Harnessing intricacies of Jets for Breakthroughs in QCD at the Collider Frontier

<u>colices fonder</u> Kyle Lee CTP, MI Universität Wien November 2024

Kyle Lee

Jets unveiled the partonic nature of QCD, playing an important role in the confirmation of QCD as the theory of strong interactions!

THE DAWN OF QCD: FROM PARTONS TO JETS **3-jet event**

JET I	ΣIP: ICHARGE 4.3 GEV	TOTAL ENERGY 7.4 G EV
JET2	7.8	8.9
JET 3	4.1	11.1

Wu, Zobernig `79

Kyle Lee

JETS AND ENERGY FLOW

Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin`22

Energy Flow Operators

$$(\hat{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t, r\hat{n})$$

$$\rangle = \sum_{a} E_a \delta^{(2)} \left(\Omega_{\vec{p}_a} - \Omega_{\hat{n}} \right) |X\rangle$$

Sterman, Weinberg `77

Basham, Brown, Ellis, Love, `78-79 Sveshnikov, Tkachov, `95 Korchemsky, Sterman, `01 Bauer, Fleming, Lee, Sterman `08

"Energy flow becomes the focus of computability" **Sterman-Weinberg jets played a crucial role in formulating** the **first IRC** definition to study energy flow, or jets

JETS AT COLLIDERS

developments in Quantum Field Theory

• Field of jet physics (energy flow) have always been intricately connected to the success of the **collider physics program!**

• The effort to achieve precise predictions of jet cross sections has driven important theoretical

9-jet at the LHC

EXCITING COLLIDER PHYSICS ERA

LHC, 2008 - Present

Run 3 running!

• Jets at colliders give us the means to probe field theory in data!

How can we harness jets to continue making breakthroughs in collider frontier?

JET SUBSTRUCTURE: STUDYING ENERGY FLOW WITHIN JETS

to peer into the energy flow within jets

gives us opportunity to study multi-point correlations of energy within jets

Modern detectors with spectacular angular resolution gives us an unprecedented opportunity

• Relative to inclusive jet cross-section, or one-point energy correlation, jet substructure

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics

IV. Medium Dynamics

I. Universal Scaling II. Precision QCD QFT perspective of jet substructure III. Heavy Flavor Physics IV. Medium Dynamics

VI. Real-time Simulations

V. Hadronization

QFT perspective of jet substructure

VI. Real-time Simulations

V. Hadronization

QFT perspective of jet substructure

VI. Real-time Simulations

V. Hadronization

II. Precision QCD

Precise determination of α_s

III. Heavy Flavor Physics

THIT 9

Revealing dead-cone

IV. Medium Dynamics

QFT perspective of jet substructure

VI. Real-time Simulations

V. Hadronization

II. Precision QCD

Precise determination of α_s

III. Heavy Flavor Physics

mm^g

Revealing dead-cone

IV. Medium Dynamics

Revealing medium scale and modifications

QFT perspective of jet substructure

VI. Real-time Simulations

II. Precision QCD

Precise determination of α_s

III. Heavy Flavor Physics

mm^g

Revealing dead-cone

IV. Medium Dynamics

Revealing medium scale and modifications

QFT perspective of jet substructure

VI. Real-time Simulations

Quantum Computing

II. Precision QCD

Precise determination of α_s

III. Heavy Flavor Physics

mm^g

Revealing dead-cone

IV. Medium Dynamics

Revealing medium scale and modifications

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics IV. Medium Dynamics

SCALING BEHAVIOR IN QFT

- Why is the study of jet substructure of interest in QFT?
- QFTs display universal scaling behaviors when operators approach one another

Wilson `70

together

Euclidean Operator Product Expansion

$$\mathcal{O}(x)\mathcal{O}(0) = \sum x^{\gamma_i} c_i \mathcal{O}_i$$

• Critical phenomena give us access to universal scaling behavior as Euclidean operators are brought

