2].nu].mu]+DC[DC[Phibar[i2].mu].nu]) Phi[i2]]
012H2D36	:= ExpandIndices[rl2H2D36[f1,f2] LLbar[sp1,i1,f1] Ga[mu,sp1,sp2] DC[LL[sp2,i1,f2],nu] Phibar[i2] (DC[DC[Phi[i2],nu],mu]+DC[DC[Phi[i2],mu],nu])]
Ol2H2D37	:= ExpandIndices[rl2H2D37[f1,f2] I LLbar[sp1,i1,f1] Ga[mu,sp1,sp2] DC[LL[sp2,i1,f2],nu] DC[Phibar[i2],nu] DC[Phi[i2],nu]]
012H2D38 012H2D39	:= EXpandIndices[rt2H2U38[t1,t2] 1 LLbar[Sp1,t1,t1] Ga[mu,Sp1,Sp2] DC[LL[Sp2,t1,t2],nu] DC[Phibar[t2],nu] DC[Phi[t2],mu]] := ExpandIndices[r]2H2D39[f1 f2] bar[sp1 i1 f1] Ga[mu,Sp1 sp2] DC[ll[sp2 i1 f2] nu] DC[Phibar[i2] mu] DC[Phi[i2] nu]]
012H2D350	:= ExpandIndices[rl2H2D310[f1,f2] LLbar[sp1,i1,f1] Ga[mu,sp1,sp2] DC[LL[sp2,i1,f2],nu] DC[Phibar[i2],nu] DC[Phi[i2],mu]] [Read 484 lines_]

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

$$(\dot{c}_{e\phi,mn})^{\text{dir}} = -\mu^2 \left[8(3c_{\phi\Box} - c_{\phi D})c_{e\phi,mn} + 2c_{e\phi,mp}c_{\phi e,pn} - 2(c_{\phi l,mp}^{(1)} + 3c_{\phi l,mp}^{(3)})c_{e\phi,pn} - 4c_{\phi D}(c_{\phi l,mp}^{(1)} + c_{\phi l,mp}^{(3)})y_{pn}^e + 4c_{\phi D}y_{mp}^e c_{\phi e,pn} - 4(c_{\phi l,mr}^{(1)} + c_{\phi l,mr}^{(3)})y_{rp}^e c_{\phi e,pn} \right]$$

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

$$\dot{c}_{e\phi,mn} = -\mu^{2} \bigg[48c_{\phi\Box}c_{e\phi,mn} - 12c_{\phi D}c_{e\phi,mn} + 2c_{e\phi,mp}c_{\phi e,pn} - 2c_{e\phi,pn}c_{\phi l,mp}^{(1)} - 6c_{e\phi,pn}c_{\phi l,mp}^{(3)} \\ - 8c_{\phi\Box}c_{\phi e,pn}y_{mp}^{e} + 2c_{\phi D}c_{\phi e,pn}y_{mp}^{e} + 8c_{\phi\Box}c_{\phi l,mp}^{(1)}y_{pn}^{e} - 2c_{\phi D}c_{\phi l,mp}^{(1)}y_{pn}^{e} + 24c_{\phi\Box}c_{\phi l,mp}^{(3)}y_{pn}^{e} \\ - 6c_{\phi D}c_{\phi l,mp}^{(3)}y_{pn}^{e} + 2c_{\phi e,pn}c_{\phi e,qp}y_{mq}^{e} - 4c_{\phi e,pn}c_{\phi l,mq}^{(1)}y_{qp}^{e} - 4c_{\phi e,pn}c_{\phi l,mq}^{(3)}y_{qp}^{e} + 2c_{\phi l,mp}^{(1)}c_{\phi l,pq}^{(1)}y_{q,n}^{e} \\ + 2c_{\phi l,mp}^{(1)}c_{\phi l,pq}^{(3)}y_{qn}^{e} + 2c_{\phi l,pq}^{(1)}c_{\phi l,mp}^{(3)}y_{qn}^{e} + 6c_{\phi l,mp}^{(3)}c_{\phi l,pq}^{(3)}y_{qn}^{e} + 12c_{e\phi,pq}c_{le,mpqn} - 16c_{\phi\Box}c_{le,mpqn}y_{pq}^{e} \\ + 4c_{\phi D}c_{le,mpqn}y_{pq}^{e} + 24c_{\phi\Box}c_{ledq,mnpq}y_{qp}^{d} - 6c_{\phi D}c_{ledq,mnpq}y_{qp}^{d} - 24c_{\phi\Box}c_{lequ,mnpq}^{(1)}y_{pq}^{e} \\ + 6c_{\phi D}c_{lequ,mnpq}^{(1)}y_{pq}^{u*} - 18c_{d\phi,pq}c_{ledq,mnqp} + 18c_{lequ,mnpq}^{(1)}c_{u\phi,pq}^{*} - 16c_{\phi\Box}^{2}y_{mn}^{e} + 10c_{\phi\Box}c_{\phi D}y_{mn}^{e} \\ - 2c_{\phi D}^{2}y_{mn}^{e} \bigg] + \cdots; \qquad 54$$

