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Motivation

® We are looking for physics beyond the Standard Model (BSM)

® A great way to look for it is via Charged Lepton Flavor Violation (CLFV)

[Calibbi, Signorelli, 1709.00294]

@ It is highly suppressed in the SM

@ If it were observed, it would clearly point to BSM physics

@ There are good chances that it might be observed very soon!

@ In more detail: the most sensitive channels for CLFV are those involving a muon
[Davidson, Echenard, 2204.00564]

® In particular, the processes in which the muon interacts with matter are very relevant:

@ After losing energy by photon exchange, the muon becomes bound to the nucleus, and

forms a bound state: muonic hydrogen, 'LL‘
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Motivation

® After the muon reaches the 1S state, /1 has three possible fates:

3) Nuclear capture:
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Motivation
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1) Muon conversion:

\.

@ Provides one of the most stringent limits on CLFV

< 7x1071 at 90% CL
I'(pg — v, N') # 2t 904

[SINDRUM 1II, Eur. Phys. J. C 47 (2006) 337]

® The current best limit is [2,c 1=

@ This limit is expected to be soon improved by four orders of magnitude
[Mu2e collaboration, 1501.05241] [COMET collaboration, 2308.14275]

@ We should thus investigate muon conversion— as well as its main background, muon DIO
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2) Muon decay-in-orbit (DIO):




Motivation

@ These spectacular experimental advances should be accompanied by theoretical progress.
[Rule et al, 2109.13503]

Many directions have been considered; e.g.: ... s,ui0n Uessla 220300 o]
Cirigliano et al, 2203.09547]

Hoferichter, Menéndez, Noél, 2204.06005]

&

improvement of wave functions

Haxton et al, 2208.07945]

[
[
[
dependence on atomic number [
[Borrel, Hitlin, Middleton, 2401.15025]
[
[
[
[

&

analysis of spin-dependent structures

@

Noél, Hoferichter, 2406.06677]
Haxton et al, 2406.13818]

Heinz et al, 2412.04545]

® What about precision?
Kaygorodov et al, 2506.02416] [Szafron, Czarnecki, 1505.05237]

@ Some work has been done in DIO, but not in a systematic fashion [Szafron, Cramecki, 1506.00975]
[Czarnecki et al, 1406.3575]
@ This is precisely my focus. The question is:

® We need a framework. We could start with a BSM model. But this has two defects:

@ It is a particular model (thus preventing a model-independent analysis)

&

It leads to large logs, of the form log(A/My), with: A > My ~ 20 GeV,

@ An Effective Field Theory (EFT) is a stone that kills these two birds (and it 2 fewpiome!
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Motivation

® How exactly does an EFT kill the bird of large logs? By loop matching and RG running

Textbook example: Schwartz’s section 31.3, b — ctd in the SM

{\\\

&

b:\‘\\

We calculate the matching at tree-level...

@ ... as well at loop level .

:>01=GF[

&

We want to know C; (@ = mp). But that still leads to the undesired large logs

@ The solution has two simple steps:

® We start by performing the matching with u = mw

® We calculate the RGEs, and run down the result: C1(mp) = U(mw, mp) C1(mw)

where U (mW, mb) resums the large logs



Motivation

2 m2
® The EFT allows to create single-scale-objects log ,u_2 out of multiple-scale-objects, log —2b
+u My Wz

By setting 1 equal to the scale of the one-scale object, we eliminate the large logs
® The EFT usually considered for muon conversion is a form of LEFT: Low-Energy EFT
@ One takes the SM d.o.f. and integrates out all those with mass M 2> my,

7 Though muon conversion has a bound muon, we start with the free scattering uN — eN

¢ The current can generically be written as

4G o . 4
= —TF Z {CSX ePxpp NN + CpxePxuNvysN + Cyx ey*Pxpu Ny N
2 xTI'r

B S L
+ Cax &Y*Px i NyoysN + Cperx €y Pxpt (N 0 nivsN) + Crx &0 Px NUaBN} S 1 (C



Motivation

@ 1 shall focus on the so-called coherent conversion, where the current reduces to:

4G L -
J = —TF Z {CSX ePxu NN + Cyx evaPX,unyaN}
2 X=L,R

(a generalization to the incoherent case is straightforward)

® At first sight, LEFT is great: it solves our log(A/My) problems
® A closer look, however, reveals that it is still plagued by large logs!