UNIVERSAL LORENTZIAN SCALING WITHIN JETS

• Jet substructure describes the limit where energy flow operators are brought together, thus probing the OPE limit of Lorentzian operators

Hofman, Maldacena `08

Much interests from the formal theory:

Kravchuk, Simmons Duffin, `18 Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov, `13 Firat, Monin, Rattazzi, Walters `23 Henn, Sokatchev, Yan, Zhiboedov, `19 Kologlu, Kravchuk, Simmons Duffin, Zhiboedov, `19 Gonzo, Ilderton `23 Korchemsky, `19 Chang, Kologlu, Kravchuk, Simmons-Duffin, `20 Hartman, Mathys `24 Belin, Hofman, Mathys, `19 Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin, `22

Light-ray Operator Product Expansion predicted universal scaling within jets within the context of CFT

Profound field theory predictions within jets!

Light-ray Operator Product Expansion

$$\mathcal{E}(\hat{n}_1) \mathcal{E}(\hat{n}_2) \sim \sum \theta^{\gamma(3)-2} \mathbb{O}_i(\hat{n}_2)$$

$$\mathcal{E}(\hat{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t)$$

$$\mathcal{E}(\hat{n})|X\rangle = \sum_{a} E_a \delta^{(2)} \left(\Omega_{\vec{p}_a} - \Omega_{\hat{n}}\right)$$

- Chen, Karlsson, Zhiboedov `24

Chicherin, Moult, Sokatchev, Yan, Zhu `24

 $\mathcal{E}(\vec{n}_1)$

UNIVERSAL LORENTZIAN SCALING WITHIN JETS

• Jet substructure describes the limit where energy flow operators are brought together, thus probing the OPE limit of Lorentzian operators

Hofman, Maldacena `08

Much interests from the formal theory:

Kravchuk, Simmons Duffin, `18 Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov, `13 Firat, Monin, Rattazzi, Walters `23 Henn, Sokatchev, Yan, Zhiboedov, `19 Kologlu, Kravchuk, Simmons Duffin, Zhiboedov, `19 **CAN THIS UNIVERSAL SCALING OF THE** Korchemsky, `19 Chang, Kologlu, Kravchuk, Simmons-Duffin, `20 Chicherin, Moult, Sonauriev, 1911, 2119 27 Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin, `22 Belin, Hofman, Mathys, `19 Light-ray Operator Product Expansion predicted universal scaling within jets within the context of CFT

Profound field theory predictions within jets!

Light-ray Operator Product Expansion

$$\mathcal{E}\left(\hat{n}_{1}\right)\mathcal{E}\left(\hat{n}_{2}\right)\sim\sum\theta^{\gamma(3)-2}\mathbb{O}_{i}\left(\hat{n}_{2}\right)$$

$$\mathcal{E}(\hat{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t)$$

$$\mathcal{E}(\hat{n})|X\rangle = \sum E_a \delta^{(2)} \left(\Omega_{\vec{p}_a} - \Omega_{\hat{n}}\right)$$

 $\mathcal{E}(\vec{n}_1)$

UNIVERSAL SCALING BEHAVIOR IN JETS!

• In QCD, we developed the proper framework to observe the universal scaling behavior within jets!

SCALING FROM 15 GEV TO 2 TEV IN DATA!

STAR from 15 - 50 GeV

ALICE from 20 - 80 GeV

CMS from 97 - 1784 GeV

• Universal scaling of QCD operators revealed in data from ALICE, CMS, and STAR, from 15 GeV to 1784 GeV!

9/45

THE SPECTRUM OF A JET

• The light-ray OPE can be iteratively applied to N-point correlators, predicting their anomalous **scaling behavior with N**

STRONG COUPLING DETERMINATION

• How strong is the Strong Force?

This yielded the worlds most precise α_S measurement from jet substructure: $\alpha_S = 0.1229^{+0.0040}_{-0.0050}$.

