Energy Correlators on Tracks

Max Jaarsma

What to expect from this talk?

²⁰²⁴ Hard Probes Preliminar

Outline

- What are energy correlators?
 - Motivation
 - Definition
- Why measure on tracks?
 - Motivation
 - Track functions
- How to make a prediction?
 - Split in three
 - Re-sum large logs
 - Glue back together

Outlook

EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

1 Accessible in an experiment

2 Calculable to high theoretical precision

Connected to some notable aspect of the theory

EEC: For the cosmologist(s) in the audience

EEC for QCD = CMB for cosmology

Secrets of the workings of the universe ightarrow fingerprints energy correlations

Run: 355848 Event: 1343779629 2018-07-18 03:14:03 CEST

Definition

$$\mathsf{EEC}(z) = \sum_{i,j} \int \mathrm{d}\sigma \, \frac{E_i E_j}{Q^2} \delta\left(z - \frac{1 - \cos\theta_{ij}}{2}\right)$$

1 Measure the angle between two particles

2 Take their energies and multiply them

3 Sum over all combinations of particles

Credit: Hua Xing Zhu

EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

Accessible in an experiment

2 Calculable to high theoretical precision

Connected to some notable aspect of the theory

Motivation 1: Accessible in an experiment

Accessible in any detector with a tracker

- $\blacksquare \text{ BELLE II: } e^+e^- \to \text{jets}$
- \blacksquare ATLAS & CMS: $pp \rightarrow {\rm jets}$
- ALICE: Ion collisions

Even accessible in old LEP data

- OPAL
- ALEPH

Accessible in an experiment So universal that they can be studied at any particle collider

Motivation 2: Calculable to high theoretical precision

IRC safety: observable is insensitive to collinear and soft splittings

 $\mathcal{O}(p_1, p_2, p_3) \approx \mathcal{O}(p_1, p_{2+3})$ when $p_2 \parallel p_3$

 $\mathcal{O}(p_1,p_2,p_3) pprox \mathcal{O}(p_1,p_2)$ when $p_3
ightarrow 0$

- \blacksquare IRC safe \rightarrow Can be reliably calculated in perturbation theory
- \blacksquare The only event-shape known analytically to order α_s^2

Calculable to high precision

The EEC is IRC safe and can therefore be predicted from perturbative QCD

Motivation 3: Clearly connected to theory of interest

Top quark mass measurement Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz (2024)

Connection to something interesting

Many interesting phenomena leave their fingerprint on energy correlators

Track-Based observables

Run: 300687 Event: 1358542809 2016-06-02 18:19:05 CEST

Run Number: 153565, Event Number: 4487360

Date: 2010-04-24 04:18:53 CEST

Event with 4 Pileup Vertices in 7 TeV Collisions

Track functions: Implementation

Cross section for a general observable $\ensuremath{\mathcal{O}}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Pi_{N} \, \frac{\mathrm{d}\sigma_{N}}{\mathrm{d}\Pi_{N}} \, \delta\big[\mathcal{O} - \hat{\mathcal{O}}(\{p_{i}\})\big]$$

- \blacksquare N final state partons
- Partonic cross section
- \blacksquare Measurement of ${\cal O}$ on partons

 $\label{eq:track} \begin{array}{l} \mbox{Track function formalism} \\ \mbox{Measure on tracks} \Rightarrow \mbox{attach track function to each parton} \end{array}$

Cross section for a track-based observable $\ensuremath{\mathcal{O}}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Pi_{N} \frac{\mathrm{d}\sigma_{N}}{\mathrm{d}\Pi_{N}} \int \left(\prod_{i=1}^{N} \mathrm{d}x_{i} T_{i}(x_{i})\right) \,\delta\left[\mathcal{O} - \hat{\mathcal{O}}(\{x_{i}p_{i}\})\right]$$

Chang, Procura, Thaler, Waalewijn (2013)

