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CKM fits and semileptonics

2

VCKM =
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

≃
1 − λ2 /2 λ Aλ3(ρ − iη)

−λ 1 − λ2 /2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

Ideally:
Dominant semileptonic modes  and  fix , 
angles fixed by  and ..

b → c s → u (λ, A)
b → u γ
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CKM fits and semileptonics
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Steady progress recently, especially  (three loop calculations, spectrum measurements, lattice)|Vcb |

= (41.97 ± 0.48) × 10−3 Finauri, Gambino [2310.20324]

= (41.69 ± 0.63) × 10−3 Bernlochner et. al. [2310.20324]

|Vcb |inc = (42.16 ± 0.51) × 10−3 Bordone, Capdevilla, Gambino [2310.20324]

|Vcb |excl = (39.46 ± 0.53) × 10−3 |Vub |excl = (3.60 ± 0.14) × 10−3[2411.04268]



Neutral currents
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Loop suppressed, rates are very small 
(sensitive to BSM) 

BR(B → Xsμμ) |SM = (16.87 ± 1.25) × 10−7

Methods largely the same as for charged currents: 
form factors for exclusives, OPE for inclusive..

BR(K+ → π+νν̄) |SM = (7.86 ± 0.61) × 10−11

D’Ambrosio et. al. [2206.14748]

Huber et. al.
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For the inclusive mode , virtual effects 
can be calculated in QCD, supplemented with 
inclusive hadronic inputs (spectral functions)

B → Xsμ+μ−

Huber et. al. [1908.07507]



Outline

5

• Inclusive B-decays 


• Heavy quark expansion, Phenomenology of Rare Decays, 
Schemes for heavy quark masses and HQET Wilson coeffs.


• Chiral dynamics


• 


•

K → πνν

B → πℓν



Inclusive B Decays
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Huber, Hurth, Lunghi, JJ, Qin, Vos 
[2404.03517] 



Charged currents
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ℒb→c = −
4GF

2
VcbCV−A(μ)QV−A

 current is 
conserved in QCD
b → c

CV−A(μ) = 1 +
α(μ)
2π (ln

μ2

M2
Z

+
11
6 ) ≃ 1.005

Scale dependence from QED logs, 
but no new operators appear 
(chiral limit )mb ≪ MW

Bigi et. al. [2309.02849]

(c̄LγμbL)(ℓ̄LγμνL)
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192π2
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2
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π
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ρ = m2
c /m2

b y = 2Eℓ /mb



Charged currents

7

ℒb→c = −
4GF

2
VcbCV−A(μ)QV−A

 current is 
conserved in QCD
b → c

CV−A(μ) = 1 +
α(μ)
2π (ln

μ2

M2
Z

+
11
6 ) ≃ 1.005

Scale dependence from QED logs, 
but no new operators appear 
(chiral limit )mb ≪ MW

Bigi et. al. [2309.02849]

(c̄LγμbL)(ℓ̄LγμνL)

Leading power  (mb ≫ Λ)

dΓ
dy

=
G2

Fm5
b

192π2
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f1(y, ρ) + ( αs

π )
2

f2(y, ρ) +
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π
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ρ = m2
c /m2

b y = 2Eℓ /mb

Kinetic scheme:

Total rate (integral over y) at N3LO

Fael, Schönwald, Steinhauser [2011.13654]

Fael, Vienna 09’24

Rather sensitive to scheme for heavy quark mass ( )m5
b

Γuℓν ∼ 1 − 0.020αs
− 0.012α2

s
+ 0.017α3

s

Γcℓν ∼ 1 − 0.1162αs
− 0.0350α2

s
− 0.0097α3

s

(adapted, no power corrections)

(prelim.)



Neutral currents
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Semileptonic operators mix with the 
nonleptonic operators at order α

Interplay between QCD and QED 
logarithms (μ ≫ mb)

Q1 = (s̄LγμTacL)(c̄LγμTabL)
Q2 = (s̄LγμcL)(c̄LγμbL)

Since the lowest order amplitude is order , 
the running is an  relative effect (!)

