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▸ Factorization, the separation of physics effects associated with 
different scales, is a fundamental property of QFT 

▸ Factorization of cross sections into high-energy (short-distance) 
parton cross sections convoluted with non-perturbative (long-
distance) parton distribution functions is the basis for all calculations 
of hadron collider processes — “PDF factorization” 

▸ This entails the absence of low-energy interactions between the 
colliding hadrons in the high-energy limit
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▸ Formal proof of PDF factorization has only been given for inclusive 
Drell-Yan processes (e.g. Higgs production) 

▸ Several authors have expressed doubts that it will be valid in general 

▸ Observed breakdown of collinear factorization for space-like collinear 
splittings is often taken as indication that PDF factorization may be 
violated in higher orders of perturbation theory

[Collins, Super, Sterman (1985)]

[e.g.: Collins, Qiu (2007); Gaunt (2014); Zeng (2015)]

[e.g.: Catani, de Florian, Rodrigo (2011); Forshaw, Seymour, Siodmok (2012); Schwartz, Yan, Zhu (2017);               
Dixon, Hermann, Yan, Zhu (2019, Erratum: 2024); Cieri, Dhani, Rodrigo (2024); Henn, Ma, Xu, Yan, Zhang, Zhu (2024);          
Guan, Herzog, Ma, Mistlberger, Suresh (2024)]
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eq. (4.30) the ‘+h.c.’ terms result in a projection onto the kinematic terms containing an

explicit ‘i’.

The color structure in the second line in eq. (4.30) can be rewritten as a commu-

tator, [(T q · T i), (T q · T k)]. When eq. (4.30) is sandwiched between tree amplitudes,

⟨M(0)
n | · · · |M(0)

n ⟩, and a color sum is performed, the Hermiticity of the operators T q · T i

allows one to conclude that the color sum vanishes [34]. (A similar cancellation occurs for

the 1/ϵ pole with the same color structure, which appears in two-loop four-point ampli-

tudes [73] but cancels in the color-summed cross section [74].)

We conclude that for pure QCD splitting processes at order g × g5, or O(α3
s), poten-

tial factorization violation comes from the finite term in the first line in eq. (4.30), which

has not been discussed before. We speculate that at next-to-next-to-next-to-leading order

(NNNLO) in QCD, integrating over the phase space of the collinear splitting can give rise to

soft-collinear poles which depend on the color charge of non-collinear partons entering the

process. Such poles cannot be canceled by the conventional counterterms associated with

renormalization of the parton distribution functions (PDFs), which by definition are pro-

cess independent. (The failure of strict factorization at NNNLO for non-inclusive hadron

collider processes has been argued previously, based partly on the structure of 1/ϵ pole

terms associated with Coulomb gluon exchanges [34–36].) An interesting example that can

contain such factorization-violating contributions is the NNNLO QCD corrections to dijet

production at hadron colliders. While the full NNNLO QCD corrections might still be

far away, a shortcut to revealing the factorization-breaking terms is through the study of

precision hadron collider event shapes [75], where NNNLO corrections including logarithms

in the event-shape variable are within reach. We leave the investigation of these important

issues to future work.

5 Conclusions

In this paper we computed the exact kinematic and color dependence of soft-gluon emission

in massless gauge theory at the two loop level. While the dipole terms have a simple kine-

matic dependence and had been computed previously [25, 26], the subleading-color tripole

terms are new, and they depend in an intricate way on a rescaling-invariant cross ratio.

Using the soft-collinear limit of our results, we could study the soft limits of two-loop

collinear splitting amplitudes for both timelike and spacelike kinematics. The timelike

behavior was understood previously [26, 47, 71, 72]. In the spacelike case, the infrared

singular parts of the two-loop splitting amplitudes were obtained before in ref. [33], with

which we find full agreement. Our new results for this case are the finite contributions,

provided in eq. (4.27). Note that eq. (4.27) is non-zero only when the non-collinear tripole

partons i and k are spacelike separated. Thus, including the collinear parton 1, there

must be two partons in the initial state to get a contribution (i.e. deep inelastic scattering

does not qualify, while hadronic collisions do). Both eqs. (4.18) and (4.27) violate strict

collinear factorization [33, 34], in the sense that the splitting amplitudes depend on the

color and/or kinematics of some non-collinear hard partons in the process. For dipole

emission, eq. (4.18), factorization violation only exists in the imaginary part. The real part

– 27 –
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Föhringer Ring 6, D-80805 München, Germany

cZhejiang Institute of Modern Physics, Department of Physics, Zhejiang University,
38 Zheda Road, Hangzhou, 310027, China

E-mail: lance@slac.stanford.edu, eh10@stanford.edu, kyan@mpp.mpg.de,

zhuhx@zju.edu.cn

Abstract: The soft emission factor is a central ingredient in the factorization of generic

n-particle gauge theory amplitudes with one soft gluon in the external state. We present

the complete two-loop soft factor, capturing the leading power behavior in the soft-gluon

momentum. At two loops, the color structure and the kinematic dependence of the soft

factor become nontrivial as the soft gluon can couple to three hard partons for the first time

(tripole terms). The nontrivial kinematic dependence of the tripole terms is of uniform,

maximal transcendental weight, and can be expressed (in a “Euclidean” region) in terms of

single-valued harmonic polylogarithms. Our results are consistent with the behavior of the

recently computed symbol of the two-loop five-particle amplitude in N = 4 super-Yang-

Mills theory. In the limit where the outgoing soft gluon is also collinear with an incoming

hard parton, potentially dangerous factorization-violating terms can arise.

Keywords: Perturbative QCD, Scattering Amplitudes

ArXiv ePrint: 1912.09370

Open Access, c⃝ The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2020)135

…

J
H
E
P
0
5
(
2
0
2
0
)
1
3
5

Published for SISSA by Springer

Received: January 4, 2020

Accepted: May 3, 2020

Published: May 27, 2020

Soft gluon emission at two loops in full color

Lance J. Dixon,a Enrico Herrmann,a Kai Yanb and Hua Xing Zhuc

aSLAC National Accelerator Laboratory, Stanford University,
Stanford, CA 94039, U.S.A.

bMax-Planck-Institut für Physik, Werner-Heisenberg-Institut,
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Abstract: The soft emission factor is a central ingredient in the factorization of

generic n-particle gauge theory amplitudes with one soft gluon in the external state.