Basic properties

Track function interpretation Probability density for subset of fragments

- Support for $x \in [0, 1]$
- Normalised to 1

$$\int_0^1 \mathrm{d}x \, T_i(x,\mu) = 1$$

Calculable scale dependence

$$\frac{\mathrm{d}}{\mathrm{d}\mu}T_i(x,\mu)=\ldots$$

Recently extracted from data

Energy Correlators on Tracks

Regimes

Splitting the plot in three

- Collinear
- Fixed-Order
- Back-to-Back
- Resummation
 - General idea
 - Collinear
 - Back-to-Back(Sudakov)

Stitch them back together

Regimes

Splitting the plot in three

- Collinear
- Fixed-Order
- Back-to-Back
- Resummation
 - General idea
 - Collinear
 - Back-to-Back (Sudakov)

Stitch them back together

Regimes - General Strategy

Resummation

$$\begin{split} \sigma &= 1 & \text{LO} \\ &+ C_{11}a_s^1\log^1 + C_{10}a_s & \text{NLO} \\ &+ C_{22}a_s^2\log^2 + C_{21}a_s^2\log^1 + C_{20}a_s^2 & \text{NNLO} \\ &+ \underbrace{C_{33}a_s^3\log^3}_{\text{LL}} + \underbrace{C_{32}a_s^3\log^2}_{\text{NLL}} + \underbrace{C_{31}a_s^3\log^1}_{\text{NNLL}} + \underbrace{C_{30}a_s^3}_{\text{NNNLL}} & \text{NNNLO} \\ \end{split}$$

Large Logs: fixed-order calculation

$$\sigma = 1 + C_{11}a_s \log\left(\frac{Q^2}{q_T^2}\right) + \ldots + C_{22}a_s^2 \log^2\left(\frac{Q^2}{q_T^2}\right) + \ldots$$

Logarithmic tower can be captured by factorization

 $\sigma = H(Q,\mu) \times J(q_T,\mu)$

- \blacksquare μ acts as border between hard and collinear
- Large Logs: factorized calculation

$$\sigma = \left[1 + C_{11}a_s \log\left(\frac{Q^2}{\mu^2}\right) + \dots\right] \left[1 + C_{11}a_s \log\left(\frac{\mu^2}{q_T^2}\right) + \dots\right]$$

Key to resummation

Factorization + RGE constrains the coefficients of large logs

Large Logs: full vs. factorized

$$\sigma = 1 + C_{11}a_s \log\left(\frac{Q^2}{q_T^2}\right) + \ldots + C_{22}a_s^2 \log^2\left(\frac{Q^2}{q_T^2}\right) + \ldots$$
$$= \left[1 + C_{11}a_s \log\left(\frac{Q^2}{\mu^2}\right) + \ldots\right] \left[1 + C_{11}a_s \log\left(\frac{\mu^2}{q_T^2}\right) + \ldots\right]$$

 $\blacksquare \ \mu \ {\rm independence} \ {\rightarrow} \ {\rm tower} \ {\rm of} \ {\rm logs} \ {\rm captured}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mu} = 0 \qquad \rightarrow \qquad C_{22} = \frac{C_{11}^2}{2} , \quad C_{33} = \frac{C_{11}^3}{6} , \dots$$

Key to resummation Solving RGE resums logs

 \blacksquare Factorization \rightarrow Renormalization Group Equations

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2} H(Q,\mu) = -\gamma(\mu) H(Q,\mu)$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2} J(q_T,\mu) = +\gamma(\mu) J(q_T,\mu)$$

 \blacksquare Solve RGE \rightarrow exponentiating logs

$$J(q_T, \mu) = \exp\left[\int_{\mu_J}^{\mu} \mathrm{d}\ln\mu\gamma(\mu)\right] J(q_T, \mu_J)$$

Key to resummation Exponentiate the large logs by evolving from one scale to the other

Start from factorized formula

 $\sigma = H(Q,\mu) \times J(q_T,\mu)$

- Pick scales μ_H and μ_J that keep the logs small
- Introduce evolution kernel where the logs are exponentiated

