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Outline

▶ Power corrections in collider processes

▶ Renormalons and linear power corrections

▶ Massless partons

▶ Massive partons

▶ e+e− annihilation: shape-variables in the 3-jet region.

▶ Fits to e+e− data.
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Power corrections for collider processes

▶ Little is known about power corrections in QCD processes.

▶ Some simpler processes admit an OPE (the total cross section
in e+e− annihilation and similar processes, DIS-like processes,
B meson decays ...) so that power corrections can be
parametrized.

▶ For the complex collider processes one worries about the
presence of linear power corrections, i.e. corrections of the
order of Λ/Q, since these could be at the percent level, that is
the accuracy one is aiming for at the HL LHC.

▶ One instrument for the investigation of linear power correction
is the study of renormalons in the large b0 approximation.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitudes of the form∫ m

0

dkp αS(k
2) =

∫ m

0

dkp 1

b0 log(k2/Λ2)

=

∫ m

0

dkp αS(m
2)

1 + b0αS(m2) log k2

m2

= αS(m
2)

∞∑
n=0

(2b0αS(m
2))n

∫ m

0

dkp logn
m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.

▶ Minimal term at nmin ≈ 1
2pb0αS (m2)

.

▶ Size of minimal term: mpαS(m
2)
√
2πnmine

−nmin ≈ Λp.
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Large-nf all-order result

Given an (IR safe) observable O, we introduce the notation

▶ ΦB , phase space;

▶ Φg , phase space for the emission of one massive gluon with
mass λ,

▶ Φqq̄, phase space for the emission of a qq̄ pair

the all-order result can be expressed in terms of

▶ σB(ΦB), the differential cross section for the Born process;

▶ σv (λ,ΦB), the virtual correction to the Born process due to
the exchange of a gluon of mass λ;

▶ The real cross section σg∗(λ,Φg∗), obtained by adding one
massive gluon to the Born final state;

▶ The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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Large-nf all-order result

Defining:

TO(λ) =

result for a gluon with mass λ︷ ︸︸ ︷
VO(λ) + RO(λ) +

Seymour,PN1995︷ ︸︸ ︷
∆O(λ) ,

VO(λ) =

∫
dΦb σ

(1)
v (λ2,Φb)O(Φb),

RO(λ) =

∫
dΦg∗ σ

(1)
g∗ (λ2,Φg∗)O(Φg∗),

∆O(λ) =
3πλ2

αSTF

∫
dΦqq̄Rqq̄(Φqq̄)δ(m

2
qq̄ − λ2) [O(Φqq̄)− O(Φg∗)]

The ∆ term vanishes if the observable is totally inclusive in the
radiated partons.

It turns out that a linear term in λ in the expansion of T (λ)
around zero is associated with linear renormalons.
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Large-nf all-order result

The all-order result is given by

⟨O⟩ = BO −
∫

dλ
dTO(λ)

dλ

1

αS

Beneke,98︷ ︸︸ ︷[
1

πb0
arctan

πb0αS

1 + b0αS log λ2/µ2
C

]
︸ ︷︷ ︸

αs,eff(λ)/αS

It is easy to show that a linear λ term in TO(λ) leads to a factorial
growth related to a linear IR renormalon. In fact∫

dλ

[
1

π
arctan

πb0αS

1 + b0αS log λ2/µ2
C

]
=

1

π
P

∫ ∞

0
dt

exp
(
− t

2b0αS

)
1− t

− exp

(
− 1

2b0αS

)
+ terms analytic in αS . (1)
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Large-nf all-order result

▶ We have a well-defined procedure for the computation of the
T function..

▶ Can be computed semi-numerically. This approach has been
followed in
▶ Ferrario Ravasio, Oleari, PN,2019 for studies related to the top

mass measurements.
▶ Ferrario Ravasio, Limatola, PN,2021 for showing the absence

of linear corrections to the pT spectrum of the Z in hadronic
collisions.

Gavin Salam had often shown an argument in favour of the
presence of linear power corrections to the inclusive pT spectrum
of the Z boson, based upon the fact that the soft radiation
associated to this process is not azimuthally symmetric. Our
attemt to actually compute such an effect in a model theory gave
negative results.

8 / 66



It is however difficult, numerically, to show the absence of a
correction, especially in this case where the cancellation of
soft-collinear divergence between the virtual (computed
analytically) and real (computed numerically) is involved.
Analytic results were found:

▶ Analytic approach for massless partons:
Caola,Ferrario Ravasio,Limatola,Melnikov, PN 2021,[2108.08897],

same authors + Ozcelik 2022[2204.02247]

▶ Analytic approach for massive partons:
Makarov, Melnikov, Ozcelik, PN, 2023, [2302.02729],

2023[2308.05526], 2024[2408.00632]
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Cancellation of linear NP terms

Our findings can be summarized as follows:

▶ Consider a process, described by a cross section (with no
radiation) B(p1, . . . pn) where p denotes a set of fixed external
momenta, with p3 . . . pn colourless particles, and p1, p2
massless quark antiquark (final-final or initial-initial) or
quark-quark (initial-final) pair.