@ In fact, in LEFT, there are still many scales in muon conversion:

1.  the nuclear mass My ~ 20 GeV

| omniiLERe 2. the muon mass m, ~ 105 MeV ~ E.
i aluminium, i

e 3.  the muon momentum || ~ Zam,, ~ 10 MeV
"""""""" 4.  the electron mass m. ~ 0.511 MeV

@ We also need to consider a photon-energy cutoff AE = m,, — E.. We shall take AE ~ m,

@ Then, My > m, ~ E. > Zam, > (Za)*m, ~ m. ~ AE



MOtiVEItiOH Investigating EFT Factorization Results Outlook

@ Result: a mess of large logs!

x Z2?alog MLN,

@ There is no p that avoids large logs

@ The different scales are intertwined:

@ LEFT is not enough!

20/06/2025 Duarte Fontes, [TP 10



Motivation

® The task is thus to build a proper EFT framework for precision calculations in muon conversion

® We will start by investigating the relevant scales: what physics describes each of them?

® This will allows us to build a sequence of EFTs, the last of which is finally free from large logs

@ Instead of integrating out just the scale my; (like the textbook),

we need to integrate out also My , and then m,, , and then...

@ The goal is always: to find single-scale-objects — factorization
— so that the final decay width looks like:

Lypp—en o< Fi(p/Mn) Fa(p/my) Fs(p/(Zamy)) Fa(p/me) Fs(p/(meAE/my,))
X Ur(Mn, pe) Ua(my, pc) Us(Zamy, pie) Us(me, pe) Us(me AE /my,, ic)

Each one of the F functions is free from large logs, since it is a single-

scale—object. By calculating all RGEs U, we can run all functions to a common scale .

G STERGE L L R T T TG R N SR I

@ The result is the way to "l calculate precise prea’ictions for muon conversion.|
)

® My results will focus on the QED corrections (with no powers of Z)
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Motivation

® Why QED corrections? Because of the shape of the spectrum. In more detail,

@

&

Suppose the LO rate vs. electron energy in muon

conversion to be:

Then, higher order corrections have two effects:

1) Shifting the absolute value of the rate:

® Crucial for BSM interpretations once

muon conversion has been detected

® Depends on nuclear effects

A FuH —elN

2) Changing the sha.pe of the rate:

® Depends QED effects only

® Crucial for detection of muon conversion
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Motivation

® An advantage of the EFT method is its universality
@ The EFT framework factorizes the decay rate into single-scale objects

@ Many of these objects are the same in different bound muon decays

@ So, the framework applies not only to direct muon conversion, but also to:

® Photonic conversion ® ug > eNX

p P
€
u Yy 2 < I e I e
R o — ---
P k K 2
N N N N N N
N N

N ol A 4

(®) (i)

@ The higher—order corrections are essentially the same in all these processes

® So, our EFT framework applies to a vast class of bound muon decays

@ In this talk, I will focus on direct muon conversion
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Investigating

@ Kinematics of direct muon conversion:

p:<\/mi+|ﬂ2aﬁ>7 p/:(Eeaoaoa_\/Eg_mg)a

k= (My,0), ¥ = (/MR + B2, 7,

with: [Pl = O(m,Za),  |F|=0(m,) = O(E,).

® We define two expansions: the recoi/ expansion and the power expansion
4

_ = = = = _ = = = = =

I

Ap o~ 20005 1 A~Za~,[Lx0l !
My ‘\L:::::::T‘i:::j»
® We also define ny =(1,0,0,1), n_ = (1,0,0,—1), such that:
/ mg /
n-p = oo + O\, nyp =2E.+ O(\)

® In what follows, a 4-momentum [ may be written in two ways:
2

@ Resorting to the light-cone basis: | = (nl,l,,n_I). Example: p = (ZEG, 0, %)

@ Separating time and space components: [ = (lo,l_j
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Investigating
[Kuno, Okada, 9909265], [Kosmas, Kovalenko,
® The nucleus as dynamical fleid Schmidt, 0102101], [Cirigiiano et al,
0904.0957], [Davidson, 1601.07166],
@ The literature usually takes either nucleons or quarks as fields [Bartolotta, Ramsey-Musolf, 1710.02129], [Rule

@ That is reasonable for energies much higher than those of 1t and € ! nucleus fields do not even

_____________________________

@ In my case, I consider the nucleus field because:
® | focus on coherent conversion
® | am especiaily interested in the shape of the spectrum, and not in its normalization

® | focus on the scales of the M and €, much smaller than the nucleus mass

@ The nucleus is thus a spectator, so that we treat it as point-like particle with mass My
[

