Gauge Theory Bootstrap: Pion amplitudes and low energy parameters

Yifei He

Ecole Normale Supérieure, Paris

Seminar at University of Vienna, 17/12/2024

Based on: [YH and Kruczenski, <u>Phys. Rev. Lett. 133, 191601</u>, <u>Phys. Rev. D. 110, 096001</u>] [YH and Kruczenski, <u>arXiv: 2403.10772</u>]

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $\,SU(N_c)\,$ with $\,N_f\,$ massive quarks $\,m_q\,\ll\,\Lambda_{
m QCD}\,$

confinement & chiral symmetry breaking

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $~SU(N_c)~$ with $~N_f~$ massive quarks $~m_q~\ll~\Lambda_{
m QCD}~$

confinement & chiral symmetry breaking

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \ N_f \ m_q \ \Lambda_{
m QCD}$

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $\,SU(N_c)\,$ with $\,N_f\,$ massive quarks $\,m_q\,\ll\,\Lambda_{
m QCD}\,$

confinement & chiral symmetry breaking

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \ N_f \ m_q \ \Lambda_{
m QCD}$

What is the low energy physics?

Physics of Goldstone bosons

pseudo-Goldstone bosons dominate the low energy physics

Physics of Goldstone bosons

pseudo-Goldstone bosons dominate the low energy physics

e.g.
$$N_f = 2$$
 pions $\pi_0 = \pi^3 \quad \pi_{\pm} = \frac{1}{\sqrt{2}} (\pi^1 \pm i\pi^2)$
very low energy
effective Lagrangian
(lowest order): $\mathcal{L} = \frac{f_{\pi}^2}{4} \{ \operatorname{Tr} (\partial_{\mu} U \partial^{\mu} U^{\dagger}) + m_{\pi}^2 \operatorname{Tr} (U + U^{\dagger}) \} \quad U = e^{i \frac{\vec{\tau} \cdot \vec{\pi}}{f_{\pi}}}$
 $\mathcal{L}_2^{2\pi} = \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^2 \vec{\pi}^2 \quad \mathcal{L}_2^{4\pi} = \frac{1}{6 f_{\pi}^2} ((\vec{\pi} \cdot \partial_{\mu} \vec{\pi})^2 - \vec{\pi}^2 (\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi})) + \frac{m_{\pi}^2}{24 f_{\pi}^2} (\vec{\pi}^2)^2 \quad \dots$

The EFT approach

non-renormalizable, add new terms with unknown coefficients:

$$e.g. \qquad \mathcal{L}_{4} = \frac{l_{1}}{4} \left\{ \operatorname{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] \right\}^{2} + \frac{l_{2}}{4} \operatorname{Tr}[D_{\mu}U(D_{\nu}U)^{\dagger}] \operatorname{Tr}[D^{\mu}U(D^{\nu}U)^{\dagger}] \\ + \frac{l_{3}}{16} [\operatorname{Tr}(\chi U^{\dagger} + U\chi^{\dagger})]^{2} + \frac{l_{4}}{4} \operatorname{Tr}[D_{\mu}U(D^{\mu}\chi)^{\dagger} + D_{\mu}\chi(D^{\mu}U)^{\dagger}] \\ + l_{5} \left[\operatorname{Tr}(f_{\mu\nu}^{R}Uf_{L}^{\mu\nu}U^{\dagger}) - \frac{1}{2} \operatorname{Tr}(f_{\mu\nu}^{L}f_{L}^{\mu\nu} + f_{\mu\nu}^{R}f_{R}^{\mu\nu}) \right] \\ + i \frac{l_{6}}{2} \operatorname{Tr}[f_{\mu\nu}^{R}D^{\mu}U(D^{\nu}U)^{\dagger} + f_{\mu\nu}^{L}(D^{\mu}U)^{\dagger}D^{\nu}U] \\ - \frac{l_{7}}{16} [\operatorname{Tr}(\chi U^{\dagger} - U\chi^{\dagger})]^{2}$$