α
O(1)

αs ≪ 1 αe /αs ≪ 1

Q3 = (s̄LγμbL)∑q (q̄γμq)

Q4 = (s̄LγμTabL)∑q (q̄γμTaq)

Q5 = (s̄LγαβδbL)∑q (q̄γαβδq)

Q6 = (s̄LγαβδbL)∑q (q̄γαβδTaq)

Q9 = (s̄LγμbL)∑ℓ (ℓ̄γμℓ)

Q10 = (s̄LγμbL)∑ℓ (ℓ̄γμγ5ℓ)

Q3Q = (s̄LγμbL)∑q eq(q̄γμq)

Q4Q = (s̄LγμTabL)∑q eq(q̄γμTaq)

Q5Q = (s̄LγαβδbL)∑q eq(q̄γαβδq)

Q6Q = (s̄LγαβδbL)∑q eq(q̄γαβδTaq)

Qb = …

αs ln(μ /μ0) ∼ 1

Organize perturbation theory around 
solution to 13x13 ADM at LL

Huber, Lunghi, Misiak, Wyler [0512066]



Neutral currents
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d2Γsll

dq2dz
=

3
8 [(1 + z2)HT(q2) + 2zHA(q2) + 2(1 − z2)HL(q2)]

dΓ
dq2

= HT + HL
dAFB

dq2
=

3
4

HA

Angular analysis sensitive to different 
combinations of Wilson coefficients

Lee, Ligeti, Stewart, 
Tackmann [2011.13654]
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Simplified formulae at the scale μ ∼ mb

HT(q2) = 2Γ0m3
b(1 − s)2s[(C2

9 + C2
10)h99

T (s) +
4
s2

C2
7h77

T (s) +
4
s

C7C9h79
T (s)] + Hbrem

T (q2)

HA(q2) = − 4Γ0m3
b(1 − s)2s[C9C10h90

A (s) +
2
s

C7C10h70
A (s)] + Hbrem

A (q2)

HL(q2) = Γ0m3
b(1 − s)2[(C2

9 + C10)2h99
L (s) + 4C2

7h77
L (s) + 4C7C9h79

L (s)] + Hbrem
L (q2)

Structure functions 
of local OPE

hij
I = 1 −

αsCF

2π
ωij

I +
1

m2
b

χ ij
I + …

Nonlocal (some re-expand 
into “effective” local terms)

s = q2 /m2
b
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G2

F

48π3
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|VtbVts |2

Normalization

Γcℓν
0 =

G2
F

192π3
|Vcb |2 Γuℓν

0 =
G2

F

192π3
|Vub |2

|VtbVts |2

|Vcb |
∼ 1

|VtbVts |2

|Vub |2 ∼
|Vcb |2

|Vub |2



Heavy quark expansion
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ℒNℓ+1
QCD → b̄viv ⋅ Dbv+ ∑Nl

i=1 q̄i(iD − mi)qi + ℒYM

+
1

m2
b

[b̄v(iD⊥)2bv+CG(μ)b̄v(iσμν)[iDμ
⊥, iDμ

⊥]bv] + O(1/m3
b)

CG(mb) = 1 + 0.1492αs
+ 0.0676α2

s
+ 0.0497α3

s

Matching coefficients at  (MS) μ = mb

Grozin, Marquard, Piclum, Steinhauser [0707.1388]

Dual expansion in  and αs(μ) 1/mb(μ)
Matching of QCD  bHQET→ “Light” QCD charm, but 

don’t neglect the mass
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Define HQET matrix elements of 
physical states

μ2
π(μ) = − ⟨b̄v(iD⊥)2bv⟩

μ2
G(μ) = ⟨b̄v(iD⊥

μ )(iD⊥
ν )(−iσμν)bv⟩

ρ3
LS(μ) = ⟨b̄v(iD⊥

μ )(iv ⋅ D)(iD⊥μ)bv⟩

ρ3
D(μ) = ⟨b̄v(iD⊥

μ )(iv ⋅ D)(iD⊥
ν )(−iσμν)bv⟩

⟨…⟩ =
1

2MB
⟨B̄ |… | B̄⟩

f a
q(μ) = ⟨B̄a | (b̄vγμq)(q̄γμbv) | B̄a⟩

   exactly     (CVC) ⟨B̄(p) | b̄γμb | B̄(p)⟩ = 2MBpμ

Leading power (in QCD)
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R =
M2

