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Power corrections in collider processes

Renormalons and linear power corrections

Massless partons

Massive partons

eTe™ annihilation: shape-variables in the 3-jet region.
Fits to eTe™ data.
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Power

corrections for collider processes

Little is known about power corrections in QCD processes.

Some simpler processes admit an OPE (the total cross section
in ete™ annihilation and similar processes, DIS-like processes,
B meson decays ...) so that power corrections can be
parametrized.

For the complex collider processes one worries about the
presence of linear power corrections, i.e. corrections of the
order of A/Q, since these could be at the percent level, that is
the accuracy one is aiming for at the HL LHC.

One instrument for the investigation of linear power correction
is the study of renormalons in the large by approximation.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitudes of the form

m 2 m 1
dkP k) = dkP ———MMM
/o as(k) /o bo log(K?/1\%)

- /md P as(m?) i
0 1+ boors(m?) log £5
oo m m
= as(m?) Z(2boas(m2))"/0 dk® log” P

n=0 N——
prn!

Asymptotic expansion.
» Minimal term at npn =~ m.

» Size of minimal term: mPas(m?)y/27 e "min ~ AP.
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Large-n; all-order result

Given an (IR safe) observable O, we introduce the notation
> &g, phase space;

» ®,, phase space for the emission of one massive gluon with
mass A,

» ®.5, phase space for the emission of a qg pair
the all-order result can be expressed in terms of
» op(Pp), the differential cross section for the Born process;

» o,(\, ®p), the virtual correction to the Born process due to
the exchange of a gluon of mass A;

» The real cross section g+ (A, g+ ), obtained by adding one
massive gluon to the Born final state;

» The real cross section 044(®Pqg), obtained by adding a qg
pair, produced by a massless gluon, to the Born final state;

5/66



Large-n; all-order result

Defining:
Seymour,PN1995
—— —~
To(\) = Vo(A) + Ro(XA) + Ao\
Vo(A) = /d¢ba£1)()\2,d>b)0(d>b),
Ro(\) = [dog e (A2 ¢,)0(,)
(0] g* Vg y Yg g*)»
377)\2 2 2
Do) = 27 [ d0eR(®e)i(mi; — 32)[0(0sq) — O(0)]

The A term vanishes if the observable is totally inclusive in the
radiated partons.

It turns out that a linear term in A in the expansion of T(\)
around zero is associated with linear renormalons.
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Large-n; all-order result

The all-order result is given by

Beneke,98
dTo(A) 1 [ 1 whoas
0) = Bo — [ dx | aret
(0) = Bo / A as [Wboarcan1+boa5|og)\2/uzc

aseft(N)/as

It is easy to show that a linear A term in Tp(\) leads to a factorial

growth related to a linear IR renormalon. In fact

1 7Tb0a5
d\ | = arct =
/ Lr arctan 1+b0a5|og)\2/uzc]
t
1 o &Xp <_2b0a5> 1
_ dt— 7 [
7TP/0 1—-1t exp( 2b0a5>

+ terms analytic in as.
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Large-n; all-order result

» We have a well-defined procedure for the computation of the
T function..

» Can be computed semi-numerically. This approach has been
followed in

» Ferrario Ravasio, Oleari, PN,2019 for studies related to the top
mass measurements.

» Ferrario Ravasio, Limatola, PN,2021 for showing the absence
of linear corrections to the pr spectrum of the Z in hadronic
collisions.

Gavin Salam had often shown an argument in favour of the
presence of linear power corrections to the inclusive pr spectrum
of the Z boson, based upon the fact that the soft radiation
associated to this process is not azimuthally symmetric. Our
attemt to actually compute such an effect in a model theory gave
negative results.
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It is however difficult, numerically, to show the absence of a
correction, especially in this case where the cancellation of
soft-collinear divergence between the virtual (computed
analytically) and real (computed numerically) is involved.
Analytic results were found:
» Analytic approach for massless partons:
Caola,Ferrario Ravasio,Limatola,Melnikov, PN 2021,[2108.08897],
same authors + Ozcelik 2022[2204.02247]

» Analytic approach for massive partons:
Makarov, Melnikov, Ozcelik, PN, 2023, [2302.02729],
2023[2308.05526], 2024[2408.00632]

9/66



Cancellation of linear NP terms

Our findings can be summarized as follows:

» Consider a process, described by a cross section (with no
radiation) B(p1,...pn) where p denotes a set of fixed external
momenta, with ps...p, colourless particles, and p1, p>
massless quark antiquark (final-final or initial-initial) or
quark-quark (initial-final) pair.

> Assume that we emit a massive gluon of mass A and
momentum k, and we have a smooth (in a sense to be
clarified afterwards), IR safe mapping from the full real
emission configuration to the underlying Born one.

Then:
» No linear X sensitivity arises from virtual corrections

> No linear X sensitivity arises from the real contributions due to
an unrestricted integration in k at fixed underlying Born
kinematics.
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The result is based upon two observations:

» Virtual corrections have no linear power corrections.
One can show that the virtual integrals give rise to constants,
logs and double logs of X, but no linear terms in A.