▶ Assume that we emit a massive gluon of mass λ and
momentum k , and we have a smooth (in a sense to be
clarified afterwards), IR safe mapping from the full real
emission configuration to the underlying Born one.

Then:

▶ No linear λ sensitivity arises from virtual corrections

▶ No linear λ sensitivity arises from the real contributions due to
an unrestricted integration in k at fixed underlying Born
kinematics.
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The result is based upon two observations:

▶ Virtual corrections have no linear power corrections.
One can show that the virtual integrals give rise to constants,
logs and double logs of λ, but no linear terms in λ.

▶ Writing the real emission term in a factorised form:

dΦg = J × dΦB
d3k

k0
(2)

through the choice of a mapping to an underlying Born
Φg ↔ {ΦB , k}, (or choice of a recoil scheme),
it can be shown that if the mapping is linear in k for small k ,
no linear renormalons are present after the k integration. So:
in inclusive cross sections at fixed undelying Born no
renormalons are present.
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Virtual corrections

▶ Virtual corrections due to the exchange of a massive gluon
emitted by massless partons never lead to linear terms in the
mass λ. Besides verifying this in the practical case, this can
be proven by considering that the Passarino-Veltman
reduction procedure never leads to linear terms in λ, and by
examining the IR divergent scalar integrals.
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Hard collinear region

▶ Hard, collinear divergences do not lead to linear terms λ. In
fact, defining Sudakov variables for the gluon momentum

k = zp1 + βp2 + k⊥, β =
k2⊥ + λ2

z2p1 · p2
,

collinear integrals have the form∫
dk2⊥

P(k⊥)(
k2⊥ + (1 + z)λ2

)i , i = 1, 2.

P(k⊥), for small k⊥, can start with a constant if i = 1, and must
start with a term bilinear in k⊥ or proportional to λ2 if i = 2.
If the mapping near the collinear region is linear in k⊥, no linear
terms in λ can arise, since subleading terms in k⊥ are odd, and
vanish by azymuthal integration.
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The soft region

The soft region leads to integrands of the form∫
d3k⃗

ω
P(k)

[
1

(2p1 · k + λ2)(2p2 · k + λ2)
,

λ2

(2p1/2 · k + λ2)2

]

It is easy to see that (in the p1, p2 dipole CM)

p1 · k =
Q

2
ω(1− βcosθ) ≥ Q

2
ω(1− β) ≥ Qλ2

4ω
≥ Qλ

4
,

so, the denominators scale at worse like λ, so does ω and |k⃗|. By
power counting the second integral scales like λ2, while the first
one scales like 1.
In the first integral, subleading terms in ω, for example, may lead
to terms linear in λ.
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We now consider the k integral in the soft region at fixed
underlying Born. We assume that the mapping from the underlying
Born phase space to the full phase space is smooth for small k , in
the sense that

pµi = p̃νi + Tµν
i kν +O(ω2)

where p̃ are the underlying Born momenta. The “dangerous” soft
integral gives rise to terms of the form

1

p1 · k + λ2
=

1

p̃1 · k

[
1− kTik + λ2

p̃1 · k
+ . . .

]

so that

1

(p1 · k + λ2)(p1 · k + λ2)
=

1

p̃1 · k p̃2 · k

[
1−

∑
i=1,2

kTik + λ2

p̃i · k
+. . .

]

where . . . indicate terms subleading by power counting.
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But, for collinear safety, kTk ∝ p̃1 · k p̃2 · k , since it must vanish in
both collinear limits. For example, T1k must vanish if k is collinear
to p2, because in this case p1 = p̃1, and must be proportional to p̃1
if k is collinear to p1. Thus we end up having to worry about the
following integrals∫

d3k⃗

ω

[
1

p̃1 · k p̃2 · k
,

k · v
p̃1 · k p̃2 · k

,
λ2

(p̃1 · k)2 p̃2 · k

]
,

where v is a generic vector. Notice that one should also worry
about the Jacobian, when changing integration variables from p, k
to p̃, k . However, if the mapping is smooth in k , such change
contributes at most a linear term, i.e. can be lumped into the k · v
term.

By direct calculation, it can be easily seen that the above integrals
do not yield linear terms in λ.
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Consequences

Old and new results can be derived:
Linear corrections are absent in

▶ DIS (must be the case because of the OPE)

▶ Drell-Yan total cross section [Beneke and Braun]

▶ Drell-Yan rapidity distribution [Dasgupta]

▶ Dreal-Yan double differential cross section in transverse
momentum and rapidity distribution of the pair (new)

▶ In e+e−, shape variables power corrections can be computed
also in the 3-jet regime!
Before they had been computed only in the 2-jet limits, with
the only exception of the C-parameter in the 3-jet symmetric
limit [Luisoni,Monni,Salam,2019]

The results on DIS and Drell-Yan follow because on can find an
appropriate mapping that also maintains fixed Q2 and xbj for DIS,
and the Drell-Yan pair kinematics for Drell-Yan.
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consequences: Shape Variables

We investigating the structure of linear renormalons in the three jet
region by computing the cross section for the process γ∗ → qq̄γ

including gluonic corrections in the large nf limit.
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Our new analytic findings can also be applied to shape variables.