B* − M2
B

M2
D* − M2

D
=

CG(mb)
CG(mc)

+ O(1/mb,c)

Hoang, Jain, Scimemi, Stewart [0908.3189]

HQET charm quark ( )Nl = 3
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Heavy quark expansion
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Power corrections (even up to ) can be extracted from 
the distribution of semileptonic B (in principle even D) decays

1/m3
b

Finauri, Gambino [2310.20324]

Bernlochner et. al. [2205.10274]



Minimal subtraction
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Schemes are defined by counterterms for the fields, masses and couplings in 
renormalizable QFT, or an EFT with symmetry-preserving regulators 


Mass-dependent schemes are defined to all orders by specifying certain 
conditions that correlation functions should fulfill order by order (eg: textbook 
pole scheme for massive leptons, also kinetic scheme)


mos
b = mkin

b (μk; μ) + Λ̄(μk; μ) −
μkin

π (μk, μ)2

2mkin
b

+ O(1/m3
b)

MB = ⟨ℒQCD⟩ = ⟨ℒHQET⟩
The  term doesn’t even show up, because it is an 
‘irrelevant’ operator and we have to take  to 
compute these matrix elements

μ2
G

mQ → 0

Perturbative analogue of the all-
orders formula (very schematic)
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G
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Perturbative analogue of the all-
orders formula (very schematic)

MB = mb(R(μ), μ) + δMb(R(μ), μ)

Mass-independent “R” schemes can be required to be ‘renormalon free’ and there 
is a huge freedom on what to subtract in addition to the asymptotic part of a series 
for an observable

observable Includes all 
asymptotics

MB[αs(μ)] = mb(μ)∑n cnαn
s (μ)

+ ∫ ϕ(γ) dγ exp[γ/αs(μ)]

Minimal: take  from pole-MS 
relation at fixed order, with 

R(μ)
R(μ) = μ
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Mass-independent “R” schemes can be required to be ‘renormalon free’ and there 
is a huge freedom on what to subtract in addition to the asymptotic part of a series 
for an observable

observable Includes all 
asymptotics

MB[αs(μ)] = mb(μ)∑n cnαn
s (μ)

+ ∫ ϕ(γ) dγ exp[γ/αs(μ)]

Minimal: take  from pole-MS 
relation at fixed order, with 

R(μ)
R(μ) = μ

M2
B* − M2

B = CG(R)μ2
G(R) + δ(ΔM2

B)

For semileptonics: need renormalon-free 
HQ masses and HQET matrix elements

Minimal (?): take  from pole-MS 
magnetic moment relation at fixed order, 
with 

R(μ)

R(μ) = μ



Phenomenology
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Belle

BaBar

BaBar+Belle

LHCb (isospin)

Exp: Average

SM: BR

SM: R*BR(bulν)

SM: Average

4.2±1.3

5.8±1.6

4.8±1.0

2.73±0.18

2.79±0.35
[rescaling factor = 2.0]

2.67±0.70

3.91±0.79

3.21±0.63
[rescaling factor = 1.2]

2 3 4 5 6 7

Belle

BaBar

Exp: Average

SM: BR

15.2±6.2

16.2±4.6

15.8±3.7

17.3±1.3

10 15 20

Branching ratios above / below 
narrow resonances Hurth, Huber, Lunghi, JJ, Qin, Vos 

[2404.03517]

Effects of power corrections are large at 
high- , even after normalizing to q2 B → Xu

ℬ[ > 14.4] = (3.05 − 5.87λeff
2 + 8.09ρ1) × 10−7

ℛ[ > 14.4] = (24.90 + 2.49λeff
2 + 10.72ρ1) × 10−4

Theory mature at low- , 
power corrections are small

q2

No LHCb yet



B-Tagging

14

B factories

Reconstruct  momentum from tagging recoil  
(Low efficiency, gain in systematics)

B̄ B

BaBar and Belle used sum over exclusive modes 
(including neutrals π0 → γγ)

ℬ

ℬ

𝒜FB

65 M  pairsBB̄
152 M
772 M

89 M
471 M

Belle [0208029]

Belle [0503044]

Belle [1402.7134]

BaBar [0404006] ℬ
BaBar [1312.5364]

ℬ

LHCb (?)