» Writing the real emission term in a factorised form:

d3k
do, = J x dbg—— (2)

ko
through the choice of a mapping to an underlying Born
¢, <> {®p, k}, (or choice of a recoil scheme),
it can be shown that if the mapping is linear in k for small k,
no linear renormalons are present after the k integration. So:
in inclusive cross sections at fixed undelying Born no
renormalons are present.
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Virtual corrections

» Virtual corrections due to the exchange of a massive gluon
emitted by massless partons never lead to linear terms in the
mass A. Besides verifying this in the practical case, this can
be proven by considering that the Passarino-Veltman
reduction procedure never leads to linear terms in A, and by
examining the IR divergent scalar integrals.
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Hard collinear region

» Hard, collinear divergences do not lead to linear terms A. In

fact, defining Sudakov variables for the gluon momentum
k3 4 N\

k:Zpl‘i‘ﬁPZ'i‘kJ_v B:J—ia

z2p1 - p2

collinear integrals have the form

P(k
/dki - (k1) o =12
(k3 + (14 2)2?)

P(k.), for small ky, can start with a constant if i = 1, and must
start with a term bilinear in k| or proportional to A2 if i = 2.

If the mapping near the collinear region is linear in k|, no linear
terms in A can arise, since subleading terms in k; are odd, and

vanish by azymuthal integration.
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The soft region

The soft region leads to integrands of the form

/d3k

It is easy to see that (in the p1, p dipole CM)

1 22
(2p1-k+A2)(2p2- k4 22)"  (2p1y2 - k 4 A2)?

2
pl-kzgw(l—ﬁcosmzgw(l—ﬁ)z%z%,

so, the denominators scale at worse like )\, so does w and \/?| By
power counting the second integral scales like A2, while the first
one scales like 1.

In the first integral, subleading terms in w, for example, may lead
to terms linear in \.
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We now consider the k integral in the soft region at fixed
underlying Born. We assume that the mapping from the underlying
Born phase space to the full phase space is smooth for small k, in

the sense that
Pl = B+ Tk + O?)

where p are the underlying Born momenta. The “dangerous” soft
integral gives rise to terms of the form

p1-k

1 1 _kﬂk+A2+
pr-k+X Pk

so that

1 1 > KTik + A2
5 5 = = = — Ni‘f’ .
(pr-k+X)(pr-k+X)  pr-kpo-k| = Ppi-k
where ... indicate terms subleading by power counting.
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But, for collinear safety, kTk o< p1 - k po - k, since it must vanish in
both collinear limits. For example, T1k must vanish if k is collinear
to po, because in this case p; = p1, and must be proportional to p;
if k is collinear to p;. Thus we end up having to worry about the
following integrals

/d3/? 1 k-v A2
w |pL-kpo-k’ pr-kpr-k’ (Pr-k)?p-k|’

where v is a generic vector. Notice that one should also worry
about the Jacobian, when changing integration variables from p, k
to p, k. However, if the mapping is smooth in k, such change
contributes at most a linear term, i.e. can be lumped into the k - v
term.

By direct calculation, it can be easily seen that the above integrals
do not yield linear terms in A.
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Consequences

Old and new results can be derived:
Linear corrections are absent in

| 2

>
>
>

v

DIS (must be the case because of the OPE)

Drell-Yan total cross section [Beneke and Braun|

Drell-Yan rapidity distribution [Dasguptal

Dreal-Yan double differential cross section in transverse
momentum and rapidity distribution of the pair (new)

In ete™, shape variables power corrections can be computed
also in the 3-jet regime!

Before they had been computed only in the 2-jet limits, with

the only exception of the C-parameter in the 3-jet symmetric
limit [Luisoni,Monni,Salam,2019]

The results on DIS and Drell-Yan follow because on can find an

appropriate mapping that also maintains fixed @2 and xp; for DIS,

and the Drell-Yan pair kinematics for Drell-Yan.
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We investigating the structure of linear renormalons in the three jet

region by computing the cross section for the process v* — qg~y

q

q
including gluonic corrections in the large nf limit.

Do
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Our new analytic findings can also be applied to shape variables.

The large-ng, To(A) result can also be written as

A(N) R(X) V()

—~ =
+V, 03 }

———
/dq)split P;:,r,t(OS - 04) + O4gl—“’

To(\) = N/d%{/dw)/ww(k)

where Os_5 is the observable in terms of 3, 4 or 5 particles, and:

» M,.,g"" is the cross section fo the production of the qgvy
system plus a massive gluon with momentum k and mass A

> MWPsfﬁl’it is the square amplitude for the production of gg~
plus a gg pair by a (massless virtual) gluon of momentum k
(k? = \?) via splitting, but normalized so that
wr ppvo 2
/d(bsplitpsplit - guu B k#ky/)‘
» V) is the virtual corrections to the v* — qg process, due to
the exchange of a massive gluon.
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Our new analytic findings can also be applied to shape variables.
The large-ng, To(A) result can also be written as

A(N) R(X) v())
/ dPepiie P (05 — Oa) + Oag™” | + V05 }

To(\) = N/d%{/d&ﬁ’/\ﬂw(k)

We can rewrite it as

To(\) = N/d%{/ddk*)/\/rw(k)

+ {/ Ao Mg + V/\] 03}-

Now, the second line contains the sum of the virtual plus an
unrestricted integral in k of the massive real contribution.
By our findings, if the mapping ®3, CDE()‘) is smooth,

It does not have linear terms in Al

/dq)splitPsl;rit(OS — 04) + (04 — 03)gW:|
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Focus upon the first line:

TE= (N = N / d¢3{ / do™M M, (k)

Since O is IR safe, there is one soft suppression from there. So,
we can evaluate M neglecting O(1) terms in w:

T(()ﬁrst)()\) ~ N/d¢3B/d¢E<)\)P;(LS;ft)|:/d¢sp"t spllt(05 ):|

where we only need the Born cross section B, the soft emission

), and the splitting factor Pg)ht'

P(soft) _ ( p{t _ Pg > ( plu _ p2u >
" (pr+ k) (p2+k)2) \(p+k)?  (p2+k)?)’
Pii = NTr[gy" (k—aq)y"].

ft
tensor PL(LS,,O

We can evaluate numerically T(ﬁmt)()\) TéﬁrSt)(O), (canceling the
constant terms under the integral sign) to get the linear term.