In comparison, EM coupling: $\alpha_e = 0.0072973525693(11)$

Quarks are never free, and thus it is very hard to measure their coupling

CMS collaboration carried out most precise determination of the strong coupling constant for jet substructure

 $\alpha_s(m_Z) = 0.1229^{+0.0040}_{-0.0050}$

CMS Collaboration 23

Energy Correlators in Jet

Kyle Lee

ROAD TO IMPROVED PRECISION

This yielded the worlds most precise α_S measurement from jet substructure: $\alpha_S = 0.1229^{+0.0040}_{-0.0050}$.

Road to precision

tion

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics

IV. Medium Dynamics

MEASURING TRACKS

• Measuring tracks provides much more precise experimental results

All particles

• Depend on quantum numbers of final state hadrons other than energy \Rightarrow not computable purely from perturbation theory

- **Measurements on Tracks**
- **Power corrections**
- **Improved perturbative accuracy** 3.

Modern detectors have state-of-the-art tracking systems!

Tracks

We need QCD factorization

TRACK INSIDE JETS

QCD factorization:

Non-perturbative Track functions describe the total energy fraction of charged hadrons from a fragmenting quark or a gluon state

- **Measurements on Tracks**
- **Power corrections**
- Improved perturbative accuracy 3.

Requires separation of parts that are perturbative from universal non-perturbative functions

ENERGY CORRELATORS ON TRACK

 $\langle \mathcal{E}_R\left(\vec{n}_1\right) \mathcal{E}_R\left(\vec{n}_2\right) \cdots \mathcal{E}_R\left(\vec{n}_2\right)$

• Only depends on the "moments" of track functions \longrightarrow Only involves NP numbers, not functions **Predictions for tracks in Energy Correlators**

- I. Measurements on Tracks
- 2. Power corrections
- Improved perturbative accuracy 3.

• Track function formalism provides the essential matching between partonic and hadronic detectors

$$\vec{i}_k \rangle \rangle = \sum_{i_1, i_2, \cdots i_k} T_{i_1}(1) \cdots T_{i_k}(1) \langle \mathcal{E}_{i_1}(\vec{n}_1) \mathcal{E}_{i_2}(\vec{n}_2) \cdots \mathcal{E}_{i_k}(\vec{n}_k) + \text{contact term} \rangle$$

ENERGY CORRELATORS ON TRACK

Slide from Yu-Chen Chen, Hard Probe 2024

- **Measurements on Tracks**
- **Power corrections** 2.
- **Improved perturbative accuracy** 3.

Reanalysis of ALEPH data on tracks

Jaarsma, Li, Moult, Waalewijn, Zhu `In Progress

Collinear Limit: -NNLL Collinear Resummation (Three Loop DGLAP Evolution) **Non-Perturbative Parameter** Ω extracted from thrust

- **Back-to-Back Limit:**
- -NNNLL Sudakov Resummation
- Non-Perturbative Parameter Ω
 - extracted from thrust
- **Collins-Soper Kernel extracted from** lattice QCD

Effective Field Theory methods at the heart of the theoretical analysis!

Bauer, Fleming, Luke, Pirjol, Stewart `00-01

EEC on track for e^+e^- allows one to study event-wide correlations very precisely!

POWER CORRECTIONS

 e^+e^- in the collinear limit exhibits same universal behavior as hadron jets

$$\frac{1}{\sigma}\frac{d\sigma^{[N]}}{dx_L} = \frac{1}{\sigma}\frac{d\hat{\sigma}^{[N]}}{dx_L} + \frac{N}{2^N}\frac{\bar{\Omega}_{1q}}{Q\left(x_L\left(1-x_L\right)\right)^{3/2}}$$

Universal Power Corrections

Renormalon subtractions

Hoang, Kluth `08 Hoang, Stewart, et al `07, 09, 14, 20 Hoang et al²³

- **Power corrections**

Unprecedented precision calculation of jet substructure on the horizon!