The EFT approach

non-renormalizable, add new terms with unknown coefficients:

$$e.g. \qquad \mathcal{L}_{4} = \frac{l_{1}}{4} \left\{ \mathrm{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] \right\}^{2} + \frac{l_{2}}{4} \mathrm{Tr}[D_{\mu}U(D_{\nu}U)^{\dagger}] \mathrm{Tr}[D^{\mu}U(D^{\nu}U)^{\dagger}] \\ + \frac{l_{3}}{16} [\mathrm{Tr}(\chi U^{\dagger} + U\chi^{\dagger})]^{2} + \frac{l_{4}}{4} \mathrm{Tr}[D_{\mu}U(D^{\mu}\chi)^{\dagger} + D_{\mu}\chi(D^{\mu}U)^{\dagger}] \\ + l_{5} \left[\mathrm{Tr}(f_{\mu\nu}^{R}Uf_{L}^{\mu\nu}U^{\dagger}) - \frac{1}{2} \mathrm{Tr}(f_{\mu\nu}^{L}f_{L}^{\mu\nu} + f_{\mu\nu}^{R}f_{R}^{\mu\nu}) \right] \\ + i\frac{l_{6}}{2} \mathrm{Tr}[f_{\mu\nu}^{R}D^{\mu}U(D^{\nu}U)^{\dagger} + f_{\mu\nu}^{L}(D^{\mu}U)^{\dagger}D^{\nu}U] \\ - \frac{l_{7}}{16} [\mathrm{Tr}(\chi U^{\dagger} - U\chi^{\dagger})]^{2}$$

 χ PT: unknown coefficients determined from fitting with experimental data

The EFT approach

non-renormalizable, add new terms with unknown coefficients:

$$\begin{aligned} \mathsf{e.g.} \quad \mathcal{L}_{4} &= \frac{l_{1}}{4} \left\{ \mathrm{Tr}[D_{\mu}U(D^{\mu}U)^{\dagger}] \right\}^{2} + \frac{l_{2}}{4} \mathrm{Tr}[D_{\mu}U(D_{\nu}U)^{\dagger}] \mathrm{Tr}[D^{\mu}U(D^{\nu}U)^{\dagger}] \\ &+ \frac{l_{3}}{16} [\mathrm{Tr}(\chi U^{\dagger} + U\chi^{\dagger})]^{2} + \frac{l_{4}}{4} \mathrm{Tr}[D_{\mu}U(D^{\mu}\chi)^{\dagger} + D_{\mu}\chi(D^{\mu}U)^{\dagger}] \\ &+ l_{5} \left[\mathrm{Tr}(f_{\mu\nu}^{R}Uf_{L}^{\mu\nu}U^{\dagger}) - \frac{1}{2} \mathrm{Tr}(f_{\mu\nu}^{L}f_{L}^{\mu\nu} + f_{\mu\nu}^{R}f_{R}^{\mu\nu}) \right] \\ &+ i \frac{l_{6}}{2} \mathrm{Tr}[f_{\mu\nu}^{R}D^{\mu}U(D^{\nu}U)^{\dagger} + f_{\mu\nu}^{L}(D^{\mu}U)^{\dagger}D^{\nu}U] \\ &- \frac{l_{7}}{16} [\mathrm{Tr}(\chi U^{\dagger} - U\chi^{\dagger})]^{2} \end{aligned}$$

 χ PT: unknown coefficients determined from fitting with experimental data

in principle should be computed from UV gauge theory

Strongly coupled physics

Strongly coupled physics

Strongly coupled physics \rightarrow Gauge Theory Bootstrap

Strongly coupled physics \rightarrow Gauge Theory Bootstrap

theoretical/numerical computation, not using experimental scattering data as input

Gauge Theory Bootstrap: summary

Gauge Theory Bootstrap: summary

look for amplitudes/form factors that: 1, satisfy generic consistency conditions (analyticity, crossing, unitarity) 2, match low energy behavior (chiSB) and high energy (pQCD)