/dd)splltP;;:t( 5_04)+(O4_O3)gl“’:|}
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The Milan Factor

Very early approaches [Dokshitzer,Webber,Marchesini 95| on
non-perturbative corrections near the 2-jet limit suggested the
formula .
a7 ) 0P - Oplaky)

L
where the first term is the invariant phase space for soft emission,
the term in the round bracket is the amplitude for soft emission in
the eikonal approximation in the radiating dipole rest frame, and
the term in square bracket is the contribution of the observable.

The ambiguity associated with the integration near the Landau
pole for ais corresponds to the linear power correction.
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For example:
L= T2 0(P.k) = () = ‘5 exp(-lal). [ dn expln) =

C: O(P,k)— O(p) = Qcosh / dncosh 3
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These approaches ignored the gluon virtuality, that was set to zero
in the formula, and the dependence of the shape variable upon the
products of the gluon decaying into massless partons, that spoils
the universality in the above formula [Seymour,PN,95].

Subsequently, Dokshitzer,Lucenti,Marchesini,Salam, 97-98
demonstrated that for a wide class of observables the inclusion of
the gluon splitting process changed the original formula by a
universal, constant factor, that was dubbed the Milan factor.

For this to hold, the observable must be additive under multiple
soft emission, i.e.

O(P, kl, ce kn) ~ O(P]7 kl) 4+ ...+ O(Pn,kn)

[Akhoury,Zakarov,95]
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We found [Caola,Ferrario Ravasio,Limatola,Melnikov,Ozcelik,PN]
that the also in the 3-jet limit the Milan factor formula can be
derived (with the same Milan factor as in the 2-jet case)

|O|xp = /\/tINp/daB(<1>B)TA Z/[dk]g—: 5(|ki| — N)[O(®5.k) — O(®5)]

dip
where k% = 0, and
M A3k g2 p1-p 2Cqipaes , do dky
K— = ——— Cyip == = P bt
[dK] 2 2k0(273) s pr - kpa - k i

» Notice the trade: k2 = X2 — k; = \.

» The shape variable is evaluated for the extra-emission of one
massless parton.

» The proof is not simple. However it is clear how the
addittivity of the shape variable makes this possible.

> An extra condition emerges: the rapidity integral must
converge.
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For the cumulant of a shape variable, we obtain

T(v)se = { [ dos(@s)itu(®s) =) S [~M25 [ SLagn.g as)}}zma

dip

where

. 0) = fim, (& 1P = v(o)])

and the function h is eaS|Iy calculable for the shape variables of
interest.

25 /66



From v* — qgvy to v* — qqg

The calculation of the linear power corrections for the v* — qgvy
production process only involves the radiation from the g dipole
in the soft approximation.

This result suggests the generalization to the realistic v* — qgg,
applying the soft approximation to this case.

Thus one can simply add the contributions arising from each one
of the final state colour dipoles, i.e. qg, qg and gg.
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Shape Variables of choice

Shape variables are IR stable functions of the final state
kinematics. We consider:

> Thrust: 7=1—T, T =max; > |p; - t|/ > |pil
B
> C: WY AR/ 3T 1Al € = 3(Ahe + Az + A2As)
P y3: take Durham jet clustering, with distance measure
yij = 2min(E?, EJ?)(l —cos;;)/Q?. Then yjs is define as the
value of yj; at the clustering step that leads to the transition
from 3 to 2 clusters.

» Mh2 (heavy jet mass): the heaviest of the squared masses of
the two hemisperes defined by the plane orthogonal to the
thrust axis, normalized to Q?

» Md2: the heaviest minus the lightes of the squared masses of
the two hemisperes, normalized to Q2.

> Bw: max(Bi, Ba), Bi = 3, cp, [Pk x E/(232; |pil)-
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Non-perturbative corrections can be parametrized as a shift in the
perturbative cumulant distribution:

Y(s) — X(s+ Hxp((s)), where X(s)= /da(CD)@(s —s(®))

and Hyp =~ A/Q is a non-perturbative parameter that must be
fitted to data.

1
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The dot in the plots represents the constant value that was used in
earlier studies. The value of {(c) at the symmetric point ¢ = 3/4
was also computed by Luisoni,Monni,Salam 2021.
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Rapid variations near v =0

Near v = 0, the Born amplitude is dominated by the soft-collinear region.

X

%

radiation = %Mc—,g + %ng + (C,: — (;A) Mgg

but Myg = 0, Mgg = Mgz, so the total is =~ CrMgyg.