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD

III. Heavy Flavor Physics

IV. Medium Dynamics

UNRAVELING HEAVY FLAVOR DYNAMICS

searches, flavor tagging, gluon structure, etc.

- Fickinger, Fleming, Kim, Mereghetti `16
 - Kang, Ringer, Vitev `17
 - Li, Vitev `18

• • •

Lee, <u>Shrivastava</u>, Vaidya `19

- Heavy quark introduces new mass scale m_Q

• Heavy quark dynamics are important for understanding medium, hadronization, Higgs, BSM

Run 3 and sPHENIX will give us a lot more access to heavy quarks with precise data!

• Jet substructure allows us to precisely probe the dynamics from this new heavy quark scale

19 /45

Csáki, Ismail `24

Komiske, Moult, Thaler, Zhu `22

IDENTIFYING THE INTRINSIC HEAVY QUARK SCALE

heavy bound states due to their mass

• Two-point correlators capture the effects of intrinsic mass, displaying earlier formation of

HIGHER POINT CORRELATORS

Higher-point correlators probe more detailed aspects of interactions

Maldacena `02, Komatsu `10 Cabass, Pajer, Stefanyszyn, Supel `21,...

Cosmologists are hunting for non-gaussianities (genuine 3-pt correlation) in CMB to distinguish models of inflation

Craft, Gonzalez, KL, Meçaj, Moult `23 Dhani, Rodrigo, Sborlini `23

• I have computed the first necessary analytical ingredients for 3-pt correlations within heavy jets!

PROBING THE DYNAMICS OF THE DEAD-CONE

• Application: three-point correlations probe the non-trivial dynamics of the dead-cone

Ratio of Three-Point Massive Correlators

• Achieve analytic calculation using our $1 \rightarrow 3$ splitting functions

Craft, Gonzalez, KL, Meçaj, Moult `In Progress

PROBING THE DYNAMICS OF THE DEAD-CONE

• Application: three-point correlations probe the non-trivial dynamics of the dead-cone

Craft, Gonzalez, KL, Meçaj, Moult `In Progress

Ratio of Three-Point Massive Correlators

 $\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_M \rangle$ $\overline{\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_{M=0} \rangle}$

• Achieve analytic calculation using our $1 \rightarrow 3$ splitting functions

• Application: three-point correlations probe the non-trivial dynamics of the dead-cone

PROBING THE DYNAMICS OF THE DEAD-CONE

Craft, Gonzalez, KL, Meçaj, Moult `In Progress

Ratio of Three-Point Massive Correlators

 $\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_M \rangle$ $\overline{\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_{M=0} \rangle}$

• Achieve analytic calculation using our $1 \rightarrow 3$ splitting functions

ENERGY ENERGY CORRELATORS ON TOP JET

Holguin, Moult, Pathak, Procura, Schöfbeck `22,23,24

Large samples of highly boosted top quarks produced at the LHC!

W boson allows calibration of the top quark jet to circumvent determination of the NP effects in the hard scale!

Yet another demonstration of higher-point correlator giving more rich information of the underlying dynamics

PUSHING THE LIMIT OF HIGHER POINTS

FIG. 1. The $1 \rightarrow N$ splitting function from collinear limit of squared amplitudes with n = N+3 legs.

- Modern amplitude method allows computation of the integrand up to 11-point for N=4. He, Jiang, Yang, Zhang 24 Chicherin, Moult, Sokatchev, Yan, Zhu `24
- Intricate view of OPE and spinning operators in four-point. Gonzalez, KL, Harris, Moult, Rothman `In Progress

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics

IV. Medium Dynamics

CREATING BIG BANG MATTER ON EARTH

• Can we use asymptotic correlations to understand the complicated microscopic dynamics of the state created by Heavy Ion Collisions at the LHC?