Sum over exclusive modes, isospin re-weighting 
 (avoid neutrals)B0,+ → K+(nπ±)μ+μ−

Koppenburg [CERN-THESIS-2002-010]
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ℬ

LHCb (?)

Sum over exclusive modes, isospin re-weighting 
 (avoid neutrals)B0,+ → K+(nπ±)μ+μ−

Koppenburg [CERN-THESIS-2002-010]

Isospin extrapolation, semi-inclusive strategy 
 (vertex 3 charged particles)Xb → K+μ+μ−X

Amhis, Owen [2106.15943] 

Separately measure and subtract  and  
contaminations to  using an additional  or 

B̄s Λb
Xb K p

B̄s : Xb → K+K−μ+μ−X

Λb : Xb → pK−μ+μ−X



Chiral dynamics: Rare Kaon Decays

Anshika Bansal, JJ, Daniel Winney 
[preliminary] 
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Motivation: NA62 update

16

BR(K+ → π+νν̄)
SM

= (7.73 ± 0.16pert ± 0.25non−pert ± 0.54par) × 10−11

Brod, Gorbahn, Stamou [2105.02868]

BR(K+ → π+νν̄)
exp

= 13.0(+3.0
−2.7)stat(+1.3

−1.2)syst

NA62 [2412.12015]

Four frontiers for precision in :K+ → π+νν̄

• Experiment (still statistically limited)


• Progress on  in B sector: top quark contribution is proportional to 


•  at higher order in perturbative QCD


• Intrinsic hadronic uncertainties (local and nonlocal FFs) 

|Vcb | |VtsVtd |2 ∼ |Vcb |4

V*tsVtdXt(mt)



Scale separation

17

Dominant contribution from  sensitive to large top 
quark mass, known at NLO QCD and NLO EW 

Qν

Brod, Gorbahn, Stamou [1009.0947]
RGE invariant below the weak scale (CVC)

Qν = (d̄LγμsL)(ν̄LγμνL)



Scale separation

17

Dominant contribution from  sensitive to large top 
quark mass, known at NLO QCD and NLO EW 

Qν

Brod, Gorbahn, Stamou [1009.0947]
RGE invariant below the weak scale (CVC)

Qν = (d̄LγμsL)(ν̄LγμνL)

Charm mass cannot be neglected at the electroweak 
scale, due to interplay of GIM and CKM suppression of 
the charm / top contributions

,     V*csVcd ∼ λ V*tsVtd ∼ λ5

Resummation of  corrections to 
all orders in  and for 

x2
c αn

s (αs ln xc)k

k n = 0,1

Buras, Gorbahn, Haisch, Nierste [0603079]

Q1 = (d̄LγμcL)(c̄LγμsL) − (d̄LγμuL)(ūLγμsL)

Q2 = (d̄LγμTacL)(c̄LγμTasL) − (d̄LγμTauL)(ūLγμTasL)

Qu
1 = (d̄LγμuL)(ūLγμsL)

Qu
2 = (d̄LγμTauL)(ūLγμTasL)

Q3 = (d̄LγμsL)∑q q̄γμq
…
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Nonlocal operators / matrix elements 
from factorization

Actual values of these FFs                    (??)

K+ π+
s d

u

qq̄
s d

u

s

u u

d

!

ν ν

s

u u

d

ν ν

"

u, c

s d

u
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the charm / top contributions

,     V*csVcd ∼ λ V*tsVtd ∼ λ5
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Local form factors

18

⟨π+(k) | ūγμs |K0(p)⟩ = fK→π
+ (q2)(p + k)μ + fK→π

− (q2)qμ

⟨π+(k) | d̄γμs |K+(p)⟩ = fK→π
+ (q2)(p + k)μ + fK→π

− (q2)qμ

Charged currents:

Neutral currents:

Local vector form factors from V-A currents in SM 
(also V+A for FCNCs, hadronic current is the same)