Our ¢(v) functions, for v — 0 MUST approach the 2-jet limit
value; but up to single logs!, i.e. terms of relative order 1/|log(v)|.
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Two-jet limit reached, but subleading terms are extremely
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as from et e™ shape variables

» Historically the framework of choice to measure a; directly from the
qqg vertex.

» In practice: very convincing at the 10% level; affected by
non-perturbative uncertainties if one wants higher precision

» «as(Mz) from NNLO+NLL+Monte Carlo models:

> (.1224 +0.0039 ALEPH 2009, [arXiv:0906.3436].)
> (.1189 + 0.0043 OPAL 2011, [arXiv:1101.1470])
> (0.1172 +0.0051 JADE 2009, [arXiv:0810.1389]

The use of Monte Carlo models to correct for hadronization effects have
long been criticized, since the interplay of perturbative and
non-perturbative effects in Shower Monte Carlo is not fully clear.
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as from et e™ shape variables

[BDP 2008-16
As an alternative, another class of determi- [ Hi TI"Z‘:"S
. . . . iow 4
nations is based upon analytic modeling of [222 .-
non-perturbative effects, using methods like [reazos 2 92
. . Narison 2018 (c¢) ——
SCET, dispersive models and low scale QCD [serson 2018 ) prates
effective couplings, and using NNLO-+N3LL [oee —=—¢
calculations: :ﬁ,‘:g;; e PDF fits
CT18
MSHT20 ———
» (0.1135 + 0.0011 R.Abbate et al,
. ALEPH (j&s) — o
2011, [arXiv:0809.3326] oraL s
&s)
Dissertori (3j) o
’ O 1134 +00031 ]AD!E)(ij (12) 1 iest(g
. Verbytskyi (2j 4
—0. 002‘.5 . . Kard():; (Eysc)l shapes
Gehrmann,Luisoni,Monni, aobate 1| emt
. Gehrmann (T) ——e——
2013,[arXiv:1210.6945] Hoang (© | —e—
Klijnsma (tf)
» 0.1123 £ 0.0015 Hoang et al, o e nadron
2015 [arXiv:1501.04111] en o) i
. P0G 2020 '_;._'electroweak
They tend to result in a rather low value, o 2o i
. . FLAG2019 L 2l lattice
not in good agreement with world data. o L T 3 7 T e
(M)
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Results from Zanderighi, PN 2023

Simultaneous fit to C, t and ys, both for our newly computed ¢(v), and,
for comparison, with ¢(v) — (23(v) = ¢(0) (traditional method for the
computation of power corrections).

0.8 T T T T T
0.75 i
2(v), x=6.7
0.7 T ASN s S BN 1

0.65 |- < @ R i
06 G, xE16.1 Tc-o. T . 4

(T S 1

0.5 | 4

%o

0.45 | DOF=42 Yenins Xin+1, XZin+4 contours 4

0.4 1 1 1 1 1
0.112 0.114 0.116 0.118 0.12 0.122

as(Mz)

The central value is at as(Mz) = 0.1174, ap = 0.64. The
“traditional” method leads to smaller values of as.
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Individual fits:

2 T T \ .I
1.5

S 1

0.5

0 Il Il Il Il Il
0.09 0.1 0.11 0.12 0.13 0.14 0.15
as(MZ)

Only the combination of the three observables leads to a sensible
determination of a;s

O D = = = wac
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Inclusion of all data we could find at all energies

DELPHI 91.2 45 66 76 133 161 172 183 189 192 196 200 202 205 207
ALEPH 91.2 133 161 172 183 189 200 206
OPAL 91.2 133 177 197
L3 91.2 41.4 55.3 65.4 75.7 82.3 85.1 130.1
136.1 161.3 172.3 182.8 188.6 194.4 200
JADE 22 35 44
TRISTAN 58
JADEOPAL 91.2 35 44 133 161 172 183 189
SLD 91.2

u}
o)
1
n
it

Do
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> We perform the fits at the central scale, and then consider its variations
by a factor of 2 below and above.

» In order to get a better fit of the very precise Z-peak data, we chose the
central scale to be a function of the shape variable:
We first compute the average kr as a function of the value of each shape
variable (computed at the LO level), and then choose the kr as central
value of the scale. Fitting only ALEPH data on the Z peak we get:

x°/dof | best pir as(Mz) | ao
fixed scale 25 0.175 x Mz | 0.1170 0.58
running scale | 1.66 1.28 x (kr) | 0.1168 | 0.593

(best g leads to the lowest x?)

» The lower limit in the fit range is taken at twice the Sudakov peak
position. Upper limit is 0.6 for C and 0.3 for thrust and y3.
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Fitting Thrust, C-parameter and y3 at the same time
0.6

T T T
0.595 - b
o
0.59 N
8 Ax%=2
0.585
0.58 1 1 1 1 1 1
0.1172 0.1174 0.1176 0.1178 0.118 0.1182
GS(Mz)

0.1184 0.1186
Leading to as(Mz) = 0.1180, and ag = 0.589, with x? = 1125.7
over 895 degrees of freedom (x2/dof = 1.258).

[m]

o - -

Do
38/66



0.605 | B

0'6 1 1 1 1 1 1
0.116 0.1163 0.1166 0.1169 0.1172  0.1175 0.1178

('XS(Mz)

as(Mz) = 0.1172, and ag = 0.6148, with x? = 269.0 over 292
degrees of freedom (x2/dof = 0.921).