RESOLVING THE QGP USING ENERGY CORRELATORS

Two-point energy correlators clearly identify the medium angular scale at which correlations are modified!

EEC gives angular scale $\mu \sim p_T \theta_{ij}$

0.100 0.050

0.010 $\frac{I \Sigma^{(1)}}{d\theta}$ 0.005 $\Sigma^{(1)}$ vac 0.001 $5. \times 10^{-4}$

 $1. \times 10^{-4}$

Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators (2022)

a construction of the state of the second second

RESOLVING THE QGP USING ENERGY CORRELATORS

Two-point energy correlators clearly identify the medium angular scale at which correlations are modified!

EEC gives angular scale $\mu \sim p_T \theta_{ij}$

Sep 22-27, 2024 DEJIMA MESSE NAGASAKI Asia/Tokyo timezone

Overview

Scientific Program

Timetable

Call for Abstracts

Registration/Apply for Vouna Scientist Sunnort

Energy correlators for heavy-ion collisions generating much excitement and progress!

PbPb to pp ratio, centrality evolution

...AND DATA!

CMS-PAS-HIN-23-004

1.70 nb⁻¹ PbPb (5.02 TeV) + 302 pb⁻¹ pp (5.02 TeV)

Pablos, Kudinoor, Rajagopal Holguin, Andrés, Dominguez, Marquet, Moult Yang, He, Wang

29 /45

RESOLVING THE QGP USING ENERGY CORRELATORS

 $\mu \sim p_T \theta_{ij}$ **EEC gives angular scale**

 Heavy quarks are effective probe of the medium. **Nontrivial interaction between intrinsic mass and medium effects!**

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics

IV. Medium Dynamics

WHAT IS A DETECTOR?

• What constitutes a well-defined field theory definition for a detector?

• Interesting measurements of energy flow can be made on a restricted set of hadronic states, R, for example, charged hadrons (tracks) $\mathcal{E}_R = \sum \mathcal{E}_i$

Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin 22

WHAT IS A DETECTOR?

• What constitutes a well-defined field theory definition for a detector?

example, charged hadrons (tracks)

CORRELATION BETWEEN CHARGED HADRONS

The correlation between unlike-signed hadron pair is expected to grow in string-like hadronization

KL, Moult `23

Kyle Lee

DISCRIMINATING HADRONIZATION MECHANISMS

(Pythia)

See also Chien, Deshpande, Mondal, Sterman

hadronization mechanisms by eye, and pave the path to go even beyond!

GENERALIZING ENERGY FLOW CORRELATIONS

• Writing down more general detectors allows us to systematically consider more general correlations!

 $\langle \mathcal{E}_{\boldsymbol{R_1}}(\vec{n}_1^{R_1})\cdots \mathcal{E}_{\boldsymbol{R_1}}$

 N_1 times

Higher-point charged

 $\mathcal{E}_{\mathcal{Q}}\left(\vec{n}_{1}\right)\left|k\right\rangle = E_{k}Q_{k}\delta$

KL, Moult `23

$$\underbrace{(\vec{n}_{N_1}^{R_1})}_{N_2 \text{ times}} \underbrace{\mathcal{E}_{R_2}(\vec{n}_1^{R_2}) \cdots \mathcal{E}_{R_2}(\vec{n}_{N_2}^{R_2})}_{N_2 \text{ times}} \cdots \underbrace{\mathcal{E}_{R_k}(\vec{n}_1^{R_k}) \cdots \mathcal{E}_{R_k}(\vec{n}_{N_k}^{R_k})}_{N_k \text{ times}} \\ \underbrace{\mathcal{E}_{R_2}(\vec{n}_1 - \hat{k})|k}_{(n_1 - \hat{k})|k} \xrightarrow{\mathcal{E}_{R_2}(\vec{n}_{N_2}^{R_2}) \cdots \mathcal{E}_{R_k}(\vec{n}_{N_k}^{R_k}) \cdots \mathcal{E}_{R_k}(\vec{n}_{N_k}^{R_k})}_{\theta} \\$$

Overview

I. Universal Scaling

VI. Real-time Simulations

V. Hadronization

II. Precision QCD III. Heavy Flavor Physics

IV. Medium Dynamics

QUANTUM COMPUTING PLATFORMS

For example

- Superconducting qubits
- Trapped ion devices

• We are living in the era of quantum computing revolution

IBM**Q** rigetti Google DIONQ Honeywell D:Wave

...