We present the complete two-loop soft factor, capturing the leading power behavior

in the soft-gluon momentum. At two loops, the color structure and the kinematic

dependence of the soft factor become nontrivial as the soft gluon can couple to three

hard partons for the first time (tripole terms). The nontrivial kinematic dependence of

the tripole terms is of uniform, maximal transcendental weight, and can be expressed

(in a “Euclidean” region) in terms of single-valued harmonic polylogarithms. Our

results are consistent with the behavior of the recently computed symbol of the two-

loop five-particle amplitude in N = 4 super-Yang-Mills theory. In the limit where

the outgoing soft gluon is also collinear with an incoming hard parton, potentially

dangerous factorization-violating terms can arise, but they cancel after summing over

colors.
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▸ Formal proof of PDF factorization has only been given for inclusive 
Drell-Yan processes (e.g. Higgs production) 

▸ Several authors have expressed doubts that it will be valid in general 

▸ Observed breakdown of collinear factorization for space-like collinear 
splittings is often taken as indication that PDF factorization may be 
violated in higher orders of perturbation theory 

▸ Collinear factorization: 

breakes down if particle 1 is in the initial and particle 2 in the final state

[Collins, Super, Sterman (1985)]

[e.g.: Collins, Qiu (2007); Gaunt (2014); Zeng (2015)]

[e.g.: Catani, de Florian, Rodrigo (2011); Forshaw, Seymour, Siodmok (2012); Schwartz, Yan, Zhu (2017);               
Dixon, Hermann, Zhu (2019, Erratum: 2024); Cieri, Dhani, Rodrigo (2024); Henn, Ma, Xu, Yan, Zhang, Zhu (2024);          
Guan, Herzog, Ma, Mistlberger, Suresh (2024)]

lim
p1kp2

<latexit sha1_base64="fDX5rTnWnfHbc5+atQ616WRkhCQ=">AAACAHicbVDLSgMxFM34rPU16sKFm2ARXJWZKuiy6MZlBfuAzjBk0kwbmmRCkhHKMBt/xY0LRdz6Ge78G9N2Ftp64MLhnHu5955YMqqN5307K6tr6xubla3q9s7u3r57cNjRaaYwaeOUpaoXI00YFaRtqGGkJxVBPGakG49vp373kShNU/FgJpKEHA0FTShGxkqRexwwyqNcRn4gkUKMEQZl1Cgit+bVvRngMvFLUgMlWpH7FQxSnHEiDGZI677vSRPmSBmKGSmqQaaJRHiMhqRvqUCc6DCfPVDAM6sMYJIqW8LAmfp7Ikdc6wmPbSdHZqQXvan4n9fPTHId5lTIzBCB54uSjEGTwmkacEAVwYZNLEFYUXsrxCObAzY2s6oNwV98eZl0GnX/ot64v6w1b8o4KuAEnIJz4IMr0AR3oAXaAIMCPINX8OY8OS/Ou/Mxb11xypkj8AfO5w983pZU</latexit>

Using relation (11) we may indeed confirm that

∂Γs

∂Li
= −

∑

j ̸=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (55)

in accordance with the constraint (49). Note that this result implies Casimir-scaling for the
cusp anomalous dimension, since Γg

cusp(αs)/Γq
cusp(αs) = CA/CF . We will come back to the

significance of this observation in Section 6.4.

5 Consistency with collinear limits

Before turning to a diagrammatic study of the anomalous-dimension matrix we discuss one
more non-trivial constraint it must obey, which derives from the known behavior of scattering
amplitudes in the limit where two or more external partons become collinear.

In the limit where the momenta of two of the external partons become collinear, an n-parton
scattering amplitude factorizes into the product of an (n − 1)-parton scattering amplitude
times a universal, process-independent splitting amplitude. This was first shown at tree level
in [63, 64], and extended to one-loop order in [65]. An all-order proof was given in [66].
Strictly speaking, the proof was constructed for leading-color amplitudes only, but the crucial
ingredients are unitarity and analyticity, and it should be possible to extend it to the general
case. Collinear factorization holds at the level of the leading singular terms. It is often studied
for color-ordered amplitudes, for which the color information is stripped off. The color-stripped
splitting amplitudes for the splitting of a parent parton P into collinear partons a and b are
usually denoted by SplitσP

(aσa , bσb) in the literature, where σi denote the helicities of the
partons. These functions have been calculated at tree level (see, e.g., [67]), one-loop order [68],
and recently even to two loops [69]. In contrast, we will study collinear factorization using the
color-space formalism, extending the work of [70] beyond the one-loop approximation. In this
framework, the splitting amplitudes are elements of a splitting matrix Sp({pa, pb}), which acts
in the space of color and spin configurations of (n−1)-parton scattering amplitudes. As is the
case for the scattering amplitudes, the divergence structure of Sp({pa, pb}) is independent of
the spin configuration of the involved partons, and we therefore suppress spin indices in the
following. For Catani’s formula (15), the consistency with collinear limits was shown in [34].

Consider, for concreteness, the limit where the partons 1 and 2 become collinear and merge
into an unresolved parton P . We assign momenta p1 = zP and p2 = (1 − z)P and consider
the collinear limit P 2 → 0. In this limit the scattering amplitude factorizes in the form

|Mn({p1, p2, p3, . . . , pn})⟩ = Sp({p1, p2}) |Mn−1({P, p3, . . . , pn})⟩ + . . . . (56)

The matrix of splitting amplitudes encodes the singular behavior of the amplitude |Mn⟩
as p1||p2, and the factorization holds up to terms that are regular in the collinear limit.
Analogous relations describe the behavior in limits where more than two partons become
collinear. However, it is sufficient for our purposes to focus on the simplest case.