Do
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0.65 T T T T T T

0.64 - E

2]

0.61 - E

0.6 1 1 1 1 1 1
0.116 0.1163 0.1166 0.1169 0.1172 0.1175 0.1178

as(Mz)

as(Mz) = 0.1169, and ag = 0.6245, with x? = 651.7 over 151
degrees of freedom (x?/dof = 1.442).

Do
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0.45 T T T T T T T

0.44 —

0.43 - i

0.42 .

2]

0.38 1 1 1 1 1 1 1
0.114 0.1144 0.1148 0.1152 0.1156 0.116 0.1164 0.1168

('XS(Mz)

as(Mz) = 0.1155, and ag = 0.4151, with x? = 71.6 over 292
degrees of freedom (x2/dof = 0.474).

Do
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0.7 T T

0.65 -

0.6 -

0.55 -

0.5

Qo

0.45

Cly3 —
035 ST
0.3 : : : : : : T —
0.114 0.1145 0.115 0.1155 0.116 0.1165 0.117 0.1175 0.118 0.1185
as(Mz)
Global Fit Individual Fits
Obs. | Dof | x* | x%®/dof | x* | x°/dof
C 292 | 278.2 0.95 269.0 | 0.921
T 452 | 659.7 1.465 651.7 1.44
V3 151 | 132.7 0.879 71.6 0.47 -

Do
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v

For C and T, individual fits are compatible with the CTy3 fit,
For y3 a much smaller «q is favoured.

The 2 for the individual y3 fit is very low, so that a larger

value of ag (leading to a larger value of as) is also acceptable.

The inclusion of y3 in the CTy3 fit pulls ag to smaller values,
and thus increases a; slightly.
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Variations: global fit CTy3

Variation as(Mz) Qg X2 x2/dof | dof
Central 0.1180 | 0.5892 | 1125.6976 | 1.2578 | 895
High scale 0.1167 | 0.5846 | 1465.9393 | 1.6021 | 915
Low scale 0.1167 | 0.6683 | 1940.0007 | 2.3775 | 816
Std scheme 0.1173 | 0.5347 | 1090.8732 | 1.2202 | 894
p scheme 0.1160 | 0.5624 | 1051.1005 | 1.1757 | 894
D scheme 0.1199 | 0.7252 | 747.3571 | 0.8350 | 895
high low-lim 0.1177 | 0.5673 | 947.3134 | 1.2498 | 758
low low-lim 0.1165 | 0.6260 | 1579.9496 | 1.6073 | 983
non-pert scheme 2 0.1193 | 0.5923 | 1249.1436 | 1.3957 | 895
non-pert scheme 3 0.1189 | 0.5825 | 1232.5919 | 1.3772 | 895
non-pert scheme 4 0.1185 | 0.5927 | 1158.0191 | 1.2939 | 895
minus non-pert error | 0.1187 | 0.5865 | 1122.1407 | 1.2538 | 895
plus non-pert error 0.1189 | 0.5649 | 1228.4413 | 1.3726 | 895
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>
>

have considered:
Scale variations, up and down by a factor of 2 from default

Mass scheme: how to solve the ambiguity in shape variables
due to hadron masses [Salam,Wicke,2001]. We use as default
the E scheme; variations: std. scheme, p scheme and D
scheme.

Range low limit: 2 (default), 1.7, 3 times the peak position.

4 different ways to implement NP corrections: shift in the full
cumulant with or without adding an estimate of quadratic
terms; shift in the LO cumulant; expand the correction around
the perturbattive value. cumulant argument

Subtract NP error

Add NP error

In all cases we find the mass scheme issue very disturbing (slightly

less

than a 2% correction in both directions.
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2-jet NP correction, fit CTy3

Variation as(Mz) Qg X2 x2/dof | dof
Central 0.1161 | 0.5389 | 1149.9394 | 1.2848 | 895
High scale 0.1150 | 0.5181 | 1830.6507 | 2.0007 | 915
Low scale 0.1155 | 0.6061 | 1523.6604 | 1.8672 | 816
Std scheme 0.1153 | 0.4989 | 1106.6396 | 1.2379 | 894
p scheme 0.1141 | 0.5119 | 1125.7113 | 1.2592 | 894
D scheme 0.1173 | 0.6465 | 923.2022 | 1.0315 | 895
high low-lim 0.1159 | 0.5325 | 977.2551 | 1.2893 | 758
low low-lim 0.1143 | 0.5658 | 1510.5800 | 1.5367 | 983
non-pert scheme 2 0.1163 | 0.5603 | 1281.1125 | 1.4314 | 895
non-pert scheme 3 0.1167 | 0.5305 | 1312.8618 | 1.4669 | 895
non-pert scheme 4 0.1161 | 0.5390 | 1149.9904 | 1.2849 | 895
minus non-pert error | 0.1161 | 0.5390 | 1150.0007 | 1.2849 | 895
plus non-pert error 0.1161 | 0.5389 | 1149.8783 | 1.2848 | 895
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Everything else being equal, we found that using the two-jet limit NP
correction lowers the value of g by nearly 0.002 in the CTy3 fit.