The large-nf , TO(λ) result can also be written as

TO(λ) = N

∫
dΦ3

{∫
dΦ

(λ)
k Mµν(k)

[∫
dΦsplit

∆(λ)︷ ︸︸ ︷
Pµν
split(O5 − O4)+

R(λ)︷ ︸︸ ︷
O4g

µν

]
+

V (λ)︷ ︸︸ ︷
VλO3

}
.

where O3..5 is the observable in terms of 3, 4 or 5 particles, and:

▶ Mµνg
µν is the cross section fo the production of the qq̄γ

system plus a massive gluon with momentum k and mass λ

▶ MµνP
µν
split is the square amplitude for the production of qq̄γ

plus a qq̄ pair by a (massless virtual) gluon of momentum k
(k2 = λ2) via splitting, but normalized so that∫

dΦµν
splitP

µν
split = gµν − kµkν/λ2

▶ Vλ is the virtual corrections to the γ∗ → qq̄γ process, due to
the exchange of a massive gluon.

We can rewrite it as

TO(λ) = N

∫
dΦ3

{∫
dΦ

(λ)
k Mµν(k)

[∫
dΦsplitP

µν
split(O5 − O4) + (O4 − O3)g

µν

]

+

[∫
dΦ

(λ)
k Mµνg

µν + Vλ

]
O3

}
.

Now, the second line contains the sum of the virtual plus an
unrestricted integral in k of the massive real contribution.

By our findings, if the mapping Φ3,Φ
(λ)
k is smooth,

It does not have linear terms in λ!
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Focus upon the first line:

T
(first)
O (λ) = N

∫
dΦ3

{∫
dΦ

(λ)
k Mµν(k)

[∫
dΦsplitP

µν
split(O5−O4)+(O4−O3)g

µν

]}

Since O is IR safe, there is one soft suppression from there. So,
we can evaluate M neglecting O(1) terms in ω:

T
(first)
O (λ) ≈ N

∫
dΦ3B

∫
dΦ

(λ)
k P(soft)

µν

[∫
dΦsplitP

µν
split(O5 − O3)

]

where we only need the Born cross section B, the soft emission

tensor P
(soft)
µν , and the splitting factor Pµν

split:

P(soft)
µν =

(
pµ
1

(p1 + k)2
− pµ

2

(p2 + k)2

)(
pν
1

(p1 + k)2
− pν

2

(p2 + k)2

)
,

Pµν
split = N Tr[�qγ

µ
����(k − q)γν ] .

We can evaluate numerically T
(first)
O (λ)−T

(first)
O (0), (canceling the

constant terms under the integral sign) to get the linear term.
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The Milan Factor

Very early approaches [Dokshitzer,Webber,Marchesini 95] on
non-perturbative corrections near the 2-jet limit suggested the
formula

dη d2k⊥

(
1

k2⊥

)
[O(P, k)− O(p)]α(k⊥)

where the first term is the invariant phase space for soft emission,
the term in the round bracket is the amplitude for soft emission in
the eikonal approximation in the radiating dipole rest frame, and
the term in square bracket is the contribution of the observable.

The ambiguity associated with the integration near the Landau
pole for αS corresponds to the linear power correction.
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For example:

1− T : O(P, k)− O(p) =
k⊥
Q

exp(−|η|),
∫

dη exp(|η|) = 2,

C : O(P, k)− O(p) =
k⊥
Q

3

cosh(η)
,

∫
dη

1

cosh(η)
= 3π
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These approaches ignored the gluon virtuality, that was set to zero
in the formula, and the dependence of the shape variable upon the
products of the gluon decaying into massless partons, that spoils
the universality in the above formula [Seymour,PN,95].

Subsequently, Dokshitzer,Lucenti,Marchesini,Salam, 97-98
demonstrated that for a wide class of observables the inclusion of
the gluon splitting process changed the original formula by a
universal, constant factor, that was dubbed the Milan factor.

For this to hold, the observable must be additive under multiple
soft emission, i.e.

O(P, k1, . . . , kn) ≈ O(P1, k1) + . . .+ O(Pn, kn)

(among the early approaches, some advocated the use of a massive
gluon [Akhoury,Zakarov,95]. This leads to different results, and
their universality cannot be granted).
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We found [Caola,Ferrario Ravasio,Limatola,Melnikov,Ozcelik,PN]
that the also in the 3-jet limit the Milan factor formula can be
derived (with the same Milan factor as in the 2-jet case)

|O|NP = MINP

∫
dσB(ΦB)T λ

∑
dip

∫
[dk]

MS

αS

δ(|k⊥| − λ)[O(ΦB,k)− O(ΦB)]


where k2 = 0, and

[dk]
Ms

αS

=
d3k

2k0(2π3)
Cdip

g 2
s

αS

p1 · p2
p1 · k p2 · k

=
2CdipαS

π
dη

dϕ

2π

dk⊥
k⊥

▶ Notice the trade: k2 = λ2 → k⊥ = λ.