The factorization formula (56) holds both for the dimensionally regularized scattering
amplitudes |Mn(ϵ, {p})⟩ as well as for the minimally subtracted amplitudes |Mn({p}, µ)⟩ in

22
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Soft anomalous dimension of n-parton scattering amplitudes 

▸ IR poles of scattering amplitudes can be renormalized in a way 
analogous to UV renormalization:
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2 IR factorization and RG invariance

The key observation of our letter [3] was that the IR singularities of on-shell amplitudes in
massless QCD are in one-to-one correspondence to the UV poles of operator matrix elements
in SCET. These poles can therefore be subtracted by means of a multiplicative renormaliza-
tion factor Z, which is a matrix in color space. Specifically, we have shown that the finite
remainders of the scattering amplitudes can be obtained from the IR divergent, dimensionally
regularized amplitudes via the relation

|Mn({p}, µ)⟩ = lim
ϵ→0

Z
−1(ϵ, {p}, µ) |Mn(ϵ, {p})⟩ . (1)

Here {p} ≡ {p1, . . . , pn} represents the set of the momentum vectors of the n partons, and
µ denotes the factorization scale. The quantity |Mn(ϵ, {p})⟩ on the right-hand side is a
UV-renormalized, on-shell n-parton scattering amplitude with IR singularities regularized in
d = 4 − 2ϵ dimensions. After coupling constant renormalization, these amplitudes are UV
finite. Apart from trivial spinor factors and polarization vectors for the external particles, the
minimally subtracted scattering amplitudes |Mn({p}, µ)⟩ on the left-hand side of (1) coincide
with Wilson coefficients of n-jet operators in SCET [3], to be defined later:

|Mn({p}, µ)⟩ = |Cn({p}, µ)⟩ × [on-shell spinors and polarization vectors] . (2)

We postpone a more detailed discussion of the effective theory to Section 3 and proceed to
study the implications of this observation.

To analyze the general case of an arbitrary n-parton amplitude, it is convenient to use the
color-space formalism of [21, 22], in which amplitudes are treated as n-dimensional vectors
in color space. Ti is the color generator associated with the i-th parton in the scattering
amplitude, which acts as an SU(Nc) matrix on the color indices of that parton. Specifically,
one assigns (T a

i )αβ = taαβ for a final-state quark or initial-state anti-quark, (T a
i )αβ = −taβα for

a final-state anti-quark or initial-state quark, and (T a
i )bc = −ifabc for a gluon. We also use

the notation Ti · Tj ≡ T a
i T a

j summed over a. Generators associated with different particles
trivially commute, Ti · Tj = Tj · Ti for i ̸= j, while T 2

i = Ci is given in terms of the quadratic
Casimir operator of the corresponding color representation, i.e., Cq = Cq̄ = CF for quarks or
anti-quarks and Cg = CA for gluons. Because they conserve color, the scattering amplitudes
fulfill the relation ∑

i

T
a
i |Mn(ϵ, {p})⟩ = 0 . (3)

It follows from (1) that the minimally subtracted scattering amplitudes satisfy the RG
equation

d

d lnµ
|Mn({p}, µ)⟩ = Γ({p}, µ) |Mn({p}, µ)⟩ , (4)

where the anomalous dimension is related to the Z-factor by

Γ({p}, µ) = −Z
−1(ϵ, {p}, µ)

d

d ln µ
Z(ϵ, {p}, µ) . (5)
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Neubert Part B2 EFT2

candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+
X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.

2

…

p1

p2

pi

pn

pj

Mn
<latexit sha1_base64="DMABv/WXZNTVYSWdalbRTX8S7+k=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqYJcFN26ECvYB7VAyaaYNzWTGJFMoQ7/DjQtF3Pox7vwbM+0stPVA4HDOvdyT48eCa+M436iwsbm1vVPcLe3tHxwelY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ7eZ35kypXkkH80sZl5IRpIHnBJjJa8fEjOmRKT384EclCtO1VkArxM3JxXI0RyUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSaoeymXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7VrVvarWHq4rjXpeRxHO4BwuwYUbaMAdNKEFFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPCu+SPg==</latexit>



Matthias Neubert  — JGU Mainz

INTRODUCTION

4

▸ Color coherence holds if all three particles are incoming or outgoing 
(time-like splitting) 

▸ Collinear factorization holds:

FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 
2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
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⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
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(0)
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G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,
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G
V

G � ! �6⇡2NcX2 , (6)
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j
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X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
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G �, we have analyzed the prod-
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µ as well the product of J
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▸ Color coherence is broken if not all particles are incoming/outgoing 
(space-like splitting), since both sides receive different phase factors 

▸ Collinear factorization is violated:

FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0
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< Q0. The ↵2
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term / V

G � arises from real-
virtual corrections to the same matrix elements. The
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form
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s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
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or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
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µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0
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virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-
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µ [32]. To iso-
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G �, we have analyzed the prod-

uct J
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µ as well the product of J
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µ (includ-
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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state-of-the-art

FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 

[Forshaw, Kyrieleis, Seymour (2006)]
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▸ “Super-leading logarithms” (SLLs) in exclusive jet cross sections 
have the same origin; they are double-logarithmic effects arising 
from complex phases in hard-scattering amplitudes that break 
color coherence 

▸ Since PDF evolution is single logarithmic, the presence of SLLs 
necessitates the existence of low-energy interactions between     
the incoming partons, and the key questions is whether this is a 
perturbative effect

[Forshaw, Kyrieleis, Seymour (2006)]
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▸ Collinear factorization breaking and SLLs are associated with Glauber 
dynamics, whose cancellation was crucial in the factorization proof for 
the Drell-Yan process 

▸ Both effects were discovered long ago, but an all-order understanding 
is still lacking 

▸ Important progress was achieved using SCET to calculate the all-order 
structure of SLLs for arbitrary processes based on a new factorization 
theorem and an associated RG evolution equation 

▸ SLLs arise first at 4-loop order, and the restoration of PDF factorization 
requires an intricate interplay of high-energy and (perturbative) low-
energy dynamics, whose mechanism has so far remained elusive

[Becher, MN, Shao (2021); Becher, MN, Shao, Stillger (2023)]
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▸ Here, we identify for the first time a genuine contribution of an active-
active Glauber exchange to a cross section, and show that in leading 
logarithmic approximation it has the required form to turn the double-
logarithmic evolution back into single-logarithmic evolution 

▸ Our analysis is not a proof of factorization, but it provides some 
evidence that PDF factorization may, indeed, be valid for non-global 
hadron collider observables 

▸ It demonstrates that the breaking of collinear factorization does not 
necessarily translate into a breaking of PDF factorization
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SCET factorization theorem for M-jet production at the LHC 

 new perspective to think about non-global observables!⇒
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.
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(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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GAP-BETWEEN-JETS OBSERVABLES
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
(i)
↵̄↵ �̄