For all fits:

Oés(MZ)
CTy3 C T Vs
Variation || ¢(v) | <(0) || <(v) | €O | <) [ <@ || <) | <@
Central 1181 | .1161 || .1169 | .1139 || .1168 | .1158 | .1155 | .1154
High scale 1167 | .1150 || .1212 | .1184 || .1208 | .1191 || .1157 | .1161
Low scale 1167 | .1155 || .1141 | .1105 || .1159 | .1128 || .1122 | .1131
Std scheme 1173 | 1153 || .1164 | .1118 || .1152 | .1148 || .1150 | .1149
p scheme 1160 | .1141 || .1164 | .1118 || .1152 | .1148 || .1137 | .1135
D scheme 1199 | 1173 || .1190 | .1153 || .1205 | .1170 || .1156 | .1166
high low-lim || .1177 | .1159 || .1221 | .1116 || .1180 | .1172 || .1142 | .1154
low low-lim 1165 | .1143 || .1151 | .1116 || .1154 | .1133 || .1154 | .1142

Stronger decrease for C, less for T, almost none for y3.
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M? and M3

» These observables have ((v) < 0 in most of the range, with
an effective large jump near the origin. They are not easy to
fit as the others, perhaps because of this jump.

» Unfortunately, the data is inconsistent for these observables,
with DELPHI differing strongly from all other experiments.

» An independent analysis of DELPHI data on the Z peak
[Daniel Wicke, 1999 (thesis)] is instead consistent with the
other experiments.
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Including M? and M3 in the fit

Variation as(Mz) | ao % x?/dof | dof
Central 0.1222 | 0.5273 | 2326.9662 | 2.6716 | 871
High scale 0.1217 | 0.5518 | 3792.5798 | 4.3543 | 871
Low scale 0.1203 | 0.5200 | 5082.6673 | 6.2135 | 818
Std scheme 0.1207 | 0.4435 | 5898.7965 | 6.8115 | 866
p scheme 0.1197 | 0.5076 | 2108.0830 | 2.4231 | 870
D scheme 0.1260 | 0.6058 | 2913.3330 | 3.3448 | 871
high low-lim 3 0.1210 | 0.5342 | 1717.8313 | 2.3120 | 743
high low-lim 4 0.1204 | 0.5519 | 1387.2944 | 2.2091 | 628
high low-lim 5 0.1201 | 0.5663 | 1109.9750 | 2.0864 | 532
low low-lim 0.1229 | 0.5302 | 3817.7635 | 3.9977 | 955
non-pert scheme 2 0.1244 | 0.5030 | 4255.4882 | 4.8857 | 871
non-pert scheme 3 0.1241 | 0.5101 | 3939.7764 | 4.5233 | 871
non-pert scheme 4 0.1225 | 0.5246 | 2428.3917 | 2.7881 | 871
minus non-pert error | 0.1224 | 0.5246 | 2361.0027 | 2.7107 | 871
plus non-pert error 0.1220 | 0.5302 | 2295.3221 | 2.6353 | 871
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Including M? and M7 in the fit, 2-jets NP corrections

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1171 | 0.6194 | 7003.1054 | 8.0403 | 871
High scale 0.1072 | 0.6829 | 14792.3877 | 16.9832 | 871
Low scale 0.1150 | 0.6638 | 2923.2290 | 3.5736 | 818
Std scheme 0.1162 | 0.5106 | 6005.4771 | 6.9347 | 866
p scheme 0.1121 | 0.6216 | 7133.7624 | 8.1997 | 870
D scheme 0.1191 | 0.7231 | 11292.6068 | 12.9651 | 871
high low-lim 0.1142 | 0.6993 | 5577.2908 | 7.5064 | 743
low low-lim 0.1168 | 0.6176 | 7483.8707 | 7.8365 | 955
non-pert scheme 2 0.1268 | 0.5277 | 9499.9953 | 10.9070 | 871
non-pert scheme 3 0.1264 | 0.5263 | 9457.7652 | 10.8585 | 871
non-pert scheme 4 0.1171 | 0.6195 | 7004.0344 | 8.0414 | 871
minus non-pert error | 0.1171 | 0.6195 | 7004.1066 | 8.0415 | 871
plus non-pert error 0.1171 | 0.6194 | 7002.1081 | 8.0392 | 871
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CONCLUSIONS

» Something new has been understood in the framework of
power corrections for collider processes.

» Applications in eTe™ shape variables seem to support these
findings to some extent.

» Prospects for fits to a5 in ete™ framework are unclear
because of:

>
>

>

Hadron mass effects are poorely understood.

Interplay of (new) NP corrections and resummation needs
more work

Possible inconsistencies between experiments should be
carefully assessed.

Correlations in data (and theory) needs a better treatment.
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Variations: fit CT

Variation as(Mz) Qg X2 x2/dof | dof
Central 0.1175 | 0.6061 | 953.0331 | 1.2810 | 744
High scale 0.1211 | 0.5013 | 998.3168 | 1.3418 | 744
Low scale 0.1146 | 0.7534 | 969.7802 | 1.3756 | 705
Std scheme 0.1157 | 0.5710 | 908.7845 | 1.2231 | 743
p scheme 0.1157 | 0.5710 | 908.7845 | 1.2231 | 743
D scheme 0.1198 | 0.7300 | 609.9992 | 0.8199 | 744
high low-lim 0.1190 | 0.5421 | 809.1090 | 1.3286 | 609
low low-lim 0.1157 | 0.6444 | 1166.3332 | 1.4224 | 820
non-pert scheme 2 0.1191 | 0.6126 | 966.5737 | 1.2992 | 744
non-pert scheme 3 0.1192 | 0.5852 | 971.5030 | 1.3058 | 744
non-pert scheme 4 0.1171 | 0.6341 | 950.4401 | 1.2775 | 744
minus non-pert error | 0.1170 | 0.6271 | 943.4099 | 1.2680 | 744
plus non-pert error 0.1175 | 0.5947 | 969.2549 | 1.3028 | 744
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Variations: fit C