» is just a source of electron field

@ My is a placeholder for a proper nuclear description, whose essential elements are:

® The nucleus must be first matched onto nucleons, using Y PT. At LP, nucleus can be seen as

the coherent sum of protons and neutrons, whose effects involve their densities in the nucleus

® The nucleons must be matched onto quarks, involving non—perturbative physics. This can be

done using nucleon form factors

@ Corrections to the point—like assumption can be accounted for with form factors

15



Investigating

® To understand the physics, we resort to the method of regions [Bencke, Smimov, 9711391]

@ This identifies the different scalings of the loop momentum that yield a non-vanishing

contribution to the expanded result of the integral

® When we apply it to muon conversion, we find:

virtual corrections

hard-nuclear

real corrections

|

potential hard, collinear
Mode name Abbreviation Momentum scaling Virtuality
Hard-nuclear (hn) (1,1,1)My M%
Hard (h) (1,1,1)m, mi
Semi-hard (sh) AL A, )my, A2 mi
Hard-collinear (hc) (1,2 ,2%)m, 2?2 mi
Potential (p) (A2, \) my, A2 mz
Soft (s) (A2, 02, 02) my, % mi
Collinear (c) (1,22 XY m, Atm?
Soft-collinear (sc) (A2 X1 N8 my, A8 mi

The photon emissions

fI'Ol’l’l the nucleus legs

5
=n)
S
=8
™
=
c
o,
a
c
175}
=
Y
9]
n

________________________
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Investigating
‘®

® Muon conversion, , thus involves 5 scales: fthn > pn > prsn > s > pse

v

hard-nuclear scale:

® What physics is involved? And what EFT techniques?
soft-collinear physics

- Soft Collinear Effective
Theory (SCET)

- boosted HQET (bHQET)

a1/
®

v

bound state physics -
- Non-Relativistic QED (NRQED)
- potential NRQED (pNRQED)

heavy-quark physics
N - Heavy Quark Effective Theory (HQET)
17
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il

® We can now build a proper EFT framework:

/",

MNN Hhn =

Zozmu ~ sh =

Me—— ~ MHsc =

EFT

IT

III

IV

Radiation

La(Atm)

[,A(A(h))

/CA (A(sh,hc))

EA (A(s,sc))

EA(A(SC))

Nucleus

E(msffo) (W), A(hm)

Dirac
»CHQET( B A(h))

EHQET( (Sh) A(sh))

LHQET (hg\?) ,Al:59))

Luqer(hy,A)

Muon

E(mzo) (urm), A

Dirac

m=#0
‘C](Dir;:c ) ('Lb(h)7 A(h))
LNrQED (p®), AGM)

L,NRQED (\p(p)7 A(S’SC))

‘CpNRQED (\p(p), A(SC))

Electron

E(mZO) (ehm), AR

Dirac

LG (el A
LsceT, (€7, Ahe#)

LscrTy (69, A©)

Louqer (R, AG)

@ For each EFT, we write the Lagrangian, the current, the matching and the RGEs.

18
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|
e T LA e ) LG A) D A
The Lagrangian is:
O - IR L O (), r(1),LR E(I) LR EE\I,)’LR +£S),LR + LOLR
with
,CS)’LR 4Fl5};n)Fuu(hn) £§\I[)7L =4 N(hn)( w(h”) MN)N(hn),
Lg),LR - la(hn)zﬁ(h”)lu(hn)’ EéI),LR - é(hn)ilb(h”)e(hn).
We have a very clear counting. Example with the muon mass:
(2m)* L —my, + ic

SO, H(hn) s Mif/2 and ﬂ(hn a (hn) ~ MN Therefore’ (hn) (hn)m ~ MNmM ~ MN)\R

20
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hn (m7$0) n n (m:O) X0 N (m:()) 1%1) mn
#h”-_ I ‘CA(A( )) EDirac (N(’ )’A(’ )) LDirac (“(} )’A(} )) EDirac (e(' )’A(l ))
The current is:
AG R

e {Cg))(OfgI}( el C‘(}}(Og;(} +he,

V2

with

@g;( = N () g(hn) po ) (hn) OS)X = NOm)y NOn) glhn)y p ()