Gauge Theory Bootstrap: summary

look for amplitudes/form factors that: 1, satisfy generic consistency conditions (analyticity, crossing, unitarity) 2, match low energy behavior (chiSB) and high energy (pQCD)

Analyticity+Crossing+Unitarity:

S-matrix bootstrap nonperturbative parameterization

) modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016&2017] $\langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$) Crossing A(s, t, u) = A(s, u, t) Analyticity cuts s, t, u > 4

$$m_{\pi} = 1$$

s + t + u = 4

 $\pi_d(p_4)$

 $\begin{array}{l} \text{modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016&2017]} \\ (p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc} \\ (p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc} \\ (rossing A(s, t, u) = A(s, u, t) Analyticity cuts s, t, u > 4 \\ m_{\pi} = 1 \\ nonperturbative parameterization encoding Analyticity and Crossing: s + t + u = 4 \\ \end{array}$

$$A(s,t,u) = \frac{1}{\pi^2} \int_4^\infty dx \int_4^\infty dy \left[\frac{\rho_1(x,y)}{(x-s)(y-t)} + \frac{\rho_1(x,y)}{(x-s)(y-u)} + \frac{\rho_2(x,y)}{(x-t)(y-u)} \right] + \text{subtraction terms}$$

parameters: $\{\rho_{\alpha=1,2}(x,y),\dots\}$ numerics: discretize $\{\rho_{\alpha,ij},\dots\}$ bootstrap variables

unphysical region $f_{\ell}^{I}(0 < s < 4)$ real linear functionals of bootstrap variables elasticity phase shift

Bootstrap methods for nonperturbative computations

bootstrap method: solve the variables satisfying these constraints

Symmetry+Analyticity+Crossing+Unitarity

bootstrap variables { $\rho_{1,2}(x,y),...$ }

Space of generic bootstrap solutions

Bootstrap maximization \rightarrow nonperturbative computations

maximization \rightarrow non-perturbative numerical computation of scattering amplitudes

each boundary point: an extremal numerical amplitude

Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude: $A_{\text{tree}}(s,t,u) = \frac{4}{\pi} \frac{s - m_{\pi}^2}{32\pi f_{\pi}^2}$ linear in s [Weinberg, 1966]

good in the unphysical region (very low energy) $0 < s, t, u < 4m_{\pi}^2$

Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude: $A_{\text{tree}}(s,t,u) = \frac{4}{\pi} \frac{s - m_{\pi}^2}{32\pi f_{\pi}^2}$ linear in s [Weinberg, 1966]

good in the unphysical region (very low energy) $0 < s, t, u < 4m_\pi^2$

S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ **S2:** $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$

good in unphysical region (very low energy) $0 < s < 4m_{\pi}^2$

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

10

S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ S2: $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$
numerically
requires p.w. in the bootstrap match the tree level p.w. in unphysical region
 $f_0^0(s) \simeq f_{0,\text{tree}}^0(s)$ $f_1^1(s) \simeq f_{1,\text{tree}}^1(s)$ $f_0^2(s) \simeq f_{0,\text{tree}}^2(s)$ $0 < s < 4m_\pi^2$
constraints on bootstrap variables

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

S-matrix/form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & o \end{pmatrix} \succeq 0$ state created by UV local operator

S-matrix/form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & o \end{pmatrix} \succeq 0$ state created by UV local operator S $|_{ ext{out}}\langle p_1,p_2|\mathcal{O}(0)|0
angle=F(s)$ analytic function of s 2-particle form factor: F(s) $F(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s} + \text{subtractions}$ spectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$