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

In[3]:= Length[cleH5[a, b] /. redundancies]

Out[3]= 108

In[2]:= cleH5[a, b] /. redundancies

Out(2)= 3 WCH6 alphaReHD1[a, b] - 8 WCH6 x) alphaReHD1[a, b] + 2 WCH0 x alphaReHD1[a, b] + 2 WCH0 x) alphaReHD2[a, b] - 4 WCH6 x) 2λ alphaRleH3D211[a, b] - 2λ alphaRleH3D214[a, b] + λ alphaRleH3D215[a, b] + $3\pm\lambda$ alphaRleH3D216[a, b] + 2λ alphaRleH3D27[a, b] + $2\pm\lambda$ alphaRleH3D29[a, b] - $\frac{3}{2}$ alphaRleH3D29[a, b] - $\frac{3}{2}$ alphaRHDpp WCeH[a, b] - λ alphaRHDpp WCeH[a, b] - \lambdaalphaRHDpp WCeH[a, b] - λ alphaRHDpp WCeH[a, b] - \lambdaalphaRHDpp $i alphaRHepp[j1, b] \times WCeH[a, j1] - alphaRHl1p[a, j1] \times WCeH[j1, b] - i alphaRHl1pp[a, j1] \times WCeH[j1, b] - alphaRHl3p[a, j1] \times WCeH[j1, b] - i alphaRHl3p[a, j1] \times WCeH[j1, b] - i alphaRHl3p[a, j1] \times WCeH[j1, b] - i alphaRHH3P[a, j1] \times WCeH[j1, b] - i alphaRHl3p[a, j1] \times WCeH[j1, b] - i alphaRHl3p[a, j1] \times WCeH[j1, b] - i alphaRH13P[a, j1] \times WCeH[j1, b] - i alphaRH13P[a, j1] \times WCeH[j1, b] - i alphaRH13P[a, j1] \times WCeH[j1, b] - i alphaRH4YE[a, b] + i alphaRH4YE[a,$ alphaRWH4D26 g2 YE [a, b] + $\frac{1}{2}$ alphaRWH4D27 g2 YE [a, b] + 2 alphaRHDp WCHD YE [a, b] - $\frac{1}{4}$ alphaRHDp WCHD YE [a, b] - $\frac{1}{2}$ i alphaRHDp WCHD YE [a, b] - $\frac{1}{2}$ alphaRBDH g1 WCHD YE [a, b] - $\frac{1}{4}$ alphaRWDH g2 WCHD YE [a, b] + 2 alphaRHDp WCHD YE [a, b] + 2 alphaRHDp WCHD YE [a, b] - $\frac{1}{2}$ i alphaRHDp WCHD YE [a, b] - $\frac{1}{2}$ alphaRWDH g2 WCHD YE [a, b] - $\frac{1}{2}$ alphaRWDH g2 WCHD YE [a, b] + 2 alphaRHDp WCHD YE [a, $2 alphaRH411 \lambda YE[a, b] - alphaRH412 \lambda YE[a, b] + 4 alphaRH48 \lambda YE[a, b] + \frac{1}{2} alphaReHD2bar[j1, Gen8] \times WCeH[j1, b] \times YE[a, Gen8] - \frac{1}{2} alphaReHD4bar[j1, Gen8] \times WCeH[j1, b] \times YE[a, Gen8] - \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, b] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, b] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, b] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, Gen8] + \frac{1}{2} alphaReHD2[j1, b] \times YE[a, b] b] \times YE[a,$ alphaReHD4[j1, b] × WCeHbar[j1, Gen8] × YE[a, Gen8] - 1 i alphaRe2H4D2[j1, b] × YE[a, j1] + alphaRe2H4D3[j1, b] × YE[a, j1] + i alphaRHDpp WCHe[j1, b] × YE[a, j1] + - alphaReHD2bar[j1, j2] × WCeH[j1, b] × YE[a, j2] + $alphaReHD3bar[j1, j2] \times WCeH[j1, b] \times YE[a, j2] + \frac{1}{2}alphaReHD4bar[j1, j2] \times WCeH[j1, b] \times YE[a, j2] - 2ialphaReHDpp WCHe[j2, b] \times YE[a, j2] + \frac{1}{2}alphaReHD2bar[Gen8, j1] \times WCeH[a, j1] \times YE[Gen8, b] + \frac{3}{2}alphaReHD3bar[Gen8, j1] \times WCeH[a, j1] \times YE[Gen8, b] + \frac{3}{2}alphaReHD3bar[Gen8, j1] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[Gen8, j1] \times VE[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[Gen8, j1] \times VE[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[Gen8, j1] \times VE[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[Gen8, j1] \times VE[a, j2] + \frac{1}{2}alphaReHD3bar[J1, j2] \times WCeH[a, j2] + \frac{1}{2}alphaReHD3bar[Gen8, j1] \times VE[a, j2] + \frac{1}{2}alphaReHD3b$ alphaReHD4bar[Gen8, j1] × WCeH[a, j1] × YE[Gen8, b] - $\frac{1}{2}$ alphaReHD2[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD3[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] - $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × WCeHbar[Gen8, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + $\frac{1}{2}$ alphaReHD4[a, j1] × YE[Gen8, b] + \frac{1}{2} λalphaRl2H2D333[a, j1] × YE[j1, b] + λalphaRl2H2D335[a, j1] × YE[j1, b] + $\frac{1}{2}$ i alphaRl2H4D5[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] - i alphaRHDpp WCHl[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] - i alphaRl2H4D5[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D8[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] - i alphaRl2H4D5[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] - i alphaRl2H4D5[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, b] - i alphaRl2H4D8[a, j1] × YE[j1, b] + alphaRl2H4D6[a, j1] × YE[j1, b] + alphaRl2H4D7[a, j1] × YE[j1, i alphaRHDpp WCHl3[a, j1] × YE[j1, b] - $\frac{1}{4}$ alphaRleH3D213bar[j1, j2] × YE[a, j2] × YE[j1, b] - $\frac{3}{4}$ i alphaRleH3D216bar[j1, j2] × YE[a, j2] × YE[j1, b] - $\frac{1}{2}$ i alphaRleH3D29bar[j1, j2] × YE[a, j2] × YE[j1, b] + $\frac{1}{4}$ alphaReHD2bar[j2, j1] × WCeH[a, j1] × YE[j2, b] - $\frac{3}{4}$ i alphaRleH3D216bar[j1, j2] × YE[a, j2] × alphaReHD2[j2, j1] × WCeH[a, j1] × YE[j2, b] + 2 i alphaRHDpp WCHl1[a, j2] × YE[j2, b] - $\frac{1}{4}$ alphaReHD2[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD3[a, j2] × WCeH[j1, b] × YEbar[j1, j2] - $\frac{1}{4}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD3[a, j2] × WCeH[j1, b] × YEbar[j1, j2] - $\frac{1}{4}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD3[a, j2] × WCeH[j1, b] × YEbar[j1, j2] - $\frac{1}{4}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD3[a, j2] × WCeH[j1, b] × YEbar[j1, j2] - $\frac{1}{4}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, j2] + $\frac{1}{2}$ alphaReHD4[a, j2] × WCeH[j1, b] × YEbar[j1, b] × YEbar[j alphaRleH3D211[j1, b] × YE[a, j2] × YEbar[j1, j2] + $\frac{1}{a}$ alphaRleH3D215[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{3}{a}$ is alphaRleH3D216[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{4}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D216[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - $\frac{1}{2}$ is alphaRleH3D27[j1, b] × YE[a, j2] × YEbar[j1, j2] - \frac{1}{2} $i alphaRleH3D29[j1, b] \times YE[a, j2] \times YEbar[j1, j2] - \frac{1}{a}alphaRl2H2D321[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YE[a, j3] \times YE[j2, b] \times YEbar[j1, j3] + \frac{1}{a}alphaRl2H2D324[j1, j2] \times YEbar[j1, j2] \times$ alphaRl2H2D333[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D335[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D336[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D336[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D336[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{2}$ alphaRl2H2D338[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] + \frac{1}{2} alphaRl2H2D37[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] + $\frac{1}{4}$ alphaRl2H2D38[j1, j2] × YE[a, j3] × YE[j2, b] × YEbar[j1, j3] - $\frac{1}{4}$ alphaReHD2[j2, b] × WCeH[a, j1] × YEbar[j2, j1] + $\frac{1}{4}$ alphaReHD4[j2, b] × WCeH[a, j1] × YEbar[j2, j1] - $\frac{1}{4}$ alphaReHD4[j2, b] × YEbar[j2, b] × YE $alphaRleH3D211[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D213[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{1}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}ialphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] + \frac{1}{4}alphaRleH3D27[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YE[j2, b] \times YEbar[j2, j1] - \frac{3}{4}alphaRleH3D215[a, j1] \times YEbar[j2, j1] - \frac$ i alphaReH3D29[a, j1] × YE[j2, b] × YEbar[j2, j1] - $\frac{1}{2}$ alphaRe2H2D319[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRe2H2D35[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - \frac{1}{2} alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - \frac{1}{2} alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - \frac{1}{2} alphaRe2H2D36[j1, j2] × YE[a, j1] × YE[j3, b] × YEbar[j3, j2] - \frac{1}{2} alphaRl2H2D321[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{4}$ alphaRl2H2D324[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{4}$ alphaRl2H2D325[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D333[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D333[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ alphaRl2H2D334[a, j1] × YE[j3, b] × YEbar[j3, j2] + $\frac{1}{4}$ $alphaRl2H2D335[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] + \frac{1}{4}alphaRl2H2D336[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j1, j2] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE[j3, b] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YEbar[j3, j2] \times YEbar[j3, j2] - \frac{1}{4}alphaRl2H2D338[a, j1] \times YE$ alphaRl2H2D38[a, j1] × YE[j1, j2] × YE[j3, b] × YEbar[j3, j2] - $\frac{1}{2}$ alphaRe2H2D319[j1, b] × YE[a, j2] × YE[j3, j1] × YEbar[j3, j2] - $\frac{1}{4}$ alphaRe2H2D35[j1, b] × YE[a, j2] × YE[j3, j1] × YEbar[j3, j2] - $\frac{1}{4}$ alphaRe2H2D36[j1, b] × YE[a, j2] × YE[j3, j1] × YEbar[j3, j2]