↵̄

i (tn̄i)�
↵

i (0) =

✓
n̄/
i

2

◆

↵̄↵

�̄
↵̄

i (tn̄i)�
↵

i (0) = �̄i(tn̄i)
n̄/
i

2
�i(0) ,

P
(i)
↵̄↵A

↵̄

?c
(tn̄i)A

↵

?c
(0) = (�g↵̄↵)(�i@t)A

↵̄

?c
(tn̄i)A

↵

?c
(0) = i@tA

µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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FIG. 1. Sample pertu
rbative c

ontributi
on to the ga

p-betwee
n-

jets cross section.
The gray inner subdiagr

ams make up the

hard function
Hm, while the remainder is

part of W
m. The

orange gluon is soft and enters the veto region, th
e blue and

green partons a
re collinear

to the beams. Possib
le scalings o

f

the virtual g
luon momentum k will be analyzed

below.

over the
energies o

f the final-stat
e particles,

Hm
({n}, Q, ⇠1, ⇠2, µ

) =

Z
dEm |Mm

({p})ihMm
({p})| ,

(2)

while keeping the parton direction
s {n} = {n1, . . . , nm

}

fixed. Th
e explicit fo

rm of the energy integratio
n can be

found in (2.3) of [1
3]. The in

tegration
over the fi

nal-state

parton direction
s is indicated

by the symbol ⌦ in (1).

The color ind
ices of th

e hard partons a
re kept open

and

h. . . i denotes the color trace, wh
ich is taken after com-

bining the hard
functions

with the low-e
nergy matrix ele-

ments Wm
, which contain the dyna

mics associ
ated with

the perturbat
ive scale Q0, as depicted

in Fig. 1, as
well

as non-pe
rturbativ

e QCD e↵ects. T
he main result of

our

Letter is
that, at l

east up to three-loo
p order, the

pertur-

bative pa
rt of Wm

is consist
ent with

PDF factorizat
ion.

The SLL analysis
in [12, 13] was based on the

renormalization-
group evolution

of the hard functions

from the high scale µh
= Q to a low scale µs

⇠ Q0.

The leading logarithm
s were obtained

by iterating
the

one-loop
anomalous dim

ension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like
cusp anoma-

lous dimension. The soft piece consists of �
c and V

G ,

which account for soft+collinear
emissions from one of

the two initial-sta
te partons a

nd complex phases ar
ising

from virtual gl
uon exchange

between
them, respecti

vely.

� correspon
ds to gluon emission into the gap, and

�C

denotes purely collinear
contribut

ions. The anomalous

dimension is an operator
in color space and a matrix

in the space of parton
multipliciti

es m. An applicatio
n

of �
H can either increase

the number of parton
s, corre-

sponding
to a real emission, or

leave the
m unchange

d for

virtual te
rms. The SL

Ls origina
te from �c . Using simple

identities
among the various terms in (3) [12],

one finds

that the
relevant c

olor trace
s are of the form

Crn
=
⌦
H

(0)
m0

(�
c)

r
V

G (�
c)

n�r
V

G �⌦ 1
↵
. (4)

Performing the associate
d scale integrals

for evolution

from Q down to the scale µs
⇠ Q0 produces

single loga-

rithms for V
G and �, but do

uble loga
rithms for �

c . The

color traces Crn
thus contribut

e at order ↵n+3
s

L2n+3
s

in

perturbat
ion theory, w

here Ls
= ln(Q/µs). SLLs first

arise at four-lo
op order and

involve C01 and C11. In
(4),

H
(0)
m0

are the Born-leve
l hard functions

and we use that

W
(0)
m

= 1 at lowest
order.

The fact
that the c

ross secti
on �(Q0) must be ind

epen-

dent of t
he renormalization

scale µs
imposes non-trivia

l

condition
s on the low-e

nergy matrix elementsWm
(µs) =

ZW
bare
m

. The renormalization
factor Z is related to

the anomalous dimension (3) [31], and
using its three-

loop expressio
n one finds that the leading UV poles in

d = 4� 2" dimensions m
ust be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣ ↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣ ↵s

4⇡

⌘3
✓
V

GV
G �

3"3
�

�cV
G �

3"3
ln

Q2

µ2s
+ . . .

◆

+O(↵
4
s
) .

(5)

We only show terms which, a
fter combining wi

th the hard

functions
in (1) and taking the color trac

e, produc
e con-

tribution
s compatible with SLLs at four-loop

order and

beyond.
Under th

e color trac
e, we can replace [13]

V
G � ! 16i⇡X1 , �cV

G � ! 16i⇡NcX1 ,

V
GV

G � ! �6⇡
2NcX2 ,

(6)

where

X1 = if
abc

X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1

, (7)

with O
(j)
1

defined in (6.36) of
[13]. The

sums extend
over

all final-s
tate parto

ns j > 2 in the Born-
level proc

ess, and

the angular i
ntegral Jj

has been
given in (16) of [1

2].

We now compute the perturbat
ive part of W

bare
m

or-

der by order in ↵s
and check whether

it matches the

structure
(5). The one-loop

term / � is the divergenc
e

associate
d with a soft exchange

between
hard legs and

is obtaine
d from soft Wilson-line

matrix elements in the

low-energ
y theory or, equiva

lently, by
taking the produ

ct

of two tree-level
soft currents

J
a(0)
µ

(ls) and integratin
g

the momentum ls over the
gap region under the

restric-

tion l0s < Q0. The ↵2
s
term / V

G � arises from real-

virtual correction
s to the same matrix elements. The

complex phase in V
G is directly related to the imagi-

nary part of th
e one-loop

soft curre
nt J

a(1)
µ

[32]. To iso-

late the structure
V

GV
G �, we have analyzed

the prod-

uct J
µ,a(1)J

a(1)†
µ

as well the
product

of J
a(2)
µ

(includ-

ing the tripole terms) [33, 34] w
ith a tree-level

current,

2

Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm Mm

M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m M†
m

pc

p̄c̄

Q0

qc

k

ls

FIG.1.Samplepertu
rbativec

ontributi
ontothega

p-betwee
n-

jetscrosssection.
Thegrayinnersubdiagr

amsmakeupthe

hardfunction
Hm,whiletheremainderis

partofW
m.The

orangegluonissoftandentersthevetoregion,th
eblueand

greenpartonsa
recollinear

tothebeams.Possib
lescalingso

f

thevirtualg
luonmomentumkwillbeanalyzed

below.

overthe
energieso

fthefinal-stat
eparticles,

Hm
({n},Q,⇠1,⇠2,µ

)=

Z
dEm|Mm

({p})ihMm
({p})|,

(2)

whilekeepingthepartondirection
s{n}={n1,...,nm

}

fixed.Th
eexplicitfo

rmoftheenergyintegratio
ncanbe

foundin(2.3)of[1
3].Thein

tegration
overthefi

nal-state

partondirection
sisindicated

bythesymbol⌦in(1).