Universal to charged-current and neutral-current 
 transitions up to isospin breaking corrections 

(  complicated by  mixing LECs)
K → π+

K+ → π0 π0 − η

fK+π+

+ (0)
fK0π+
+ (0)

= 1.0015 ± 0.0007
λK+π+

+ (0)
λK0π+

+ (0)
= 0.9986 ± 0.0002

K+ π+
s d

u Mescia, Smith [0705.2025]
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+ (0)
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+ (0)
λK0π+
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= 0.9986 ± 0.0002

K+ π+
s d
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Slope parameters from phenomenology: 
 and  (analyticity)K → πℓν τ → Kπν̄τ

Boito, Escribano, Jamin [1007.1858]

Normalization: LQCD

[2411.04268]



Nonlocal form factors

19

∫ d4x e−iqx⟨π+ |TQ(0)Jμ
γ (x) |K+⟩ = (qμp ⋅ q − pμq2)FK+π+

γ (q2)

∫ d4x e−iqx⟨π+ |TQ(0)Jμ
Z(x) |K+⟩

= (qμp ⋅ q − pμq2)FK+π+

Z∥ (q2) + qμFK+π+

Z⊥ (q2)

Electromagnetic form factor dominates  
and can be extracted from the spectrum up to a phase

K+ → π+ℓ+ℓ−

Weak neutral-current form factor in K+ → π+νν̄

no contribution 
to rate ( )mν = 0

qq̄
s d

u

s

u u

dQ(0) = C1(μ)Q1 + C2(μ)Q2
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Weak neutral-current form factor in K+ → π+νν̄

no contribution 
to rate ( )mν = 0

qq̄
s d

u

s

u u

d

Weak and electromagnetic charges are not aligned

J γ
μ =

2
3

(ūγμu + c̄γμc) −
1
3

(d̄γμd + s̄γμs̄)
Qu

Qd
= −2

cu
v

cd
v

=
1/2 − 4/3 sin2 θW

−1/2 + 2/3 sin2 θW
= −0.58JZ

μ = cu
v (ūγμu + c̄γμc) + cd

v (d̄γμd + s̄γμs̄)

More information needed to isolate the 
isospin contribution unique to the weak 
current…

Q(0) = C1(μ)Q1 + C2(μ)Q2
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μ = cu
v (ūγμu + c̄γμc) + cd

v (d̄γμd + s̄γμs̄)

More information needed to isolate the 
isospin contribution unique to the weak 
current…

FZ∥(q2) =
3cu

V

2
Fγ(q2) + (cd

v +
cu

v

2
)∫ d4x e−iqx ⟨π+ |TQ(0)Jμ

d+s(x) |K+⟩

Jd+s = d̄γμd + s̄γμs

Absorbs u,c (UV) Residual d,s (IR) 

Q(0) = C1(μ)Q1 + C2(μ)Q2



Hadronic amplitudes

20

Nonleptonic operators decompose into isospin  ΔI = 1/2, 3/2

⟨πbπc |QΔI |Kiπa⟩ = Cia;bc
ΔI ⟨Iππ∥QΔI∥IKπ⟩

i = ± 1/2 : (K+, K0)
a, b, c = 0, ± 1 : (π0, π±)

Reduced amplitudes are functions of  
and can be expanded in partial waves

s, t

pK = pa + pb + pc
s = (pK − pa)2 = (pb + pc)2

t = (pK − pb)2 = (pa + pc)2

TIKπ Iππ
ℓ,ΔI (s) = ∫ +1

−1
dzPℓ(z)TIKπ Iππ

ΔI (s, t(z))

Recoupling + Wigner-Eckart 
+ Crossing relations

Discontinuity of nonlocal form factors from the 
hadronic amplitude and pion vector form factor

Disc[Fγ,Z(s)] ∼ ρπ(s)T1(s)Fπ(s)

One subtraction:

Fγ,Z(s) = Fγ,Z(−Q2
0 )

+
s + Q2

0

π ∫
∞

4mπ2

dt
Disc[Fγ,Z(t)]

(t + Q2
0)(t − s)