▶ The shape variable is evaluated for the extra-emission of one
massless parton.

▶ The proof is not simple. However it is clear how the
addittivity of the shape variable makes this possible.

▶ An extra condition emerges: the rapidity integral must
converge.
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For the cumulant of a shape variable, we obtain

Σ(v)NP =


∫

dσB(ΦB)δ(v(ΦB)− v)
∑
dip

[
−M2Cdip

2π

∫
dϕ

2π
dηhv (η, ϕ)

] INP

where

hv (η, ϕ) = lim
k⊥→0

(
Q

|k⊥|
[v(P, k)− v(p)]

)
and the function h is easily calculable for the shape variables of
interest.
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From γ∗ → qq̄γ to γ∗ → qq̄g

The calculation of the linear power corrections for the γ∗ → qq̄γ
production process only involves the radiation from the qq̄ dipole
in the soft approximation.

This result suggests the generalization to the realistic γ∗ → qq̄g ,
applying the soft approximation to this case.

Thus one can simply add the contributions arising from each one
of the final state colour dipoles, i.e. qq̄, qg and q̄g .
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Shape Variables of choice

Shape variables are IR stable functions of the final state
kinematics. We consider:

▶ Thrust: τ = 1− T , T = maxt̂
∑ |p⃗i · t̂|/

∑ |p⃗i |
▶ C: Θαβ

∑
i
pαi p

β
i

|p⃗i /
∑

i |p⃗i |, C = 3(λ1λ2 + λ1λ3 + λ2λ3)

▶ y3: take Durham jet clustering, with distance measure
yij = 2min(E 2

i ,E
2
j )(1− cos θij)/Q

2. Then y3 is define as the
value of yij at the clustering step that leads to the transition
from 3 to 2 clusters.

▶ Mh2 (heavy jet mass): the heaviest of the squared masses of
the two hemisperes defined by the plane orthogonal to the
thrust axis, normalized to Q2

▶ Md2: the heaviest minus the lightes of the squared masses of
the two hemisperes, normalized to Q2.

▶ Bw: max(B1,B2), Bi =
∑

pk∈Hi
|p⃗k × t̂|/(2∑i |p⃗i |).
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Non-perturbative corrections can be parametrized as a shift in the
perturbative cumulant distribution:

Σ(s) −→ Σ(s + HNPζ(s)), where Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that must be
fitted to data.
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The dot in the plots represents the constant value that was used in
earlier studies. The value of ζ(c) at the symmetric point c = 3/4
was also computed by Luisoni,Monni,Salam 2021.
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(G.Zanderighi,PN2023) In some cases ζ is negative!
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Rapid variations near v = 0

Near v = 0, the Born amplitude is dominated by the soft-collinear region.

radiation =
CA

2
Mq̄g +

CA

2
Mqg +

(
CF − CA

2

)
Mqq̄

but Mqg ≈ 0, Mq̄g ≈ Mqq̄, so the total is ≈ CFMqq̄.

Our ζ(v) functions, for v → 0 MUST approach the 2-jet limit
value; but up to single logs!, i.e. terms of relative order 1/| log(v)|.
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Singularity at the origin
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Insist on v → 0 (quadruple precision, log scale histogram).
Two-jet limit reached, but subleading terms are extremely
important! Singularity compatible with a form

log v+C
v

log v+B
v

for B ̸= C .
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αS from e+e− shape variables

▶ Historically the framework of choice to measure αS directly from the
qq̄g vertex.

▶ In practice: very convincing at the 10% level; affected by
non-perturbative uncertainties if one wants higher precision

▶ αS(MZ ) from NNLO+NLL+Monte Carlo models:

▶ 0.1224± 0.0039 ALEPH 2009, [arXiv:0906.3436].)
▶ 0.1189± 0.0043 OPAL 2011, [arXiv:1101.1470])
▶ 0.1172± 0.0051 JADE 2009, [arXiv:0810.1389]

The use of Monte Carlo models to correct for hadronization effects have

long been criticized, since the interplay of perturbative and

non-perturbative effects in Shower Monte Carlo is not fully clear.
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αS from e+e− shape variables

As an alternative, another class of determi-
nations is based upon analytic modeling of
non-perturbative effects, using methods like
SCET, dispersive models and low scale QCD
effective couplings, and using NNLO+N3LL
calculations:

▶ 0.1135± 0.0011 R.Abbate et al,
2011, [arXiv:0809.3326]

▶ 0.1134 +0.0031
−0.0025

Gehrmann,Luisoni,Monni,
2013,[arXiv:1210.6945]

▶ 0.1123± 0.0015 Hoang et al,
2015 [arXiv:1501.04111]

They tend to result in a rather low value,

not in good agreement with world data. 0.110 0.115 0.120 0.125 0.130
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Results from Zanderighi, PN 2023