 $\sigma = H(Q, \mu_H) \times U(\mu_H, \mu_J) \times J(q_T, \mu_J)$

Regimes

Collinear

Resummation - Collinear regime

Small angle limit

$$\theta \to 0 \qquad z \to 0$$

• Large logarithms as $z \to 0$:

Insensitive to soft

Insensitive to other jet

 $\frac{\mathrm{d}\sigma}{\mathrm{d}z}\approx \boldsymbol{H}\otimes J$

Resummation - Collinear regime

$$\frac{\mathrm{d}\sigma}{\mathrm{d}z} \approx \sum_{\mathbf{f}} \frac{\mathrm{d}}{\mathrm{d}z} \int_0^1 \mathrm{d}x \, x^2 H_f(x, Q^2, \mu^2) J_f(z x^2 Q^2, \mu^2)$$

In collinear limit

$$p_i \cdot p_j \sim z x^2 Q^2$$

Hard-Collinear factorization

 $\Lambda^2_{\rm QCD} \ll z x^2 Q^2 \ll Q^2$

DGLAP-like evolutionNatural scales

$$\mu_H^2 \sim Q^2 \qquad \mu_J^2 \sim z x^2 Q^2$$

Resummation - Collinear regime

Restricting to charged particles

Jet on tracks becomes

 $J_i = \mathcal{J}_{i \to j} T_j(2) + \mathcal{J}_{i \to jk} T_j(1) T_k(1)$

T(2) contact term

T(1) T(1) non-contact term

mix under evolution

Large angle limit

Double Logs (Sudakov)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}z} \approx \boldsymbol{H} \otimes \boldsymbol{J} \otimes \boldsymbol{J} \otimes \boldsymbol{S}$

- Sensitive to both jets
- Recoil from soft radiation

- Collinear and Soft overlap → rapidity scale

Two sets of sliders:

- \blacksquare μ : virtuality
- ν : rapidity

Sudakov logarithms

Overlap of soft and collinear introduces double logs, which are resummed by a combination of rapidity RGE and virtuality RGE

RGE for virtuality

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^{2}}H = \left[\gamma_{H}(\mu) + \Gamma_{\mathsf{cusp}}(\mu)\,\ln\left(\frac{Q^{2}}{\mu^{2}}\right)\right]H$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^{2}}J = \left[\gamma_{J}(\mu) + \Gamma_{\mathsf{cusp}}(\mu)\,\ln\left(\frac{\nu}{Q}\right)\right]J$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^{2}}S = \left[\gamma_{S}(\mu) + \Gamma_{\mathsf{cusp}}(\mu)\,\ln\left(\frac{\mu^{2}}{\nu^{2}}\right)\right]S$$

RGE for rapidity

$$\frac{\mathrm{d}}{\mathrm{d}\ln\nu}J = -\frac{1}{2}\gamma_{\nu}(b_{\perp},\mu) J$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\nu}S = \gamma_{\nu}(b_{\perp},\mu) S$$

TMD-like factorization

$$q_T^2 = (1-z)Q^2$$

Virtuality scales:

 $\mu_H \sim Q$ $\mu_J \sim \mu_S \sim b_\perp^{-1}$

Rapidity scales:

$$\nu_J \sim Q$$
 $\nu_S \sim b_\perp^{-1}$

37 / 53

$$\begin{aligned} \mathsf{EEC}(z) &\approx \sum_{q} \int_{0}^{\infty} \mathrm{d}b_{\perp} \, b_{\perp} J_{0} \big(\sqrt{1-z} b_{\perp} Q \big) H(Q,\mu) \\ &\times J_{q}(b_{\perp},Q,\mu,\nu) J_{\bar{q}}(b_{\perp},Q,\mu,\nu) S(b_{\perp},\mu,\nu) \end{aligned}$$