New complications: There're much more operators, redundant bosonic matter, on-shell relations crazy, ...

How to address this? On-shell matching at tree level!

Main point:

amplitudes computed with and without redundant operators must match; this can be turn into a linear system of equations whose solutions are how physical operators are shifted in terms of redundant ones [MC, López-Miras, Santiago, Vilches 2411.12798]

Taken from Javier López-Miras, SMEFT-Tools 2025

$\psi^2 \phi^2 D^3$	$c_{\phi^4 D^2}$	c_{ϕ^6}	$C_{\psi^2 \phi^2 L}$	$c_{\psi^2\phi^3}$	з c_{ψ^4}	$X\psi^2\phi^2 D$	$c_{\phi^4 D^2}$	c_{ϕ^6}	$C\psi^2\phi^2 D$, $C_{\psi^2 \phi^3}$	c_{ψ^4}
$c_{\phi^4 D^2}$	0	0		0	0	$c_{\phi^4 D^2}$	0	0	g	0	0
$C_{oldsymbol{\phi}}$ 6		0	0	0	0	$C_{oldsymbol{\phi}}$ 6		0	0	0	0
$c_{\psi^2\phi^2D}$			• • •	0	•••	$C_{\psi^2 \phi^2 D}$			g	0	g
$c_{\psi^2\phi^3}$				0	0	$c_{\psi^2\phi^3}$				0	0
c_{ψ^4}					0	c_{ψ^4}					0

$\psi^2 \phi^3 D^2$	$C_{\phi^4 D^2}$	c_{ϕ^6}	$C_{\psi^2 \phi^2 I}$	$C_{\psi^2\phi^3}$	c_{ψ^4}	$X\psi^2\phi^3$	$c_{\phi^4 D^2}$	c_{ϕ^6}	$C_{\psi^2 \phi^2 D}$) $c_{\psi^2\phi^3}$	c_{ψ^4}
$c_{\phi^4 D^2}$	y	0	y		y	$C_{\phi^4 D^2}$	0	0	gy	0	0
C_{ϕ^6}		0	0	0	0	c_{ϕ^6}		0	0	0	0
$C_{\psi^2 \phi^2 D}$			y	· · ·	y	$c_{\psi^2\phi^2D}$			gy	g	0
$c_{\psi^2 \phi^3}$				0	· · · ·	$c_{\psi^2 \phi^3}$				0	0
c_{ψ^4}					0	c_{ψ^4}					0

Some cross-checks: Positivity bounds Manohar et al work from geometry Angelis and Huber work using amplitudes ...