Thecolorind
icesofth

ehardpartonsa
rekeptopen

and

h...idenotesthecolortrace,wh
ichistakenaftercom-

biningthehard
functions

withthelow-e
nergymatrixele-

mentsWm
,whichcontainthedyna

micsassoci
atedwith

theperturbat
ivescaleQ0,asdepicted

inFig.1,as
well

asnon-pe
rturbativ

eQCDe↵ects.T
hemainresultof

our

Letteris
that,atl

eastuptothree-loo
porder,the

pertur-

bativepa
rtofWm

isconsist
entwith

PDFfactorizat
ion.

TheSLLanalysis
in[12,13]wasbasedonthe

renormalization-
groupevolution

ofthehardfunctions

fromthehighscaleµh
=Qtoalowscaleµs

⇠Q0.

Theleadinglogarithm
swereobtained

byiterating
the

one-loop
anomalousdim

ension[30]

�H=�cusp(↵s)
⇣

�cln
µ2

Q2
+V

G

⌘
+

↵s

4⇡
�+�C,(3)

where�cusp=↵s/⇡+...isthelight-like
cuspanoma-

lousdimension.Thesoftpiececonsistsof�
candV

G,

whichaccountforsoft+collinear
emissionsfromoneof

thetwoinitial-sta
tepartonsa

ndcomplexphasesar
ising

fromvirtualgl
uonexchange

between
them,respecti

vely.

�correspon
dstogluonemissionintothegap,and

�C

denotespurelycollinear
contribut

ions.Theanomalous

dimensionisanoperator
incolorspaceandamatrix

inthespaceofparton
multipliciti

esm.Anapplicatio
n

of�
Hcaneitherincrease

thenumberofparton
s,corre-

sponding
toarealemission,or

leavethe
munchange

dfor

virtualte
rms.TheSL

Lsorigina
tefrom�c.Usingsimple

identities
amongthevarioustermsin(3)[12],

onefinds

thatthe
relevantc

olortrace
sareoftheform

Crn
=

⌦
H

(0)
m0

(�
c)

r
V

G(�
c)

n�r
V

G�⌦1
↵

.(4)

Performingtheassociate
dscaleintegrals

forevolution

fromQdowntothescaleµs
⇠Q0produces

singleloga-

rithmsforV
Gand�,butdo

ubleloga
rithmsfor�

c.The

colortracesCrn
thuscontribut

eatorder↵n+3
s

L2n+3
s

in

perturbat
iontheory,w

hereLs
=ln(Q/µs).SLLsfirst

ariseatfour-lo
oporderand

involveC01andC11.In
(4),

H
(0)
m0

aretheBorn-leve
lhardfunctions

andweusethat

W
(0)
m

=1atlowest
order.

Thefact
thatthec

rosssecti
on�(Q0)mustbeind

epen-

dentoft
herenormalization

scaleµs
imposesnon-trivia

l

condition
sonthelow-e

nergymatrixelementsWm
(µs)=

ZW
bare
m

.Therenormalization
factorZisrelatedto

theanomalousdimension(3)[31],and
usingitsthree-

loopexpressio
nonefindsthattheleadingUVpolesin

d=4�2"dimensionsm
ustbeoftheform

W
bare
m

=1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓

V
G�

2"2
+...

◆

+
⇣↵s

4⇡

⌘3
✓

V
GV

G�

3"3
�

�cV
G�

3"3
ln

Q2

µ2s
+...

◆

+O(↵
4
s
).

(5)

Weonlyshowtermswhich,a
ftercombiningwi

ththehard

functions
in(1)andtakingthecolortrac

e,produc
econ-

tribution
scompatiblewithSLLsatfour-loop

orderand

beyond.
Underth

ecolortrac
e,wecanreplace[13]

V
G�!16i⇡X1,�cV

G�!16i⇡NcX1,

V
GV

G�!�6⇡
2NcX2,

(6)

where

X1=if
abc

X

j>2

JjT
a

1T
b

2T
c

j
,X2=

1

Nc

X

j>2

JjO
(j)
1

,(7)

withO
(j)
1

definedin(6.36)of
[13].The

sumsextend
over

allfinal-s
tateparto

nsj>2intheBorn-
levelproc

ess,and

theangulari
ntegralJj

hasbeen
givenin(16)of[1

2].

Wenowcomputetheperturbat
ivepartofW

bare
m

or-

derbyorderin↵s
andcheckwhether

itmatchesthe

structure
(5).Theone-loop

term/�isthedivergenc
e

associate
dwithasoftexchange

between
hardlegsand

isobtaine
dfromsoftWilson-line

matrixelementsinthe

low-energ
ytheoryor,equiva

lently,by
takingtheprodu

ct

oftwotree-level
softcurrents

J
a(0)
µ

(ls)andintegratin
g

themomentumlsoverthe
gapregionunderthe

restric-

tionl0s<Q0.The↵2
s

term/V
G�arisesfromreal-

virtualcorrection
stothesamematrixelements.The

complexphaseinV
Gisdirectlyrelatedtotheimagi-

narypartofth
eone-loop

softcurre
ntJ

a(1)
µ

[32].Toiso-

latethestructure
V

GV
G�,wehaveanalyzed

theprod-

uctJ
µ,a(1)J

a(1)†
µ

aswellthe
product

ofJ
a(2)
µ

(includ-

ingthetripoleterms)[33,34]w
ithatree-level

current,

[Becher, MN, Shao (2021); 
Becher, MN, Rothen, Shao (2015, 2016)]

[see also: Martínez, De Angelis, Forshaw, Plätzer, Seymour (2018); 
Forshaw, Holguin, Plätzer (2020, 2021); Plätzer, Ruffa (2021)]
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.
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(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
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colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]
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↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

W
bare
m
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fabcfade
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2⌘
+ ln
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0

◆�

� (L $ R) , (17)

where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)

fade
T

d

1LT
b

2LT
e

1RT
c

jR
! �

iNc

2
T

a

1 T
b

2 T
c

j
, (18)

which leads to

W
bare
m

3 �
iNc↵3

s

12⇡2"3
X1 ln

p�
c
p̄+c̄

Q2
0

. (19)

The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
The same result can be obtained directly in SCET us-

ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.
In this Letter, we have uncovered a new mechanism

that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
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Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated

ar
X

iv
:2

40
8.