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1172 | 0.6148 | 268.9646 | 0.9211 | 292
High scale 0.1212 | 0.5076 | 276.6518 | 0.9474 | 292
Low scale 0.1141 | 0.7634 | 281.2422 | 0.9868 | 285
Std scheme 0.1164 | 0.5639 | 336.3641 | 1.1519 | 292
p scheme 0.1164 | 0.5639 | 336.3641 | 1.1519 | 292
D scheme 0.1190 | 0.7340 | 192.4281 | 0.6590 | 292
high low-lim 0.1221 | 0.4447 | 193.9756 | 0.8857 | 219
low low-lim 0.1151 | 0.6469 | 349.1941 | 1.0362 | 337
non-pert scheme 2 0.1191 | 0.6189 | 274.3330 | 0.9395 | 292
non-pert scheme 3 0.1195 | 0.5902 | 274.5646 | 0.9403 | 292
non-pert scheme 4 0.1170 | 0.6406 | 270.9737 | 0.9280 | 292
minus non-pert error | 0.1173 | 0.6306 | 264.9847 | 0.9075 | 292
plus non-pert error 0.1172 | 0.6039 | 273.1821 | 0.9356 | 292

57/66



Variations: fit T

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1169 | 0.6245 | 651.7492 | 1.4419 | 452
High scale 0.1208 | 0.5253 | 687.2753 | 1.5205 | 452
Low scale 0.1159 | 0.7082 | 639.8972 | 1.56236 | 420
Std scheme 0.1152 | 0.5876 | 534.0098 | 1.1841 | 451
p scheme 0.1152 | 0.5876 | 534.0098 | 1.1841 | 451
D scheme 0.1205 | 0.7232 | 372.8273 | 0.8248 | 452
high low-lim 0.1180 | 0.5896 | 596.8003 | 1.5303 | 390
low low-lim 0.1154 | 0.6672 | 713.4200 | 1.4771 | 483
non-pert scheme 2 0.1185 | 0.6557 | 660.7301 | 1.4618 | 452
non-pert scheme 3 0.1192 | 0.5888 | 672.7682 | 1.4884 | 452
non-pert scheme 4 0.1160 | 0.6758 | 647.1783 | 1.4318 | 452
minus non-pert error | 0.1165 | 0.6506 | 648.7400 | 1.4353 | 452
plus non-pert error 0.1172 | 0.6038 | 662.0738 | 1.4648 | 452
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Variations: fit y3

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1155 | 0.4151 | 71.6269 | 0.4744 | 151
High scale 0.1157 | 0.5223 | 274.9637 | 1.6080 | 171
Low scale 0.1122 | 0.0324 | 58.7413 | 0.5292 | 111
Std scheme 0.1150 | 0.4011 | 77.0834 | 0.5105 | 151
p scheme 0.1137 | 0.4032 | 66.6759 | 0.4416 | 151
D scheme 0.1168 | 0.4999 | 58.3885 | 0.3867 | 151
high low-lim 0.1156 | 0.4192 | 69.9605 | 0.4695 | 149
low low-lim 0.1142 | 0.3729 | 95.8462 | 0.5880 | 163
non-pert scheme 2 0.1154 | 0.4152 | 75.5347 | 0.5002 | 151
non-pert scheme 3 0.1154 | 0.4163 | 74.9921 | 0.4966 | 151
non-pert scheme 4 0.1155 | 0.4144 | 71.7165 | 0.4749 | 151
minus non-pert error | 0.1157 | 0.4323 | 70.6969 | 0.4682 | 151
plus non-pert error 0.1153 | 0.3588 | 69.4217 | 0.4597 | 151
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2-jet NP correction, fit CT

Variation as(Mz) Qg X2 x2/dof | dof
Central 0.1173 | 0.5279 | 1015.4571 | 1.3649 | 744
High scale 0.1209 | 0.4524 | 1061.9594 | 1.4274 | 744
Low scale 0.1138 | 0.6443 | 1036.7306 | 1.4705 | 705
Std scheme 0.1157 | 0.4976 | 980.6222 | 1.3198 | 743
p scheme 0.1157 | 0.4976 | 980.6222 | 1.3198 | 743
D scheme 0.1194 | 0.6249 | 716.3991 | 0.9629 | 744
high low-lim 0.1202 | 0.4563 | 838.0689 | 1.3761 | 609
low low-lim 0.1142 | 0.5689 | 1361.1738 | 1.6600 | 820
non-pert scheme 2 0.1189 | 0.5234 | 1029.5211 | 1.3838 | 744
non-pert scheme 3 0.1190 | 0.5085 | 1032.0306 | 1.3871 | 744
non-pert scheme 4 0.1173 | 0.5279 | 1015.4754 | 1.3649 | 744
minus non-pert error | 0.1173 | 0.5279 | 1015.4595 | 1.3649 | 744
plus non-pert error 0.1173 | 0.5279 | 1015.4547 | 1.3649 | 744
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2-jet NP correction, fit C