S-matrix/form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$ state created by UV local operator S $\sum_{\text{out}} \langle p_1, p_2 | \mathcal{O}(0) | 0 \rangle = F(s)$ analytic function of s 2-particle form factor: $F(s) = \frac{1}{\pi} \int_{1}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s}$ +subtractions F(s)spectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$ bootstrap variables: $\{\rho_{1,2}(x,y),\ldots,\operatorname{Im} F(x),\rho(x)\}$ allow connection with UV theory

Current correlators from the UV gauge theory

 $\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{ccc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \qquad s > 4 \quad \forall \ell, I$

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

Current correlators from the UV gauge theory

 $\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{ccc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \qquad s > 4 \quad \forall \ell, I$

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

S

 $\Pi(s)$

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

e.g. isospin 1, spin 1 vector (electromagnetic) current

$$P1 : j_{V}^{\mu}(x) = \frac{1}{2} (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) \quad \Pi_{1}^{1}(s) = i \int \frac{d^{4}x}{(2\pi)^{4}} e^{iPx} \langle 0|\hat{T} \left\{ j_{\sigma}^{\dagger}(x)j_{\sigma}(0) \right\} |0\rangle$$

:

Current correlators from the UV gauge theory

 $\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{ccc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \qquad s > 4 \quad \forall \ell, I$

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

S

 $\Pi(s)$

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

e.g. isospin 1, spin 1 vector (electromagnetic) current

$$P1 : j_V^{\mu}(x) = \frac{1}{2} (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) \qquad \Pi_1^1(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T} \left\{ j_{\sigma}^{\dagger}(x)j_{\sigma}(0) \right\} |0\rangle$$

large spacelike momenta — asymptotic free region with pQCD computation

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

OPE:
$$T\{j(x)j(0)\} = C_1(x) \ \mathbb{1} + \sum_{\mathcal{O}} C_{\mathcal{O}}(x) \ \mathcal{O}(0)$$

 $\langle 0|T\{j(x)j(0)\}|0\rangle = C_1(x) + C_{\bar{q}q}(x) \ \langle 0|m_q\bar{q}q|0\rangle + C_{G^2}(x) \ \langle 0|\frac{\alpha_s}{\pi}G^a_{\mu\nu}G^{a\,\mu\nu}|0\rangle + \dots$

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

Finite energy sum rule

connect pQCD with bootstrap at $\mathbf{s_0}$ contour integral $s^n\Pi(s)$ vanishes SVZ

$$\int_{4}^{s_{0}} \rho(x) x^{n} dx = -s_{0}^{n+1} \int_{0}^{2\pi} e^{i(n+1)\varphi} \Pi(s_{0}e^{i\varphi}) d\varphi$$

/

Finite energy sum rule

connect pQCD with bootstrap at s₀ contour integral $s^n \Pi(s)$ vanishes $\int_4^{s_0} \rho(x) x^n dx = -s_0^{n+1} \int_0^{2\pi} e^{i(n+1)\varphi} \Pi(s_0 e^{i\varphi}) d\varphi$ bootstrap variables qauge theory informationlinear constraints

Finite energy sum rule

$$P1 : \frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx = \frac{1}{2(2\pi)^4} \left\{ \frac{1}{2\pi(n+2)} \left(1 + \frac{\alpha_s}{\pi} \right) - \frac{\delta_n \pi}{6s_0^2} \langle \frac{\alpha_s}{\pi} G^2 \rangle - \frac{\delta_n 2\pi}{s_0^2} \langle m_q \bar{q}q \rangle + \dots \right\}, \ n \ge -1$$

to extract from bootstrap in the future

condensates suppressed at large s_o , not used as input

Asymptotic behavior of form factor from pQCD

perturbative QCD also controls asymptotic behavior of form factors

[Lepage, Brodsky, 1979]

Asymptotic behavior of form factor from pQCD

perturbative QCD also controls asymptotic behavior of form factors

Gauge theory parameters: numerical input

 $N_f = 2$ $N_c = 3$ for comparison with experiments

 $s_0 = (1.2 \,\mathrm{GeV})^2, \quad \alpha_s \simeq 0.41, \quad m_u \simeq 4 \,\mathrm{MeV} \quad m_d \simeq 7.3 \,\mathrm{MeV}$