Simultaneous fit to C , t and y3, both for our newly computed ζ(v), and,

for comparison, with ζ(v) → ζ2J(v) = ζ(0) (traditional method for the

computation of power corrections).
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min+1,  χ2
min+4  contoursDOF=42

α
0

αs(MZ)

The central value is at αs(MZ ) = 0.1174, α0 = 0.64. The
“traditional” method leads to smaller values of αS .
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Results from Zanderighi, PN 2023

Individual fits:
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Only the combination of the three observables leads to a sensible
determination of αS

35 / 66



Extension of 2023 result (with G. Zanderighi)

Inclusion of all data we could find at all energies

DELPHI 91.2 45 66 76 133 161 172 183 189 192 196 200 202 205 207
ALEPH 91.2 133 161 172 183 189 200 206
OPAL 91.2 133 177 197
L3 91.2 41.4 55.3 65.4 75.7 82.3 85.1 130.1

136.1 161.3 172.3 182.8 188.6 194.4 200
JADE 22 35 44
TRISTAN 58
JADEOPAL 91.2 35 44 133 161 172 183 189
SLD 91.2
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▶ We perform the fits at the central scale, and then consider its variations
by a factor of 2 below and above.

▶ In order to get a better fit of the very precise Z -peak data, we chose the
central scale to be a function of the shape variable:
We first compute the average kT as a function of the value of each shape
variable (computed at the LO level), and then choose the kT as central
value of the scale. Fitting only ALEPH data on the Z peak we get:

χ2/dof best µR αS(MZ ) α0

fixed scale 2.5 0.175×MZ 0.1170 0.58

running scale 1.66 1.28× ⟨kT ⟩ 0.1168 0.593

(best µR leads to the lowest χ2)

▶ The lower limit in the fit range is taken at twice the Sudakov peak
position. Upper limit is 0.6 for C and 0.3 for thrust and y3.
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PRELIMINARY PLOTS

Fitting Thrust, C-parameter and y3 at the same time

 0.58

 0.585

 0.59

 0.595

 0.6

 0.1172  0.1174  0.1176  0.1178  0.118  0.1182  0.1184  0.1186

Δχ2=1

Δχ2=2α
0

αs(MZ)

Leading to αS(MZ ) = 0.1180, and α0 = 0.589, with χ2 = 1125.7
over 895 degrees of freedom (χ2/dof = 1.258).
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Fits to individual observables: C
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Δχ2=1

Δχ2=2

α
0

αs(MZ)

αS(MZ ) = 0.1172, and α0 = 0.6148, with χ2 = 269.0 over 292
degrees of freedom (χ2/dof = 0.921).
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Fits to individual observables: T
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α
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αS(MZ ) = 0.1169, and α0 = 0.6245, with χ2 = 651.7 over 151
degrees of freedom (χ2/dof = 1.442).
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Fits to individual observables: y3

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0.114  0.1144  0.1148  0.1152  0.1156  0.116  0.1164  0.1168

Δχ2=1
Δχ2=2

α
0

αs(MZ)

αS(MZ ) = 0.1155, and α0 = 0.4151, with χ2 = 71.6 over 292
degrees of freedom (χ2/dof = 0.474).
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All together
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α
0
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CTy3
C
T

y3

Global Fit Individual Fits

Obs. Dof χ2 χ2/dof χ2 χ2/dof

C 292 278.2 0.95 269.0 0.921

T 452 659.7 1.465 651.7 1.44

y3 151 132.7 0.879 71.6 0.47
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▶ For C and T , individual fits are compatible with the CTy3 fit,

▶ For y3 a much smaller α0 is favoured.

▶ The χ2 for the individual y3 fit is very low, so that a larger
value of α0 (leading to a larger value of αS) is also acceptable.

▶ The inclusion of y3 in the CTy3 fit pulls α0 to smaller values,
and thus increases αS slightly.
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Variations: global fit CTy3

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1180 0.5892 1125.6976 1.2578 895

High scale 0.1167 0.5846 1465.9393 1.6021 915

Low scale 0.1167 0.6683 1940.0007 2.3775 816

Std scheme 0.1173 0.5347 1090.8732 1.2202 894

p scheme 0.1160 0.5624 1051.1005 1.1757 894

D scheme 0.1199 0.7252 747.3571 0.8350 895

high low-lim 0.1177 0.5673 947.3134 1.2498 758

low low-lim 0.1165 0.6260 1579.9496 1.6073 983

non-pert scheme 2 0.1193 0.5923 1249.1436 1.3957 895

non-pert scheme 3 0.1189 0.5825 1232.5919 1.3772 895

non-pert scheme 4 0.1185 0.5927 1158.0191 1.2939 895

minus non-pert error 0.1187 0.5865 1122.1407 1.2538 895

plus non-pert error 0.1189 0.5649 1228.4413 1.3726 895
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We have considered:

▶ Scale variations, up and down by a factor of 2 from default

▶ Mass scheme: how to solve the ambiguity in shape variables
due to hadron masses [Salam,Wicke,2001]. We use as default
the E scheme; variations: std. scheme, p scheme and D
scheme.