+ LH cuts



Hadronic amplitudes

20

Nonleptonic operators decompose into isospin  ΔI = 1/2, 3/2

⟨πbπc |QΔI |Kiπa⟩ = Cia;bc
ΔI ⟨Iππ∥QΔI∥IKπ⟩

i = ± 1/2 : (K+, K0)
a, b, c = 0, ± 1 : (π0, π±)

Reduced amplitudes are functions of  
and can be expanded in partial waves

s, t

pK = pa + pb + pc
s = (pK − pa)2 = (pb + pc)2

t = (pK − pb)2 = (pa + pc)2

TIKπ Iππ
ℓ,ΔI (s) = ∫ +1

−1
dzPℓ(z)TIKπ Iππ

ΔI (s, t(z))

Recoupling + Wigner-Eckart 
+ Crossing relations

Only need  amplitudes for 
 in P-wave 

Iππ = 1
K+π− → π+π− ( → Z*, γ*)

ΔI = 1/2 ΔI = 3/2

⟨0∥Q1/2∥1/2⟩
⟨1∥Q1/2∥1/2⟩
⟨1∥Q1/2∥3/2⟩
⟨2∥Q1/2∥3/2⟩

⟨0∥Q3/2∥3/2⟩
⟨1∥Q3/2∥1/2⟩
⟨1∥Q3/2∥3/2⟩
⟨2∥Q3/2∥1/2⟩
⟨2∥Q3/2∥3/2⟩

Discontinuity of nonlocal form factors from the 
hadronic amplitude and pion vector form factor

Disc[Fγ,Z(s)] ∼ ρπ(s)T1(s)Fπ(s)

One subtraction:

Fγ,Z(s) = Fγ,Z(−Q2
0 )

+
s + Q2

0

π ∫
∞

4mπ2

dt
Disc[Fγ,Z(t)]

(t + Q2
0)(t − s)

+ LH cuts



Hadronic amplitudes

20

Nonleptonic operators decompose into isospin  ΔI = 1/2, 3/2

⟨πbπc |QΔI |Kiπa⟩ = Cia;bc
ΔI ⟨Iππ∥QΔI∥IKπ⟩

i = ± 1/2 : (K+, K0)
a, b, c = 0, ± 1 : (π0, π±)

Reduced amplitudes are functions of  
and can be expanded in partial waves

s, t

pK = pa + pb + pc
s = (pK − pa)2 = (pb + pc)2

t = (pK − pb)2 = (pa + pc)2

TIKπ Iππ
ℓ,ΔI (s) = ∫ +1

−1
dzPℓ(z)TIKπ Iππ

ΔI (s, t(z))

Recoupling + Wigner-Eckart 
+ Crossing relations

Only need  amplitudes for 
 in P-wave 

Iππ = 1
K+π− → π+π− ( → Z*, γ*)

ΔI = 1/2 ΔI = 3/2

⟨0∥Q1/2∥1/2⟩
⟨1∥Q1/2∥1/2⟩
⟨1∥Q1/2∥3/2⟩
⟨2∥Q1/2∥3/2⟩

⟨0∥Q3/2∥3/2⟩
⟨1∥Q3/2∥1/2⟩
⟨1∥Q3/2∥3/2⟩
⟨2∥Q3/2∥1/2⟩
⟨2∥Q3/2∥3/2⟩

Discontinuity of nonlocal form factors from the 
hadronic amplitude and pion vector form factor

Disc[Fγ,Z(s)] ∼ ρπ(s)T1(s)Fπ(s)

One subtraction:

Fγ,Z(s) = Fγ,Z(−Q2
0 )

+
s + Q2

0

π ∫
∞

4mπ2

dt
Disc[Fγ,Z(t)]

(t + Q2
0)(t − s)

+ LH cuts

All 9 reduced amplitudes coupled in linear 
set of Khuri-Triemann equations (pion 
rescattering in  channels) s, t, u

Overdetermined from fit to 14 observables 
(4 rates, 3 linear slopes, 7 quadratic slopes) 
to all CP-allowed kaon decays

, K+ → π+π+π− K+ → π0π0π+

, KL → π+π−π0 KL → π0π0π0

Bernard, Descotes-Genon, Kneckt, 
Moussallam [2403.17570]