10
30

8v
1 

 [h
ep

-p
h]

  1
9 

A
ug

 2
02

4

▸ Sum includes all partonic channels with multiplicity m 

▸ Hard functions:  

▸ Functions         contain the low-energy soft and collinear dynamics 

▸  indicates integration over the parton directions ⊗ {ni}
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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▸ RG evolution of the hard functions:  

▸ Basis for the resummation of large logarithmic corrections

operator in color space and in the 
infinite space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

[Becher, MN, Shao (2021); 
Becher, MN, Rothen, Shao (2015, 2016)]
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Structure of the anomalous dimension 

▸ Action on hard functions:

approach and reflects the intrinsic complexity of the problem at hand. The evolution equa-

tions shows that higher-multiplicity hard functions mix with lower-multiplicity functions

under scale evolution. At one-loop order, and written in the space of particle-multiplicities,

the anomalous-dimension matrix takes the form

�
H({n}, s, µ) =

↵s

4⇡

0

BBBBBB@

V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s) , (2.13)

where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.

The virtual-correction matrix elements Vm on the diagonal leave the number of partons

unchanged, while the real-emission operators Rm map a hard function with m partons onto

one with (m + 1) partons.3 With each higher order in perturbation theory an additional

o↵-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal

remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural

scale µh ⇠ Q ⇠
p
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
H(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).
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Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.

– 21 –
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FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 

▸ : light-like cusp anomalous dimension 

▸ : soft & collinear emissions (real/virtual gluons) 

▸ : virtual Glauber-gluon exchange (purely imaginary) 

▸ : real/virtual emissions after collinear subtractions (into the gap) 

▸ : purely collinear emissions (DGLAP and more) 

 all double logarithms arise from  (source of the SLLs)

γcusp

Γc

VG

Γ

ΓC

⇒ Γc

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

[Becher, MN, Shao, Stillger (2023)]
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Evaluate factorization theorem at low scale  

▸ Low-energy matrix element: 

▸ Hard-scattering functions: 

▸ Expanding the solution in a power series generates arbitrarily high 
parton multiplicities starting from the  Born process

μs ∼ Q0

2 → M

FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 
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µ
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i
�W
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ij ⇥in(nm+1)

�
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X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)
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� ln

µ
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2Ei2Ej
+

Z
d⌦(nk)
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W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)
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X

(ij)

Ti,L · Tj,L ln
µ

2Ei
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X

i

Ti,L · Ti,L ln
µ
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X

i

Ci ln
µ
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�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
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� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
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SLLs arise from the terms in                                                        with the 
highest number of insertions of Γc 

▸ Three properties simplify the calculation: 

• color coherence in the absence of                                                                 
Glauber phases: 

• collinear safety: 

• cyclicity of the trace:
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tions HmRC involve one additional hard gluon (dashed blue line) which is
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
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. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
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i=1(R
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Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that
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↵
= 0 .
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
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i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1
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, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.
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The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)
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The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because
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The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
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at (3 + n)th order in perturbation theory are associated
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where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =
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⌘n+3
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)
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which makes it explicit that starting from four-loop order
two logarithms per loop arise.

2 ! M
<latexit sha1_base64="hksjMjxOaDo3ZlfzaD2Fg3HppqM=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAiuykwVdFl040aoYB/QDiWTZtrYTDIkGaEM/Qc3LhRx6/+4829M21lo64HA4Zx7yT0nTAQ31vO+0crq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Wjm6nfemLacCUf7DhhQUwGkkecEuukZrVrFb7rlcpexZsBLxM/J2XIUe+Vvrp9RdOYSUsFMabje4kNMqItp4JNit3UsITQERmwjqOSxMwE2ezaCT51Sh9HSrsnLZ6pvzcyEhszjkM3GRM7NIveVPzP66Q2ugoyLpPUMknnH0WpwC7iNDruc82oFWNHCNXc3YrpkGhCrSuo6ErwFyMvk2a14p9XqvcX5dp1XkcBjuEEzsCHS6jBLdShARQe4Rle4Q0p9ILe0cd8dAXlO0fwB+jzB8OYjpg=</latexit>

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
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the virtual correction (red) HmVm has m legs.
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tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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gluon (blue), the product Hm Rm defines a hard function
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where
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j
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1

Nc

X

j>2

Jj O
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1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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+
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�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
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(0)
m0

(�c)r V G (�c)n�r
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↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

C01
<latexit sha1_base64="1qwfKtdksKTyh1RgkBBsxgaINus=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY/BXDxGMDGQLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jUo1oS2iuNKdCBvKmaQtyyynnURTLCJOH6JxY+Y/PFFtmJL3dpLQUOChZDEj2Dqp3ehnfjDtlyt+1Z8DrZIgJxXI0eyXv3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p11GJBTVhNr92is6cMkCx0q6kRXP190SGhTETEblOge3ILHsz8T+vm9r4OsyYTFJLJVksilOOrEKz19GAaUosnziCiWbuVkRGWGNiXUAlF0Kw/PIqadeqwUW1dndZqd/kcRThBE7hHAK4gjrcQhNaQOARnuEV3jzlvXjv3seiteDlM8fwB97nD++VjrU=</latexit>

,



Matthias Neubert  — JGU Mainz

UV poles of the low-energy matrix element 

▸ RG invariance of the cross section implies that the  poles of the 
bare functions             must be of the form:  

▸ Log-enhanced term  appears first at 3-loop order and gives rise 
to large rapidity logarithms  in the low-energy theory 

▸ How is this pole term reproduced in the low-energy theory?           
Is it of perturbative or nonperturbative nature?