▶ Range low limit: 2 (default), 1.7, 3 times the peak position.

▶ 4 different ways to implement NP corrections: shift in the full
cumulant with or without adding an estimate of quadratic
terms; shift in the LO cumulant; expand the correction around
the perturbattive value. cumulant argument

▶ Subtract NP error

▶ Add NP error

In all cases we find the mass scheme issue very disturbing (slightly
less than a 2% correction in both directions.
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2-jet NP correction, fit CTy3

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1161 0.5389 1149.9394 1.2848 895

High scale 0.1150 0.5181 1830.6507 2.0007 915

Low scale 0.1155 0.6061 1523.6604 1.8672 816

Std scheme 0.1153 0.4989 1106.6396 1.2379 894

p scheme 0.1141 0.5119 1125.7113 1.2592 894

D scheme 0.1173 0.6465 923.2022 1.0315 895

high low-lim 0.1159 0.5325 977.2551 1.2893 758

low low-lim 0.1143 0.5658 1510.5800 1.5367 983

non-pert scheme 2 0.1163 0.5603 1281.1125 1.4314 895

non-pert scheme 3 0.1167 0.5305 1312.8618 1.4669 895

non-pert scheme 4 0.1161 0.5390 1149.9904 1.2849 895

minus non-pert error 0.1161 0.5390 1150.0007 1.2849 895

plus non-pert error 0.1161 0.5389 1149.8783 1.2848 895
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Everything else being equal, we found that using the two-jet limit NP

correction lowers the value of αS by nearly 0.002 in the CTy3 fit.

For all fits:
αS(MZ )

CTy3 C T y3
Variation ζ(v) ζ(0) ζ(v) ζ(0) ζ(v) ζ(0) ζ(v) ζ(0)

Central .1181 .1161 .1169 .1139 .1168 .1158 .1155 .1154

High scale .1167 .1150 .1212 .1184 .1208 .1191 .1157 .1161

Low scale .1167 .1155 .1141 .1105 .1159 .1128 .1122 .1131

Std scheme .1173 .1153 .1164 .1118 .1152 .1148 .1150 .1149

p scheme .1160 .1141 .1164 .1118 .1152 .1148 .1137 .1135

D scheme .1199 .1173 .1190 .1153 .1205 .1170 .1156 .1166

high low-lim .1177 .1159 .1221 .1116 .1180 .1172 .1142 .1154

low low-lim .1165 .1143 .1151 .1116 .1154 .1133 .1154 .1142

Stronger decrease for C , less for T , almost none for y3.
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M2
h and M2

d

▶ These observables have ζ(v) < 0 in most of the range, with
an effective large jump near the origin. They are not easy to
fit as the others, perhaps because of this jump.

▶ Unfortunately, the data is inconsistent for these observables,
with DELPHI differing strongly from all other experiments.

▶ An independent analysis of DELPHI data on the Z peak
[Daniel Wicke, 1999 (thesis)] is instead consistent with the
other experiments.
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Including M2
h and M2

d in the fit

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1222 0.5273 2326.9662 2.6716 871

High scale 0.1217 0.5518 3792.5798 4.3543 871

Low scale 0.1203 0.5200 5082.6673 6.2135 818

Std scheme 0.1207 0.4435 5898.7965 6.8115 866

p scheme 0.1197 0.5076 2108.0830 2.4231 870

D scheme 0.1260 0.6058 2913.3330 3.3448 871

high low-lim 3 0.1210 0.5342 1717.8313 2.3120 743

high low-lim 4 0.1204 0.5519 1387.2944 2.2091 628

high low-lim 5 0.1201 0.5663 1109.9750 2.0864 532

low low-lim 0.1229 0.5302 3817.7635 3.9977 955

non-pert scheme 2 0.1244 0.5030 4255.4882 4.8857 871

non-pert scheme 3 0.1241 0.5101 3939.7764 4.5233 871

non-pert scheme 4 0.1225 0.5246 2428.3917 2.7881 871

minus non-pert error 0.1224 0.5246 2361.0027 2.7107 871

plus non-pert error 0.1220 0.5302 2295.3221 2.6353 871
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Including M2
h and M2

d in the fit, 2-jets NP corrections

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1171 0.6194 7003.1054 8.0403 871

High scale 0.1072 0.6829 14792.3877 16.9832 871

Low scale 0.1150 0.6638 2923.2290 3.5736 818

Std scheme 0.1162 0.5106 6005.4771 6.9347 866

p scheme 0.1121 0.6216 7133.7624 8.1997 870

D scheme 0.1191 0.7231 11292.6068 12.9651 871

high low-lim 0.1142 0.6993 5577.2908 7.5064 743

low low-lim 0.1168 0.6176 7483.8707 7.8365 955

non-pert scheme 2 0.1268 0.5277 9499.9953 10.9070 871

non-pert scheme 3 0.1264 0.5263 9457.7652 10.8585 871

non-pert scheme 4 0.1171 0.6195 7004.0344 8.0414 871

minus non-pert error 0.1171 0.6195 7004.1066 8.0415 871

plus non-pert error 0.1171 0.6194 7002.1081 8.0392 871
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CONCLUSIONS

▶ Something new has been understood in the framework of
power corrections for collider processes.