Discontinuity of FFs (Resonance Region)

21

P-wave amplitude vanishes at 
various (pseudo)-thresholds 

, , q2 = 4m2
π (mK − mπ)2 (mK + mπ)2

Errors from  Dalitz parameters 
negligible, theory errors from KT should 
be scrutinized (PW truncation)

K → 3π

Phase of  amplitude and pion VFF 
are dominated by line shape of  
above the semileptonic region

K → 3π
ρ(770)

In the semileptonic region, VFF phase is 
small

Only  rescatting (not ) included in KTππ Kπ



Discontinuity of FFs (Semileptonic Region)
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Chiral dynamics: Heavy to Light Decays

Thorsten Feldmann, JJ, Jaime del Palacio-Lirola 
[in preparation] 
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Heavy to Light Form Factors
For  from : form factors needed over full kinematic range Vub B → πℓν

State of the art: analytic parameterization 
with constraints from lattice at low recoil

24

⟨π+(k) | ūγμb | B̄0(p)⟩

= fB→π
+ (q2)Pμ + [ fB→π

0 (q2) − fB→π
+ (q2) ] P ⋅ q

q2
qμ



Heavy to Light Form Factors

|Vub |excl
B→π = (3.75 ± 0.06exp ± 0.19th) × 10−3

25

Also constraints at high recoil 
(light cone sum rules)

Exp + Lattice Exp + Lattice + LCSR
|Vub |excl

B→π = (3.77 ± 0.15) × 10−3

Leljak, Melic, van Dyk [2102.07233][2206.07501]

Develop an alternative / 
complementary approach to LCSR 
making use of PCAC

https://arxiv.org/abs/2206.07501


Covariant formulation of ChPT

26

ξ(x) = exp [ iπa(x)ta

fπ ]
Σ(x) = ξ2(x) → Lξ2(x)R†

ξ(x) → Lξ(x)U†(x) = U(x)ξ(x)R†

Pions appear in spinoral irreps. of . 
Corresponds to the ‘square root’ of standard CCSW 
nonlinear representation (adjoint, vector rep.)

SU(2)L × SU(2)R

Compensator field specifies coset of ChSB:
SU(2)L × SU(2)R /SU(2)V

For the standard choice , 
solution is simply 

L = R ( = V )
U(x) = V
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Rξ†]

Vμ → UVμU† + U[iDμ, U†]

Aμ → UAμU†

Dμ
L = ∂μ − i(v − a)μ

ext

Dμ
R = ∂μ − i(v + a)μ

ext

Dμ = ∂μ − ivμ
ext

Can define covariant objects with homogenous ( ) 
transformation properties under background (ext) fields

U

S =
1
2 [ξ(s + ip)ξ + ξ†(s − ip)ξ†]

P =
1
2 [ξ(s + ip)ξ − ξ†(s − ip)ξ†]

S → USU†

P → UPU†

Compensator field specifies coset of ChSB:
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For the standard choice , 
solution is simply 

L = R ( = V )
U(x) = V
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Compensator field specifies coset of ChSB:
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For the standard choice , 
solution is simply 

L = R ( = V )
U(x) = V

Standard kinetic term of chiral Lagrangian is recovered 
on expanding the exponential:

ℒχ = f 2
π Tr[AμAμ + S]

∼
1
2

∂μπa∂μπa −
1
2

m2
ππaπa

scalar spurion (mass) 



Soft-Collinear Factorization

27

ℒχ = f 2
π Tr[AμAμ + S] Aμ = −

1
fπ

∂μπata + …

Pions are derivatively coupled 
in the chiral limit ( )S → 0

ξ → {ξs, ξc}

A novel aspect of our approach is a multipole expansion of 
the chiral Lagrangian into a soft sector (s) and one or more 
collinear sectors (c)

Aμ ≃ Aμ
c + Aμ

s → {n̄ ⋅ Ac, A⊥
c , n ⋅ Ac, Aμ

s }
light cone decomp.