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1139 | 0.5696 | 252.2759 | 0.8640 | 292
High scale 0.1184 | 0.4866 | 262.1126 | 0.8976 | 292
Low scale 0.1105 | 0.6708 | 259.6847 | 0.9112 | 285
Std scheme 0.1118 | 0.5428 | 324.8358 | 1.1125 | 292
p scheme 0.1118 | 0.5428 | 324.8358 | 1.1125 | 292
D scheme 0.1153 | 0.6616 | 176.5806 | 0.6047 | 292
high low-lim 0.1116 | 0.6221 | 185.3429 | 0.8463 | 219
low low-lim 0.1116 | 0.5890 | 325.2677 | 0.9652 | 337
non-pert scheme 2 0.1176 | 0.5458 | 271.2322 | 0.9289 | 292
non-pert scheme 3 0.1172 | 0.5305 | 272.4936 | 0.9332 | 292
non-pert scheme 4 0.1139 | 0.5696 | 252.2884 | 0.8640 | 292
minus non-pert error | 0.1139 | 0.5696 | 252.2500 | 0.8639 | 292
plus non-pert error 0.1139 | 0.5696 | 252.3017 | 0.8640 | 292
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2-jet NP correction, fit T

Variation as(Mz) Qg X2 x?/dof | dof
Central 0.1158 | 0.5616 | 669.2086 | 1.4805 | 452
High scale 0.1191 | 0.4946 | 709.5784 | 1.5699 | 452
Low scale 0.1128 | 0.6683 | 613.5789 | 1.4609 | 420
Std scheme 0.1148 | 0.5210 | 561.5604 | 1.2451 | 451
p scheme 0.1148 | 0.5210 | 561.5604 | 1.2451 | 451
D scheme 0.1170 | 0.6799 | 380.7676 | 0.8424 | 452
high low-lim 0.1172 | 0.5355 | 607.7026 | 1.5582 | 390
low low-lim 0.1133 | 0.6078 | 737.7402 | 1.5274 | 483
non-pert scheme 2 0.1184 | 0.5559 | 682.2518 | 1.5094 | 452
non-pert scheme 3 0.1191 | 0.5190 | 694.5941 | 1.5367 | 452
non-pert scheme 4 0.1158 | 0.5616 | 669.2343 | 1.4806 | 452
minus non-pert error | 0.1158 | 0.5616 | 669.2362 | 1.4806 | 452
plus non-pert error 0.1158 | 0.5616 | 669.1810 | 1.4805 | 452
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2-jet NP correction, fit y3

Variation as(Mz) | ao X2 x?/dof | dof
Central 0.1154 67.9599 | 0.4501 | 151
High scale 0.1161 330.6187 | 1.9334 | 171
Low scale 0.1131 104.3764 | 0.9403 | 111
Std scheme 0.1149 72.9595 | 0.4832 | 151
p scheme 0.1135 63.5661 | 0.4210 | 151
D scheme 0.1166 61.0976 | 0.4046 | 151
high low-lim 0.1154 66.6631 | 0.4474 | 149
low low-lim 0.1142 88.6679 | 0.5440 | 163
non-pert scheme 2 0.1154 67.9599 | 0.4501 | 151
non-pert scheme 3 0.1154 67.9599 | 0.4501 | 151
non-pert scheme 4 0.1154 67.9599 | 0.4501 | 151
minus non-pert error | 0.1154 67.9599 | 0.4501 | 151
plus non-pert error 0.1154 67.9599 | 0.4501 | 151

63 /66



Processes with massive partons

The generic statement that can be made for massless partons
cannot be generalized to the massive case. Nevertheless, with a
reasoning inspired by the Low-Burnett-Kroll theorem, some results
can be obtained also in this case. In particular:

» The absence of linear renormalons can be derived for B meson
decays, as long as the B mass is expressed in a short-distance
scheme (like the MS one). This result was already obtained
by Beneke, and it also follows from the existance of an OPE
for includive B decays.

» The absence of linear renormalon in the t-channel, total single
top cross section (if m; is in a short distance scheme!), and
the computation of linear corrections in the top differential
distributions.

» The absence of linear renormalons in qg — tt total cross
section (again with m; in a short distance scheme), and the
computation of linear corrections in the top differential
distributions.
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Single Top

The result for the differential distribution can be expressed as a
shifts in the argument of the Born cross section. For the transverse
momentum and rapidity of the top the shift are given by

onelpi] _ asCrmA
PL 2 my
asCr A " 8m? s ch?(y;)

2m my (s + m?)?

onely:] =

Since we have
(5Npmt OésCF TA

mg 2 myg

we can use current determination of the top quark pole mass
renormalon uncertainty dxpm; = 0.1 — 0.2 GeV to estimate these
effects.

65 /66



=

,_.
A

do LO

—_
Q
=)

=
o
[

o
o
_

doxp/doro

=
=3

100 150
piy [GeV]

—
1S
©

doro

—_
S
=)

donp/doro

S
oPoooo®
DBORES®—

350 450 550 650 750 850 950
Vi [GeV]

The results have a more interesting structure
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For example, for the p: distribution

Snelpi] _ asCr A 2Cksi — Cadm;

pPL 2m my 2(5”'.—4"7%) ’

with an enhancement near thresh-
old and a change of sign depending
upon a colour factor combination.
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