▶ Applications in e+e− shape variables seem to support these
findings to some extent.

▶ Prospects for fits to αS in e+e− framework are unclear
because of:
▶ Hadron mass effects are poorely understood.
▶ Interplay of (new) NP corrections and resummation needs

more work
▶ Possible inconsistencies between experiments should be

carefully assessed.
▶ Correlations in data (and theory) needs a better treatment.
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BACKUP
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Variations: fit CT

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1175 0.6061 953.0331 1.2810 744

High scale 0.1211 0.5013 998.3168 1.3418 744

Low scale 0.1146 0.7534 969.7802 1.3756 705

Std scheme 0.1157 0.5710 908.7845 1.2231 743

p scheme 0.1157 0.5710 908.7845 1.2231 743

D scheme 0.1198 0.7300 609.9992 0.8199 744

high low-lim 0.1190 0.5421 809.1090 1.3286 609

low low-lim 0.1157 0.6444 1166.3332 1.4224 820

non-pert scheme 2 0.1191 0.6126 966.5737 1.2992 744

non-pert scheme 3 0.1192 0.5852 971.5030 1.3058 744

non-pert scheme 4 0.1171 0.6341 950.4401 1.2775 744

minus non-pert error 0.1170 0.6271 943.4099 1.2680 744

plus non-pert error 0.1175 0.5947 969.2549 1.3028 744
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Variations: fit C

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1172 0.6148 268.9646 0.9211 292

High scale 0.1212 0.5076 276.6518 0.9474 292

Low scale 0.1141 0.7634 281.2422 0.9868 285

Std scheme 0.1164 0.5639 336.3641 1.1519 292

p scheme 0.1164 0.5639 336.3641 1.1519 292

D scheme 0.1190 0.7340 192.4281 0.6590 292

high low-lim 0.1221 0.4447 193.9756 0.8857 219

low low-lim 0.1151 0.6469 349.1941 1.0362 337

non-pert scheme 2 0.1191 0.6189 274.3330 0.9395 292

non-pert scheme 3 0.1195 0.5902 274.5646 0.9403 292

non-pert scheme 4 0.1170 0.6406 270.9737 0.9280 292

minus non-pert error 0.1173 0.6306 264.9847 0.9075 292

plus non-pert error 0.1172 0.6039 273.1821 0.9356 292
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Variations: fit T

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1169 0.6245 651.7492 1.4419 452

High scale 0.1208 0.5253 687.2753 1.5205 452

Low scale 0.1159 0.7082 639.8972 1.5236 420

Std scheme 0.1152 0.5876 534.0098 1.1841 451

p scheme 0.1152 0.5876 534.0098 1.1841 451

D scheme 0.1205 0.7232 372.8273 0.8248 452

high low-lim 0.1180 0.5896 596.8003 1.5303 390

low low-lim 0.1154 0.6672 713.4200 1.4771 483

non-pert scheme 2 0.1185 0.6557 660.7301 1.4618 452

non-pert scheme 3 0.1192 0.5888 672.7682 1.4884 452

non-pert scheme 4 0.1160 0.6758 647.1783 1.4318 452

minus non-pert error 0.1165 0.6506 648.7400 1.4353 452

plus non-pert error 0.1172 0.6038 662.0738 1.4648 452

58 / 66



Variations: fit y3

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1155 0.4151 71.6269 0.4744 151

High scale 0.1157 0.5223 274.9637 1.6080 171

Low scale 0.1122 0.0324 58.7413 0.5292 111

Std scheme 0.1150 0.4011 77.0834 0.5105 151

p scheme 0.1137 0.4032 66.6759 0.4416 151

D scheme 0.1168 0.4999 58.3885 0.3867 151

high low-lim 0.1156 0.4192 69.9605 0.4695 149

low low-lim 0.1142 0.3729 95.8462 0.5880 163

non-pert scheme 2 0.1154 0.4152 75.5347 0.5002 151

non-pert scheme 3 0.1154 0.4163 74.9921 0.4966 151

non-pert scheme 4 0.1155 0.4144 71.7165 0.4749 151

minus non-pert error 0.1157 0.4323 70.6969 0.4682 151

plus non-pert error 0.1153 0.3588 69.4217 0.4597 151
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2-jet NP correction, fit CT

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1173 0.5279 1015.4571 1.3649 744