This is the starting point of my analysis

2l
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I1
I -~ II La(A®)  Luqer(hy’,A™) sl OWION LI=0) (¢(h), A}
The Lagrangian is:
£ = £ADLP 4 o), LADLE SRy £ ™ + Lt gD LR
with
Egl),LP i _iF/Sﬁ)FW/(h)’ ESJIV),LP 2 Bg\?)iv _ D(h)hg\ffb), v =(1,0,0,0)
ELII),LP i ﬂ(h)(zﬂ(h) w mu)u(h), E‘(BII),LP e’ é(h)ilD(h)e(h).
The current is such that:
CsxOsx +OyxOpy =05 05", with 0% =hiny) e Py

and the matching is:

Za M3
C;I)(:uhn) x CéI;( (L) + CX(/I;Z' (tnn) + o 2 Cg;( (#nn) In TN = 18 CSS’I))( (knn) +7 C‘(/I;Z' ('uh”)]

2 Hhn
s M?
These loops proportional to Z cannot be calculated perturbatively e 4—:0 éI)){ (thn) (3 In /JTN = 2)
hn

(they should be replaced by a generalization of EFT I, with non-perturbative matching)

22
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I1

Dirac Dirac

" i : La(a®)  Luger(hy’,A™) L7000, 40) Lirme) (€™, A1)

Such loops belong to the nuclear effects. For our purposes, it is enough to use nuclear form factors
In practice, we take the hard scale as the starting point of a perturbative description.

That is, we take C’%I)(,uhn) as the input parameters of our analysis. Their RGEs are:

O (10, €0) ) = =250 (1, al). €O ) ) + O(e).

The nuclear effects (i.e. terms with Z) ends up cancelling in the running

______________________________________________________________________________________________________________

|
| As suggested, nuclear effects will piay a crucial role in a possible interpretation of a muon

' conversion signai in terms of a BSM model. Yet, my focus here is not on such interpretation,

but on the shape of the signai for muon conversion rate

23



il
[11

“*"“‘ 11 La(ACRP)) Lhaqrr(RR™,ACM)  Lnrqep (¥, AEM) LsceT; (£, Ahe))

The Lagrangian is:
L) _ ,(ID,LP OO ,UD,LP _ Egﬂ),LP +£%IJIVI),LP +£$H),LP _|_£((3HI),LP +£éIH),LP

with
1 1 = (sh) . s
ESII),LP * _ZFﬁh)FW(sh) Y ZF'LEZC)F’UJV(}LC)7 ggfvl)’LP ash hgvh)w - D(smhg\,h),
N (sh)\2
ESII),LP i} Qz(p) (Z.U . DGR 4 (172< )) ) w(p), L-gIII),LP i é(sh)up(sme(sh)’
my,

.3 7
EéHI)’LP = S(h ) T+

= in_plets)lypho__ 1 <hc>] £he)

) o)

=in_0—e|n_A")(z) + n_A® (z_)

The matching condition is: C&I,I)(’)g?) (0) = /dt CQH) (t) Ogﬂ) (e

with: Ogn) (1) = i_zf,h) (o)hg\jh) (0) [g(hc)W(hc)] (tny ) Px Y. M1 (0)yP) (0)

.0 00
<W(hc)(a;) = exp [ieQ / dsny AR (z + sn+)] > (Yé‘gh”(x) = exp {ZQC"/ dsn_ AW (z + sn_) e“} >

0

24
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“*”‘\‘ 1001 La(AGMR))  LhuqrT (R, AEM) LNrQED (»7), AGM) LsceT, (69, Athe®))

Defining the Fourier transform as /dteim”?/ ngn) = C;II)(ner', m,,), the matching is:
IT1 11
ng )(2Eeamu;ﬁbh) — C&( )(Nh)H(2Eeamu§Uh)a

where I define H to be the hard function, given by:

man (192350) ;
Q my, Hh H, : My
HOE ) = 1— — g ol o S B QL 7 |||

(28, mu; in) 47r{ AE, — 2m, n(mu>n<4E§mZ> 12( 2Ee)

2E,.m? 2F. In <%> 2
+1n2< . “>+ AR | LT

03 e b
The RGEs are:

2F,
—MC“H (2B, my; 1) = [rg{gg, log ( 5 ) o <IH>} C™ (2E., my; ),
with: .

cusp

25
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I11
fhsh ‘\‘ 11 La(ACnH)  LaqeT(hy", AM) LNRQED (v, ALM) LsceT, (¢, Alhe2))

Finally, the soft modes in DR decoupled via:

c(hc ~(hc s c —(3) hc

i) = B AGUET) e @)=V, ()5 (@),
with:

Y.t (2) = exp (zQe dsu- A® (x4 su) e_€5> :
0
7 O
) = exp zQe dsu - A® (z + su) e“) .
So,
(II1),LP _ z(hc) _+ (he) (he) 1 (hc) (hc)
L — 9 5 [m D\ + iy —. n2 D) £(0)

and

0KV(t) = AR (O) A 0) [€57W 0] (i) P YT XM 00 (0),

26
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IV
" + 2 La(A®))  Luqer(hy’,A*)  Lpnrqep(¥7,A9)  Lscrry (€9, A1)
The Lagrangian is:
Ve @) o E(IV) B2 it (’)( ) E(IV),LP S £§V),LP _|_£§LI;/),LP _{_E((gl\/),LP _|_£$V),LP _|_£§IV),LP
with:
1 7.8) - s+sc S (s S STS8C s
E(IV) LP _ 4F,LSSV)FMV(S) ES;’XLP N hg\;)’w . pls+ )hgv)a LgIV),LP _ & )(UD( +sc) me)e( ),

—

v2
2my,

£$,\QJ;LP £ \i;(p)(x) (iv ) D(s+sc)($0) 4 ) p (P) (z) + /d37° B}i)(a:)hE? (x)V(F)‘IJ(p) (z + 7#)\11(19) (z +7),

L g(M; lm ) n+D(C)<w(C) 6)15(0)’

where:

=
DI+ (0) = B, + Qe [A;;> (5) Ly - AGO <x+>7“] ,

Za Do 212 + 1
V B 1 e d —2merx 2_1
=22 (1422 [ oL

r 3T

AT



il
IV

[ + IV £A(A(5..s‘(3)) EHQET(hg{;),A(S'SC)) ﬁpNRQED(\I,(p),A(-*‘-N(‘)) ESCETII(f((:)aA(C))

The matching condition is: /dt ngﬂ) (t) Ogn) i= /dt CEV) (1) Ogv) (1),

with (s " i
O () = Y (0)RF (0) [EOW)| (tny) PxY,D1w® (0)

0
<W(C)(],‘) = exp [YE’Q/ dsny A® (z + 5'”+)] )
" e (1v) _ Y (1D) .
The matching is trivial: C (2F., mMy,; Thli= Ol (2%, My, )

and so is the running: Cgv)@Ee, i = ), CQH)QE& U

The remaining soft modes in LIV)IF can be decoupled via:

Ao O D T o
Then,
oL (1) = 0,(0) 010 (),
with:

Do) = [ A e R ORI O IO OB R (el o))

v
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Vv
" + b La(A9)  Luger(hy,A) LpNrQED (¥P,469)  Lygqer (RS, AC)
The Lagrangian is:
with:
Y LP 1 'SIC v(sc V),LP S sc S
E( ) 4F/EI/)FHJ (sl E;LN)M h() iv - D )(x+)h§\,?“,

=92
LOEP — 50 (2 4 - D) () + v
‘ QmM

) Ui (@) + / &r R ()b @)V (AT (@ + 7T (= + ),

E%\@/),LP N Bgsc) ’i’Ue . D(ESC) h((3$C)'

P A 2w s
= Lau + Qe (n2)/"fl+ . A(gp)(:L+) Ve = (m—:7 07 27;01“)

The matching condition reads:

0.0) [ dt T OOL 1) = 0.(0) [ dCE WemerstCp(im.) O (0)

with
Og) h(s) hg\i)“ thC)PX\If(??. (This operator is now local)

29



il
\Y

Msc ‘\' Vv L4(AGE) Luqet (A, A69)) LoNrQED (TP, Al59)) Loaqer (A9, AG9)

2
oy ) s e R pRBICERTE. 7 (| e R
Crn(me; ps) +47T{ n (u) n(us)+12+ }

O (15) = CF (2m,, ;1) o (e 1)

The matching is:

and we define:

We simplify the analysis by choosing lts to be our ultimate scale, to which everything is evolved.