Further work:

Impact on electroweak observables, ... Breaking of universality within the SMEFT [Wells, Zhang '15] Why to worry about a theory with several thousands of free parameters?

1. The SMEFT is the low-energy limit of countless theories

2. Only few operators contribute at leading order to a given observable

3. Pushing calculation to the limit: new methods, new tools, ...

4. New theoretical insights: positivity bounds, evanescent operators, anomalies...

Outlook

The SMEFT RGEs are instrumental for testing the theory against all experimental data (obtained at very different scales)

As of now, almost all RGEs ensuing from loops of tree-level operators have been calculated (and partially cross-checked)

All results can be accessed at:

github.com/SMEFTDimension8-RGEs

Thank you!

It is obvious that there are zeros in mixing of specific operators of different classes

It is not so clear how to anticipate them, not even with amplitude methods

$$\begin{aligned} \mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(1)} &= i(\bar{e}\gamma^{\mu}D^{\nu}e)(D_{(\mu}D_{\nu)}\phi^{\dagger}\phi) + \text{h.c.} \\ \mathcal{O}_{B^{2}\phi^{2}D^{2}}^{(1)} &= (D^{\mu}\phi^{\dagger}D^{\nu}\phi)B_{\mu\rho}B_{\nu}^{\rho} \\ \mathcal{O}_{e^{2}\phi^{2}D^{3}}^{(2)} &= i(\bar{e}\gamma^{\mu}D^{\nu}e)(\phi^{\dagger}D_{(\mu}D_{\nu)}\phi) + \text{h.c.} \end{aligned}$$

$$= \int d\text{LIPS}\langle 4'3' \rangle \langle 4'1 \rangle [4'3'] [3'1] \frac{\langle 3'4 \rangle^2}{\langle 3'3 \rangle \langle 34' \rangle}$$
$$= \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta s_\theta c_\theta \left[\#_1 e^{i\phi} + \#_2 e^{2i\phi} + \cdots \right]$$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

 $c_{B^2\phi^2 D^2}^{(1)} \le 0$

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$

But some others are not:

A different perspective: certain operators are constrained by positivity, from unitarity+locality [Adams, Arkani-Hamed, Nicolis, Rattazzi '06]

$$c^{(1)}_{B^2\phi^2 D^2} \le 0$$

But some others are not:

"Therefore",

$$\dot{c}_{B^2\phi^2D^2}^{(1)} = \#_1 \tilde{c}_{e^2\phi^2D^3}^{(1)} + \dots \Rightarrow \#_1 = 0$$

1. For any $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with the positivity bounds $(c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \le 0)$, there exists UV such that only $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ (and lowerdimensional ones) at tree level.

2. Within any such UV, compute to order $O(g^2)$

 \cdots

1. For any $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with the positivity bounds $(c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \le 0)$, there exists UV such that only $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ (and lowerdimensional ones) at tree level.

1. For any $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with the positivity bounds $(c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \le 0)$, there exists UV such that only $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ (and lowerdimensional ones) at tree level.

2. Within any such UV, compute $\sum_{n=1}^{\infty}$ to order $O(g^2)$

2. Within any such UV, compute to order $O(g^2)$

$$\Sigma(\mu) \equiv \frac{1}{2\pi i} \int_{\gamma} \frac{\mathcal{A}(s)s^3}{(s^2 + \mu^4)^3} \ge 0$$

[Herrero-Valea et al '20]

2. Within any such UV, compute to order $O(g^2)$

2. Within any such UV, compute to order $O(g^2)$

 $\int_{\Lambda} \mathcal{A}(s) \sim -(\beta_4 + \beta_8 s^2 + \beta_{12} s^4 + \cdots) \log \frac{s}{\Lambda^2}$ $\Sigma(\mu) = -\beta_8 + \beta_{12}\mu^4 + \cdots$ $\Rightarrow \lim_{\mu \to 0} \Sigma(\mu) = -\beta_8 \ge 0$ 75

So $\beta_8 \leq 0$ in any of the aforementioned UV, and therefore for all values of $(c_{e^2\phi^2D^3}^{(1)}, c_{e^2\phi^2D^3}^{(2)})$ compatible with $c_{e^2\phi^2D^3}^{(1)} + c_{e^2\phi^2D^3}^{(2)} \leq 0$