Vμ
s → UsV

μ
s U†

s + Us[iDμ
sc, U†

s ]
Vμ

c → Vμ
c

Vμ
sc → Vμ

sc

Ansatz: chiral vector field should transform in analogy to 
QCD, with the soft and collinear fields transforming with 
respect to a background soft-collinear field (messenger mode)

Soft: Collinear:

Vμ
s → Vμ

s

Vμ
c → UcV

μ
c U†

c + Uc[iDμ
sc, U†

c ]
Vμ

sc → Vμ
sc

Background:

Vμ
s → UscV

μ
s U†

sc

Vμ
c → UscV

μ
c U†

sc

Vμ
sc → UscV

μ
scU†

sc + Usc[i∂μ, U†
sc]

Dμ
sc = ∂μ − iVμ

sc

Messenger

Pion mass 
hyperbola



Soft-Collinear Factorization

28

To complete the analogy with QCD, introduce 
chiral Wilson lines 

Ss(x) = P exp [∫
0

−∞
dt n ⋅ Vs(x + tn)]

Wc(x) = P exp [∫
0

−∞
dt n ⋅ Vn(x + tn)]

Ss → UsSs

Wc → UcWc

The only difference is that chiral symmetry is explicitly 
broken by the quark masses, and QCD color gauge 
symmetry is exact..

.. but the spurion just sits in the scalar field , 
which is not multipole expanded (benign)

S



Leading order current

29

HQET  ChPT (only soft pions)→

q̄LΓbv = C(μ)Tr[HvΓ]ξ†

Wilson coefficient is non-perturbative, 
related to decay constant in chiral and 
HQ limits



Leading order current

29

HQET  ChPT (only soft pions)→

q̄LΓbv = C(μ)Tr[HvΓ]ξ†

Wilson coefficient is non-perturbative, 
related to decay constant in chiral and 
HQ limits

SCET  ChPT (includes collinear pions)→

𝒥(tn) = q̄cL(tn)W†
n(tn)nSn(0)bv(0)

𝒥n(ω) = C(ω; μ)𝒦n(ω)

𝒦(tn) = Tr[Sn(0)Hv(0)γ5]Wn(tn)ξ†
c (tn)

Wilson coefficient related to 
form factor
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form factor

⟨0 |𝒦n(ω) |Hv⟩ = 0
(No collinear particles 
in initial state)

But…
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HQET  ChPT (only soft pions)→

q̄LΓbv = C(μ)Tr[HvΓ]ξ†

Wilson coefficient is non-perturbative, 
related to decay constant in chiral and 
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𝒥(tn) = q̄cL(tn)W†
n(tn)nSn(0)bv(0)

𝒥n(ω) = C(ω; μ)𝒦n(ω)

𝒦(tn) = Tr[Sn(0)Hv(0)γ5]Wn(tn)ξ†
c (tn)

Wilson coefficient related to 
form factor

⟨0 |𝒦n(ω) |Hv⟩ = 0
(No collinear particles 
in initial state)

But…

The effective theory has both ChPT power counting 
(operator mass dimensions and loops) and SCET pc. 
(multipole expansion of collinear fields)

𝒦(tn) = Tr[Sn(0)Hv(0)γ5]Wn(tn) n̄ ⋅ Ac(tn) ξ†
c (tn)

O(λ0), O(1/fπ)
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Summary

31

• Towards  from inclusive B decays..


• Closer look at the fully inclusive (u+c) kinematical 
distributions


• Would be nice to implement this in a mass-independent 
scheme for HQET parameters

Vub /Vcb

• Rare decays:


• Different choices for (theory) normalization of  are 
sensitive to  (or) . Closely related to  issue


• “Irreducible” hadronic effects in rare kaon decays within reach 
(off the lattice / complementary to lattice)

B → Xsℓℓ
Vcb Vub Vub /Vcb

• Exclusive : chiral extrapolation for  form factors


• Demonstrated soft-collinear factorization of ChPT in the covariant representation


• The lore that (hard pion ChPT = standard ChPT) seems to work at one loop


• Generalization to baryon decays, nonleptonic decays ( ), QED corrections

Vub B → π

B → ππ



Backup
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Hard Pion ChPT
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QED: Charged currents
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Bigi et. al. [2309.02849]



Asymmetries in b->sll
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Kinetic mass 
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