In this case, we do not need to calculate the RGEs here

The soft-collinear modes can be decoupled via:

B(S) - Bg\i) ‘ YTEiC)Tv \Tf<p> < \I,(p) YngiC)T? h (T h(S) Y(SC)T

S
i) = 75;0)%5) e P — 75155%1,(19) ’ hs) — ?fjiC)h((jC),
The)
G SO0 @Y
with
Ouelz) = [VENTLIVENTL (@), Oy = Fivtooyhivton) FetoyPx ¥ oy

30
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\Y

- -- Vv La(AC))  Luqer(hy,AC) LoNrQED (27, A9)) Loaqer (A9, AG9)

The Lagrangian after this reads:
LVHEE e T T S
= 62 7 (s S T — —
LI — §®) () (w R _Qm) v (2) + / Br b (@) @)V (@TP) (2 + PP (x4 7),

LD ) g plee),

We achieved factorization at LP: the different sectors do not interact at LP, to all orders in «

31



Factorization
This allows us to describe bound muon decays in a consistent and improvable way

We consider the amplitude for muon conversion, with final arbitrary radiation X’ :
e <e<SC)N(S>X’J(O)‘ MH>

where |pg) = ‘H(p>N(S)> and the current is:

_4AGF

J(0) = == 0500000k 0), Oucle) = Ygfﬁ?f;ﬁ ;:cwm (@)
OA(XY) :BE\;) hg\*) h Z)PX\I’(F)

Because the real emission has two different modes (soft and soft-collinear), we have:

) = |x) @ |1*9)

Then, the matrix element is completely factorized:

. 4G e
ZM,uH—mNX == \/—F <X< )

< (69 RS2 (0)

OSC(O)’0> <x<8>

)

0,(0)[0) I hll

BS00) (0000 (0) | Px®E) (©)] |psar): WU‘

00) N((00) 00

(87 (6
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Factorization

® The decay width is:

dd 1k’ dd—l / dd— D
/(27T)d5(d) (pMH I k _ZprL) H i |M,LLH—)6NX 2-

F/JH—>€NX o

2M,, 2m)a-12My (27)32E, L1 (27)3-12E y;

@ The factorized NLO differential rate is:

| T S e
r=1 h e ns WCOH| |H(2muvmwﬂh)| |Un (o, 115) |2 |C (menus)|2
"Iy TR kA

/ dE,. / dE,6(AE — E,. — E,JS(E,)SC(E,.)
# 2G2m 2
Fo= ——— |thschr. (0 |Lo (‘CLLO‘ +‘CRHI)JO >

‘wSChr( )‘2 i 04
[ . v

S(Es) =) 8(Es — Ex»){0101(0)|X))(x(]0,(0) |0)
X (s)

SC(Ese) = Y 6(Ese — Exo)(0]01,(0)| X)) (X0, (0) |0)

X(sc)

|¢corr =
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Results

dar

I dE!

@ To discuss results, we consider the cumulant, "™ = /

¢ At LO, ur

— §(E") , so that the LO cumulant is a horizontal line — trivial shape

e

@ At NLO, we consider two approaches:

® The fixed-order (FO) one: no RG running, and all scales set to the same generic scale
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Results

® The resummed result: scales are set equal to the canonical scales
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For the resummed result, it is convenient to consider different approximations.
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We assume the logarithm counting:
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We also consider NLL’, which includes the finite remains of the FO approach

N

The generic scale of the FO approach is set at the hard scale, and a proper Phenomenological

investigation is left for future work

¢ Without real emission, E, = E™* :=m, . A non-zero emission implies FE, = Emax _ AF
€ e H e e

We want to study AE ~ m,
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@ We find:
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t Nota bene: the absolute value

of the rate will matter for
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® The FO result leads to a correction of around -9% relative to the LO result

® The resummed results show a perturbative character, such that NLL’ prime is close to FO

® Is the EFT framework worth it? Yes. Besides addessing the large logs,

@ Is systematically improvable

@ Provides Feynman rules

@ Provides proper QFT definitions

@ Is not restricted to QED

@ Has a transparent and homogenous counting

@ Avoids double counting

@ Allows the derivation of all-order theorems
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Outlook

CLFV might be observed soon in muon conversion. But precise predictions are challenging
I developed a consistent (EFT) framework for precise predictions for bound muon decays

Due to the presence of both bound state and collinear physics, the framework is not trivial:
it involves a sequence of 5 EFTs, comprising HQET, NRQED, pNRQED, SCET and bHQET,

as well as many different modes
(free from large logs!)

The final result is a factorization theorem, composed only of single-scale objects

Besides the theorem, I derived the one-loop matchings and runnings for muon conversion

This allowed precise theoretical predictions for the upcoming experiments Mu2e and COMET

Several future directions:

&

Determine the shape for DIO. Do phenonomenology for DIO and conversion

&

Explore nuclear effects and finite-nucleus size corrections

&

Consider particular BSM models, perform the complete matching, find absolute values

&

Explore recoil/power corrections
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