3. The beta function is linear in the Wilson coefficients:

$$\beta_8 = \alpha (c_{e^2 \phi^2 D^3}^{(1)} + c_{e^2 \phi^2 D^3}^{(2)}), \quad \alpha \ge 0$$

Therefore,

$$\underbrace{\mathcal{O}_{e^2\phi^2D^3}^{(1)} - \mathcal{O}_{e^2\phi^2D^3}^{(2)}}_{\widetilde{\mathcal{O}}_{e^2\phi^2D^3}^{(1)}} \xrightarrow{\mathcal{O}_{B^2\phi^2D^2}^{(1)}} \underbrace{\mathcal{O}_{B^2\phi^2D^2}^{(1)}}_{e^2\phi^2D^3}$$

How do things change if we consider instead...?

2. Within any such UV, compute

to order $O(g^2)$

2. Within any such UV, compute

to order $O(g^2)$

The dim-6 squared contributions fulfill positivity:

$$c_{\phi^4}^{(2)} \ge 0$$
, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0$, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$

The dim-6 squared contributions fulfill positivity:

$$c_{\phi^4}^{(2)} \ge 0$$
, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} \ge 0$, $c_{\phi^4}^{(1)} + c_{\phi^4}^{(2)} + c_{\phi^4}^{(3)} \ge 0$

$$\begin{split} 16\pi^2\beta_{H^4D^4}^{(1)} &= \frac{8}{3} \bigg[-2(c_{H^4D^2}^{(1)})^2 - \frac{11}{8}(c_{H^4D^2}^{(2)})^2 + 4c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} \\ &\qquad \pm 3c_{Hd}^2 \pm \frac{c_{He}^2}{2} \pm 2(c_{Hl}^{(1)})^2 - 2(c_{Hl}^{(3)})^2 + 6(c_{Hq}^{(1)})^2 - 6(c_{Hq}^{(3)})^2 + \frac{3c_{Hu}^2}{2} - 3c_{Hud}^2 \bigg], \\ 16\pi^2\beta_{H^4D^4}^{(2)} &= \frac{8}{3} \bigg[-2(c_{H^4D^2}^{(1)})^2 - \frac{5}{8}(c_{H^4D^2}^{(2)})^2 - 2c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} \\ &\qquad \pm \frac{-3c_{Hd}^2}{2} \pm \frac{-2(c_{Hl}^{(1)})^2}{2} - 2(c_{Hl}^{(3)})^2 - 6(c_{Hq}^{(1)})^2 - 6(c_{Hq}^{(3)})^2 - 3c_{Hu}^2 \bigg], \\ 16\pi^2\beta_{H^4D^4}^{(3)} &= \frac{8}{3} \bigg[-5(c_{H^4D^2}^{(1)})^2 + \frac{7}{8}(c_{H^4D^2}^{(2)})^2 - 2c_{H^4D^2}^{(1)}c_{H^4D^2}^{(2)} + 4(c_{Hl}^{(3)})^2 + 12(c_{Hq}^{(3)})^2 + 3c_{Hud}^2 \bigg] \end{split}$$

Resorting to the UV to understand the IR is only a trick. In general:

(1) Some tree-level O_i obey $c_i \ge 0$

(2) If O_i involves fields not present in O_j and c_j not constrained by positivity, then $\gamma_{ij} = 0$

Other aspects of anomalous dimensions: signs and inequalities

Let us consider the mixing \longrightarrow

Positivity bounds:

$$\begin{aligned} c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} \geq 0 \,, \quad c^{(1)}_{\phi^4} + c^{(2)}_{\phi^4} + c^{(3)}_{\phi^4} \geq 0 \\ \dot{c}^{(1)}_{B^2 \phi^2 D^2} \geq 0 \end{aligned}$$

From where we obtain:

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

83

Other aspects of anomalous dimensions: signs and inequalities

$$\dot{c}_{B^{2}\phi^{2}D^{2}}^{(1)} = \alpha (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)} + c_{\phi^{4}}^{(3)}) + \beta (c_{\phi^{4}}^{(1)} + c_{\phi^{4}}^{(2)}) + \gamma c_{\phi^{4}}^{(2)} + \cdots$$
$$= (\alpha + \beta) c_{\phi^{4}}^{(1)} + (\alpha + \beta + \gamma) c_{\phi^{4}}^{(2)} + \alpha c_{\phi^{4}}^{(3)} + \cdots,$$

1. The anomalous dimensions are positive