1/ε

Γc

lnn(Q/μs)

RESUMMATION OF SUPER-LEADING LOGARITHMS

19

2

MmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMmMm M†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
mM†
m

pc

p̄c̄

Q0

qc

k
ls

FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
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. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
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1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
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⌘
+
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4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
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(0)
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(�c)r V G (�c)n�r
V

G �⌦ 1
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. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,
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where
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
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late the structure V
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
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are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
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d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
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µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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UV poles of the low-energy matrix element 

▸ RG invariance of the cross section implies that the  poles of the 
bare functions             must be of the form:  

▸ We have reproduced the pole terms involving only     and         
using the known 1-loop and 2-loop results for the soft current  

▸ The Glauber phases are contained in the soft current and do not 
need additional Glauber contributions in SCET

1/ε

PERTURBATIVE ANALYSIS OF THE LOW-ENERGY DYNAMICS
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
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µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
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j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
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⌘
+
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4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
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(0)
m0

(�c)r V G (�c)n�r
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↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c
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G
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X
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1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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L2n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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⇣
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⌘
+
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4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
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(0)
m0

(�c)r V G (�c)n�r
V
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↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where
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, X2 =
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j>2
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(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

▸ To reproduce the last term, we have 
considered 3-loop graphs featuring     
a soft gluon emitted into the gap 
(dependence on Q0), a collinear 
emission (rapidity log), and a virtual 
gluon connecting the two incoming 
partons (Glauber phase) 

▸ There exist three such diagrams (plus 
mirror copies)
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
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are the Born-level hard functions and we use that
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(0)
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
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with O
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1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2
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term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
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µ as well the product of J
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µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

▸ To reproduce the last term, we have 
considered 3-loop graphs featuring     
a soft gluon emitted into the gap 
(dependence on Q0), a collinear 
emission (rapidity log), and a virtual 
gluon connecting the two incoming 
partons (Glauber phase) 

▸ There exist three such diagrams (plus 
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▸ Stripp off the numerator structure and 
consider the related pentagon (box) 
integrals for fixed external momenta 

▸ Comparison with the exact results 
ensures that all regions are considered 

▸ Introducing a power-counting 
parameter , the external 
momenta scale as , 

, and  

▸ Introduce variables  
and 

λ = Q0/Q
pc, qc ∼ Q(λ2,1,λ)

p̄c̄ ∼ Q(1,λ2, λ) l2 ∼ Q(λ, λ, λ)

si,i+1 = (pi + pi+1)2

m2 = p2
5

FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.

this fact, we consider the full result for the pentagon in-
tegral, which contains �-suppressed terms with prefactor
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where

⇥ ⌘ ✓(m2) + ✓(s23)� ✓(s45)� ✓(s51) . (12)

This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes

the form (with implicit +i0 prescriptions)
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and is well-defined in dimensional regularization. The
k+ and k� integrations can be performed using residues.
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�
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> q�
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, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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this fact, we consider the full result for the pentagon in-
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where
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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For physical kinematics, where all light-cone components
are positive and p�
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> q�
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, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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pentagon diagrams. The external momentum p25 6= 0 flows
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this fact, we consider the full result for the pentagon in-
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
upper pentagon in Fig. 2 expanded in this region takes
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
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associated F polynomial, one finds

F = �x1x3s23| {z }
��3

�x1x4s51| {z }
��3

�x3x5s45| {z }
��3

� x4x5m
2

| {z }
��3

�x2x4s34| {z }
��2

�x2x5s12| {z }
��2

. (15)

The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form

F =
�
�q�

c
x1 + (p�

c
� q�

c
)x5

�
| {z }

��2

�
l+
s
x3 � p̄+

c̄
x4

�
| {z }

��1

. (16)

For physical kinematics, where all light-cone components
are positive and p�
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> q�
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, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the
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this fact, we consider the full result for the pentagon in-
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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The first four terms constitute the leading power contri-
bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�

c
> q�

c
, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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UV poles of the low-energy matrix element

▸ The extra terms correspond to a new 
region with scaling  

▸ This Glauber region is missed in all 
publicly available region-finder codes, 
such as pySecDec and Asy2.1 

▸ The relevant integral is well defined in 
dimensional regularization:

kg ∼ Q(λ2, λ, λ)
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FIG. 2. Mapping of low-energy contributions to Wm onto
pentagon diagrams. The external momentum p25 6= 0 flows
into the hard amplitude Mm.
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.

It is interesting to understand the appearance of this
“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
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For physical kinematics, where all light-cone components
are positive and p�
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> q�
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, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the
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This quantity vanishes for the kinematics of the lower
graph in Fig. 2, and the above factor is of O(1). However,
for the upper diagram ⇥ is non-zero, since m2, s23 > 0
and s45, s51 < 0. This generates a non-trivial phase e2i⇡",
leading to a power enhancement in (11), which compen-
sates the power suppression and thus induces additional
leading-order terms. More generally, such terms only
arise between incoming lines involving a space-like split-
ting and a virtual gluon attached to both the soft and
the split-o↵ gluon, as is indeed the case for the upper,
but not the lower diagram in Fig. 2.

Using the known results for the pentagon integrals,
and subtracting the soft-collinear contribution, we can
derive the extra terms in the physical scattering kinemat-
ics given in (8). In the method of regions, these terms
must be generated by a new region absent in Euclidean
kinematics. We find that they are proportional to i⇡, and
are generated by a Glauber region k ⇠ Q(�2,�,�). The
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with sT = lsT+qcT . Note that the triangle integral has an
IR divergence even though all external momenta are o↵
shell. This is possible because in two dimensions a single
vanishing massless propagator can produce a singularity.
It is interesting to understand the appearance of this

“hidden” Glauber region from the representation of the
pentagon integral in Feynman parameter space (more
precisly the closely related Lee-Pomeransky space [41]),
where variables xi are associated with the respective
propagators, e.g. x1 is linked to the propagator be-
tween vertices 1 and 2, and the ensuing xi follow in
counter-clockwise direction. For the upper graph in
Fig. 2, the Glauber region is characterized by the scaling
(x1, x2, x3, x4, x5) ⇠ (��2,��2,��2,��1,��2). For the
associated F polynomial, one finds
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bution, which using (8) can be factorized in the form
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For physical kinematics, where all light-cone components
are positive and p�
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> q�
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, large cancellations occur

within the F polynomial. The hidden Glauber pinch
appears when both brackets in (16) vanish individually,
in accordance with the Landau equations [25, 27]. The
double cancellation with unequal coe�cients of the pa-
rameters xi may be the reason why we were unable to
find this region using Asy2.1 [21, 42].
With this understanding of the appearance of the

Glauber region in the context of the scalar example, we
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Glauber-gluon contribution in SCET

▸ The Glauber region gives the only non-
zero contribution after integration over 
the collinear momentum  

▸ Calculating it using SCET with Glauber 
gluons                                  , but without                           
an additional Glauber regulator we find: 

▸ Complete agreement with theoretical 
prediction derived assuming PDF 
factorization!

qc
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by
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where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)
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which leads to
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The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.