 $s_0 = (2 \,\mathrm{GeV})^2, \quad \alpha_s \simeq 0.31, \quad m_u \simeq 3.6 \,\mathrm{MeV} \quad m_d \simeq 6.5 \,\mathrm{MeV}$

Gauge theory parameters: numerical input

 $N_f = 2$ $N_c = 3$ for comparison with experiments

 $s_0 = (1.2 \,\mathrm{GeV})^2, \quad \alpha_s \simeq 0.41, \quad m_u \simeq 4 \,\mathrm{MeV} \quad m_d \simeq 7.3 \,\mathrm{MeV}$

 $s_0 = (2 \,\mathrm{GeV})^2, \quad \alpha_s \simeq 0.31, \quad m_u \simeq 3.6 \,\mathrm{MeV} \quad m_d \simeq 6.5 \,\mathrm{MeV}$

FESR

FF asymptotics

$$\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_0^0(x) x^n dx \simeq \frac{6.23 \times 10^{-7}}{n+2}$$
$$\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx \simeq \frac{5.62 \times 10^{-5}}{n+2}$$
$$\frac{1}{s_0^{n+3}} \int_4^{s_0} \rho_2^0(x) x^n dx \simeq \frac{5.13 \times 10^{-5}}{n+3}$$

$$|\mathcal{F}_{0}^{0}(s > s_{0})|^{2} \lesssim 3 \times 10^{-8}$$
$$|\mathcal{F}_{1}^{1}(s > s_{0})|^{2} \lesssim 2 \times 10^{-6}$$
$$|\mathcal{F}_{2}^{0}(s > s_{0})|^{2} \lesssim 4 \times 10^{-2}$$

Gauge Theory Bootstrap

phase shifts up to 2GeV

Gauge Theory Bootstrap

phase shifts up to 2GeV

Low energy parameters: threshold expansion

scattering lengths and effective range parameters

$$\operatorname{Re} f_{\ell}^{I}(s) \stackrel{k \to 0}{\simeq} \frac{2m_{\pi}}{\pi} k^{2\ell} \left(a_{\ell}^{I} + b_{\ell}^{I} k^{2} + \dots \right) \qquad \qquad k = \frac{\sqrt{s - 4m_{\pi}^{2}}}{2}$$

	W	GTB	CGL	РҮ
$a_0^{(0)}$	0.16	0.178, 0.182	0.220 ± 0.005	0.230 ± 0.010
$a_0^{(2)}$	-0.046	-0.0369, -0.0378	-0.0444 ± 0.0010	-0.0422 ± 0.0022
$b_0^{(0)}$	0.18	0.287, 0.290	0.280 ± 0.001	0.268 ± 0.010
$b_0^{(2)}$	-0.092	-0.064, -0.066	-0.080 ± 0.001	-0.071 ± 0.004
$a_1^{(1)}$	31	28.0, 28.4	37.0 ± 0.13	$38.1 \pm 1.4 \; (\times 10^{-3})$
$b_1^{(1)}$	0	2.86, 3.37	5.67 ± 0.13	$4.75 \pm 0.16 \; (\times 10^{-3})$
$a_2^{(0)}$	0	12.6, 12.3	17.5 ± 0.3	$18.0 \pm 0.2 \; (\times 10^{-4})$
$a_2^{(2)}$	0	2.87, 2.81	1.70 ± 0.13	$2.2 \pm 0.2 \; (\times 10^{-4})$

Low energy parameters: pion charge radii

threshold expansion of the form factors:

scalar form factor:
$$F_0^0(s) = F_0^0(0) \left[1 + \frac{1}{6} s \langle r^2 \rangle_S^{\pi} + \dots \right]$$

vector form factor: $F_1^1(s) = 1 + \frac{1}{6} s \langle r^2 \rangle_V^{\pi} + \dots$