REAL-WORLD DIGITAL COMPUTING HARDWARE

Many "commercial" computers are networking together ever-growing number of qubits

IBM Quantum Roadmap, 2020 Superconducting Qubits

IonQ Roadmap, 2020 Trapped Ion

• We are living in the era of quantum computing revolution • Can these devices be utilized to simulate our nature?

38/45

SIMULATING SCATTERING PROCESSES

Simulation protocol

- I. Digitize the field theory on a spatial lattice
- 2. Prepare wave packets of the free field theory
- 3. Turn on interactions adiabatically
- 4. Unitary time evolution
- 5. After the scattering turn interactions off adiabatically
- 6. Perform measurement
 - Shown to be BQP in complexity for **Scalar Field Theory, but each step requires** significant amount of resources

SIMULATING ENERGY CORRELATORS

formulation

Simulation protocol

- Digitize the field theory on a spatial lattice
- 2. Prepare wave packets of the free field theory
- 3. Turn on interactions adiabatically
- 4. Unitary time evolution
- 5. After the scattering turn interactions off adiabatically
- 6. Perform measurement

$$\left\langle \mathcal{E}\left(\vec{n}_{1}\right)\mathcal{E}\left(\vec{n}_{2}\right)\right\rangle_{q} \equiv \frac{1}{\sigma_{\text{tot}}} \int \mathrm{d}^{4}x e^{iq \cdot x} \left\langle 0 \left| J_{\mu}^{\dagger}(x)\mathcal{E}\left(\vec{n}_{1}\right)\mathcal{E}\left(\vec{n}_{2}\right) J^{\mu}(0) \right| 0 \right\rangle$$

• Everything can be formulated at the operator level, which one can construct in the Hamiltonian

SIMULATING ENERGY CORRELATORS

• Key tasks

- 1. Develop the Hamiltonian formulation of field theory of interest on lattice
- 2.Write down the appropriate operators in the Hamiltonian formulation
- 3.Compute time evolution and correlations

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int_0^\infty \mathrm{d}t \, r^{d-1} n^i T_{0i}(t, r\vec{n})$$

SIMULATING ENERGY CORRELATORS

• Energy flow being captured in real time on lattice

• Can we see observe nontrivial confinement transition between the two regions?

Kyle Lee

NONPERTURBATIVE TRANSITION

Free hadrons

$$\langle \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \cdots \mathcal{E}(\vec{n}_N) \rangle \approx \langle \mathcal{E} \rangle^N = \left(\frac{Q}{\Omega_d}\right)^N$$

• Consistent with the free hadron region!

QUANTUM SIMULATIONS

(a) Results for $ag^2 = 0.6$ with the two detectors at (2,0) and (0,2).

— Exact

----- Adiabatic and Trotter

 $=1)\rangle$ 0.004 $(2,1)(t_2)$ 0.002 0.000 $(0,2)(t_1)T_{0,(1,1)}$ -0.002-0.004 $(T_{0,(1,1)})$ -0.006-0.0080.5 0.0 1.0 t_1

(c) Results for $ag^2 = 1$ with the two detectors at (0, 2) and (2, 0).

(d) Results for $ag^2 = 1$ with the two detectors at (0, 2) and (2, 1).

• Quantum devices can simulate energy correlators!

Conformal Colliders meet Jets in Particle Colliders!

Jets provide sharp link between underlying field theory and real world!