The same result can be obtained directly in SCET us-
ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.

In this Letter, we have uncovered a new mechanism
that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
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phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
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0 and could be non-perturbative, even if
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The divergences in ⌘ have canceled but the associated
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required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

Nc ↵3
s

12⇡2"3
ln

Q2

Q2
0
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FACTORIZATION RESTORATION THROUGH GLAUBER GLUONS 

▸ We have uncovered a new mechanism that reconciles the breaking of 
collinear factorization with PDF factorization 

▸ In an interplay of space-like collinear splittings and soft emissions, the 
contribution of perturbative Glauber gluons restores the factorization 
of the cross section by converting double-logarithmic into single-
logarithmic evolution below the jet-veto scale  

▸ In the future, it will be important to understand the all-order structure 
of these effects, probably using a more suitable implementation of 
Glauber effects in SCET 

▸ This would pave the way for a proof of PDF factorization for a much 
wider class of observables!

Q0
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Detailed structure of the soft anomalous-dimension coefficients 

where:

RESUMMATION OF SUPER-LEADING LOGARITHMS

A.1

�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .
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� = �+ V

G + �c ln
µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1

soft emission  
(collinear div. subtracted)

collinear emission

Glauber phase

Figure 6. Action of the cusp operator Rc
1 and the virtual piece V

G on a hard function Hm. The
operator Rc

1 adds an additional final-state leg (dashed blue line) along the direction of the incoming
parton 1.

entry, H2!M ⌘ (H2+M , 0, 0, . . . ). We also combine the real and virtual pieces of the soft

anomalous dimension into the matrix notation

�
c =

X

i=1,2

�
cusp
0

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡�cusp0 (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij � 4
X

(ij)

Ti,L � Tj,R W
k

ij ⇥hard(nk) .

(4.1)

As in (2.11) and (2.15), these are matrices in multiplicity space that multiply the hard

function from the right and the order of the matrices determines the order in which they

act on the hard function. At the same time, they contain color matrices that can act on

the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of

the hard function on the left or on the right. The vector nk in (4.1) corresponds to the

direction of the emitted gluon. Each emission generates a new vector and in a product of

anomalous dimensions we will label the vectors with an index nk`
with ` = 0, 1, . . . , where

` = 0 is the last emission, ` = 1 the second to last, and so on.

Three properties of the di↵erent components of the anomalous dimension (4.1) greatly

simplify our calculations. Color coherence, the fact that the sum of the soft emissions o↵

two collinear partons has the same e↵ect as a single soft emission o↵ the parent parton,

implies that

H�
c
� = H��

c
, (4.2)

in other words they commute when multiplying a hard function H

[�c
,�] = 0. (4.3)

To derive this relation, we note that the contributions Rm and Vm only depend on the

sum of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q

ik + Tj,L · Tk,RW
q

jk = (Ti,L + Tj,L) · Tk,RW
q

ik , (4.4)
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for the collinear-emission operator �c and the Glauber operator V G are [18]4

�c =
X

i=1,2

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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,
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�
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(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =
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T
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i
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j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
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Hm T
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, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)
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k

ij
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where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
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ij
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ij
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nj · nk
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ij
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It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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Detailed structure of the soft anomalous-dimension coefficients 

where:

RESUMMATION OF SUPER-LEADING LOGARITHMS

A.2

�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1

Glauber phase

soft emission  
(collinear div. subtracted)

collinear emission

Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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Detailed structure of the soft anomalous-dimension coefficients 

where:

RESUMMATION OF SUPER-LEADING LOGARITHMS

A.3

�0
↵sCF
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4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX
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T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark
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�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
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(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)
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Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)
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X
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V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton
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for the collinear-emission operator �c and the Glauber operator V G are [18]4

�c =
X

i=1,2

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.

6

subtracted dipole emitter

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES (PART 1)

dipole emitter



Matthias Neubert  — JGU Mainz

SLLs arise from the terms in                                                        with the 
highest number of insertions of Γc 

▸ Under the color trace, insertions of Γc are non-zero only if they come 
in conjunction with (at least) two Glauber phases and one  

▸ Relevant color traces at : 

▸ Kinematic information contained in  angular integrals from :

Γ

𝒪(αn+3
s L2n+3)

(M + 1) Γ
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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RESUMMATION OF SUPER-LEADING LOGARITHMS

A.5

General result for  hard processes 

Basis of color structures:

2 → M

where
F (6)
abcd = �fBbefCce F

(4)
aBCd . (32)

This would seem to generate increasingly complicated tensor structures, but using the explicit
form of F (4)

abcd in (27) we find that this is, in fact, not the case. Instead, we obtain

F (6)
abcd = F (2)

abcd �Nc �ad �bc �
N2

c

8
dadedbce . (33)

To arrive at this result, we have defined the matrices

(Da)bc = dabc (34)

and used the trace relation [7]

Tr
�
F aF bDc

�
=

Nc

2
dabc . (35)

Generalizing relation (33) to higher orders leads to

F (4+2n)
abcd = F (2n)

abcd + (�Nc)
n �ad �bc �

1

2

✓
Nc

2

◆n+1

dadedbce (36)

for all n 2 N. It follows that any symbol F (2n)
abcd for n � 3 can be reduced to the two symbols

in (27) plus terms proportional to �ad �bc and dadedbce. In other words, only four color tensors
are generated by successive applications of �c, namely

fabefcde , dadedbce , �ab �cd , �ad �bc . (37)

There is no need to symmetrize the first and the third structure in the index pair (b, c), because
the color trace ⌦

H
�
T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2)
�↵

(38)

with which these structures are contracted already has this symmetry.
At this point, we arrive at the result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
+ terms proportional to J12

#
, (39)

where the basis operators are defined as

O
(j)
1 = fabefcde T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
2 = dadedbce T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
3 = T

a
2 {T a

1 ,T
b
1 }T b

j � (1 $ 2) ,

O
(j)
4 = 2C1 T2 · Tj � 2C2 T1 · Tj .

(40)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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d
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�
T

b
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c
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�
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b
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S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,
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Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
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⌦
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(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
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where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations
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2 ,
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3 ,
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4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

[Becher, MN, Shao, Stillger (2023)]
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RESUMMATION OF SUPER-LEADING LOGARITHMS

A.6

General result for  hard processes 

▸ Series of SLLs, starting at 3-loop order:

2 → M

linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

from scale integrals (at fixed coupling)
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