High scale 0.1209 0.4524 1061.9594 1.4274 744

Low scale 0.1138 0.6443 1036.7306 1.4705 705

Std scheme 0.1157 0.4976 980.6222 1.3198 743

p scheme 0.1157 0.4976 980.6222 1.3198 743

D scheme 0.1194 0.6249 716.3991 0.9629 744

high low-lim 0.1202 0.4563 838.0689 1.3761 609

low low-lim 0.1142 0.5689 1361.1738 1.6600 820

non-pert scheme 2 0.1189 0.5234 1029.5211 1.3838 744

non-pert scheme 3 0.1190 0.5085 1032.0306 1.3871 744

non-pert scheme 4 0.1173 0.5279 1015.4754 1.3649 744

minus non-pert error 0.1173 0.5279 1015.4595 1.3649 744

plus non-pert error 0.1173 0.5279 1015.4547 1.3649 744
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2-jet NP correction, fit C

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1139 0.5696 252.2759 0.8640 292

High scale 0.1184 0.4866 262.1126 0.8976 292

Low scale 0.1105 0.6708 259.6847 0.9112 285

Std scheme 0.1118 0.5428 324.8358 1.1125 292

p scheme 0.1118 0.5428 324.8358 1.1125 292

D scheme 0.1153 0.6616 176.5806 0.6047 292

high low-lim 0.1116 0.6221 185.3429 0.8463 219

low low-lim 0.1116 0.5890 325.2677 0.9652 337

non-pert scheme 2 0.1176 0.5458 271.2322 0.9289 292

non-pert scheme 3 0.1172 0.5305 272.4936 0.9332 292

non-pert scheme 4 0.1139 0.5696 252.2884 0.8640 292

minus non-pert error 0.1139 0.5696 252.2500 0.8639 292

plus non-pert error 0.1139 0.5696 252.3017 0.8640 292
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2-jet NP correction, fit T

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1158 0.5616 669.2086 1.4805 452

High scale 0.1191 0.4946 709.5784 1.5699 452

Low scale 0.1128 0.6683 613.5789 1.4609 420

Std scheme 0.1148 0.5210 561.5604 1.2451 451

p scheme 0.1148 0.5210 561.5604 1.2451 451

D scheme 0.1170 0.6799 380.7676 0.8424 452

high low-lim 0.1172 0.5355 607.7026 1.5582 390

low low-lim 0.1133 0.6078 737.7402 1.5274 483

non-pert scheme 2 0.1184 0.5559 682.2518 1.5094 452

non-pert scheme 3 0.1191 0.5190 694.5941 1.5367 452

non-pert scheme 4 0.1158 0.5616 669.2343 1.4806 452

minus non-pert error 0.1158 0.5616 669.2362 1.4806 452

plus non-pert error 0.1158 0.5616 669.1810 1.4805 452
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2-jet NP correction, fit y3

Variation αS(MZ ) α0 χ2 χ2/dof dof

Central 0.1154 67.9599 0.4501 151

High scale 0.1161 330.6187 1.9334 171

Low scale 0.1131 104.3764 0.9403 111

Std scheme 0.1149 72.9595 0.4832 151

p scheme 0.1135 63.5661 0.4210 151

D scheme 0.1166 61.0976 0.4046 151

high low-lim 0.1154 66.6631 0.4474 149

low low-lim 0.1142 88.6679 0.5440 163

non-pert scheme 2 0.1154 67.9599 0.4501 151

non-pert scheme 3 0.1154 67.9599 0.4501 151

non-pert scheme 4 0.1154 67.9599 0.4501 151

minus non-pert error 0.1154 67.9599 0.4501 151

plus non-pert error 0.1154 67.9599 0.4501 151
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Processes with massive partons

The generic statement that can be made for massless partons
cannot be generalized to the massive case. Nevertheless, with a
reasoning inspired by the Low-Burnett-Kroll theorem, some results
can be obtained also in this case. In particular:
▶ The absence of linear renormalons can be derived for B meson

decays, as long as the B mass is expressed in a short-distance
scheme (like the M̄S one). This result was already obtained
by Beneke, and it also follows from the existance of an OPE
for includive B decays.

▶ The absence of linear renormalon in the t-channel, total single
top cross section (if mt is in a short distance scheme!), and
the computation of linear corrections in the top differential
distributions.

▶ The absence of linear renormalons in qq̄ → tt̄ total cross
section (again with mt in a short distance scheme), and the
computation of linear corrections in the top differential
distributions.

64 / 66



Single Top

The result for the differential distribution can be expressed as a
shifts in the argument of the Born cross section. For the transverse
momentum and rapidity of the top the shift are given by

δNP[p⊥]

p⊥
=

αsCF

2π

πλ

mt

δNP[yt ] =
αsCF

2π

πλ

mt
× 8m2

t s ch
2(yt)

(s +m2
t )

2

Since we have
δNPmt

mt
=

αsCF

2π

πλ

mt

we can use current determination of the top quark pole mass
renormalon uncertainty δNPmt = 0.1− 0.2 GeV to estimate these
effects.
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qq̄ → tt̄

The results have a more interesting structure
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For example, for the pt distribution

δNP[p⊥]

p⊥
=

αsCF

2π

πλ

mt

2CF stt̄ − CA4m
2
t

2(stt̄ − 4m2
t )

,

with an enhancement near thresh-
old and a change of sign depending
upon a colour factor combination.
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