	GTB	Exp. fits	
$\langle r^2 \rangle^{\pi}_S$	0.64,0.61	$0.61\pm0.04\mathrm{fm}^2$	
$\langle r^2 \rangle_V^\pi$	0.388, 0.381	$0.439 \pm 0.008 {\rm fm}^2$	

Low energy parameters: chiral Lagrangian coefficients

*calculat*e the chiral Lagrangian coefficients

 $\bar{\ell}_{1,2,4,6}$

$$a_{D0} = \frac{1}{1440\pi^3 f_{\pi}^4} \left\{ \bar{l}_1 + 4\bar{l}_2 - \frac{53}{8} \right\} + \dots$$

$$a_{D2} = \frac{1}{1440\pi^3 f_{\pi}^4} \left\{ \bar{l}_1 + \bar{l}_2 - \frac{103}{40} \right\} + \dots$$

$$F_0(s) = 1 + \frac{s}{16\pi^2 f_{\pi}^2} \left(\bar{l}_4 - \frac{13}{12} \right) + \dots$$

$$F_1(s) = 1 + \frac{s}{96\pi^2 f_{\pi}^2} (\bar{l}_6 - 1) + \dots$$

[Gasser, Leutwyler, 1984]

	GTB	GL	Bij	CGL
\overline{l}_1	0.92,0.93	-2.3 ± 3.7	-1.7 ± 1.0	-0.4 ± 0.6
\overline{l}_2	4.1, 4.0	6.0 ± 1.3	6.1 ± 0.5	4.3 ± 0.1
\overline{l}_4	$4.7, \ 4.6$	4.3 ± 0.9	4.4 ± 0.3	4.4 ± 0.2
\overline{l}_6	14.3, 14.1	16.5 ± 1.1	$16.0 \pm 0.5 \pm 0.7$	

Gravitational form factor and f₂ meson

Saturation of positive semidefinite matrix

positive semidefinite

$$\begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0 \qquad \forall I, \ \ell, \ s$$

iff all its principal minors are non-negative

1 .

$$\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho|S|^2 \ge 0$$
$$\rho \ge 0 \qquad |\mathcal{F}|^2 \le \rho \qquad |S|^2 \le 1$$

Saturation of positive semidefinite matrix

positive semidefinite

$$\begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0 \qquad \forall I, \ \ell, \ s$$

iff all its principal minors are non-negative $\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho|S|^2 \ge 0$ $\rho \ge 0 \qquad |\mathcal{F}|^2 \le \rho \qquad |S|^2 \le 1$

saturation connects quantities controlled by pQCD and chiPT

How the Gauge Theory Bootstrap works

How the Gauge Theory Bootstrap works

How the Gauge Theory Bootstrap works

Conclusions

• Gauge Theory Bootstrap:

using only
$$N_c N_f m_q \Lambda_{\rm QCD}$$
 $f_\pi m_\pi$ to remove in the future development
gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

Conclusions

• Gauge Theory Bootstrap:

using only
$$N_c N_f m_q \Lambda_{\rm QCD}$$
 $f_\pi m_\pi$ to remove in the future development gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

• Numerical test with $N_f = 2$ $N_c = 3$ find good agreement with experiments

Results suggest: we are on the right track for *solving QCD* (gauge theories)

Prospects

• many future explorations in the framework:

tuning gauge theory parameters **—** low energy dynamics

(hadron spectrum, couplings)

interplay between gauge theory vs. chiral dynamics (e.g. S0 vs. P1)

Prospects

• many future explorations in the framework:

tuning gauge theory parameters **—** low energy dynamics

(hadron spectrum, couplings)

interplay between gauge theory vs. chiral dynamics (e.g. S0 vs. P1)

• Fast machine precision numerics (~20min on average laptop),

Need a lot of improvement to be more robust

Ancillary files (details):

- GTB_numerics.m
- GTB_numerics.nb

Thank you!