Jet function on tracks

 $J_i(b_\perp, Q, \mu, \nu) = T_j(1, \mu) \, \mathcal{C}_{ji}(1, b_\perp, Q, \mu, \nu)$

• TMD-matching coefficients known to α_s^3

Gluing the pieces back together

Glue back together

To stitch the three parts together we:

- \blacksquare Smoothly turn off resummation with z
- This is done using profile scales:

 $\mu_{H,J,S} \to \mu_{H,J,S}(z)$

At some point

 $\mu_H(z_{\rm FO}) = \mu_J(z_{\rm FO}) = \mu_S(z_{\rm FO}) = \mu_{\rm FO}$

Stitching the parts together Stitching together is done by smoothly turning off resummation as a function of z. This is done by using profile scales

Glue back together

To stitch the three parts together we:

- \blacksquare Smoothly turn off resummation with z
- This is done using profile scales:

 $\mu_{H,J,S} \to \mu_{H,J,S}(z)$

At some point

 $\mu_H(z_{\rm FO}) = \mu_J(z_{\rm FO}) = \mu_S(z_{\rm FO}) = \mu_{\rm FO}$

Stitching the parts together Stitching together is done by smoothly turning off resummation as a function of z. This is done by using profile scales

6 Technical Slides: Non-Perturbative Effects

Non-perturbative effects: Collins-Soper kernel

perturbative: FO

Rapidity evolution: CS kernel

$$\frac{\mathrm{d}}{\mathrm{d}\ln\nu} \ln J(b_{\perp}, Q, \mu, \nu) = -\frac{1}{2}\gamma_{\nu}(b_{\perp}, \mu)$$
$$\frac{\mathrm{d}}{\mathrm{d}\ln\nu} \ln S(b_{\perp}, \mu, \nu) = \gamma_{\nu}(b_{\perp}, \mu)$$

Contains a non-perturbative piece

NP-part extracted from lattice and data

Non-perturbative effects: Power correction

The most dominant power correction

The detector triggers on hadrons fragmenting from a soft gluon

- Present for all event shapes
- Non-perturbative

Non-perturbative effects: Power correction

Probed by renormalons

$$\operatorname{EEC}(z)\Big|_{\operatorname{NP}} \propto \frac{\Omega_1}{Q} \frac{1}{[z(1-z)]^{\frac{3}{2}}}$$

• Ω_1 constrained from event-shapes

Non-perturbative effects: Power correction

- \blacksquare Problematic as $z \to 0$ and $z \to 1$
- Resummation in back-to-back limit required
- In back-to-back limit PC $\sim \Omega_1 b_\perp$

$$\mathsf{EEC}(z)\big|_{\mathsf{NP}}^{z\to 1} \propto \int \mathrm{d}b_{\perp} \, b_{\perp} J_0(\sqrt{1-z}b_{\perp}Q) \,\Omega_1 b_{\perp}$$

■ resummed PC vs. "fixed-order" PC

Non-perturbative effects: Free hadron region

Free hadron region (in collinear limit) is characterized by

$$zQ^2 \ll \Lambda^2_{\rm QCD}$$

Resummed EEC keeps growing due to single-log structure

The collinear plateau The EEC will eventually reach a plateau in the free hadron region

Non-perturbative effects: Free hadron region

- The di-jet configuration dominates the EEC
- 2 Assume similar number of hadrons
- Assume similar distribution of energy
- **4** Collinear limit: N(N-1) contributions
- **5** back-to-back limit: N^2 contributions
- 6 For $Q \sim m_Z$ we have $N \sim 10-100$
- **T**ri-jet configuration: collinear contribution is larger than back-to-back contribution.

The collinear plateau

Height of plateau comparable to that of the back-to-back limit.

Outlook

Constraining non-perturbative parameters?

• Asymmetry in EEC is less sensitive to NP effects $\rightarrow \alpha_s$ measurement?

- Energy correlators are promising observables
- Track-based measurement allows for amazing angular resolution
- Precise theoretical predictions using resummation
- Excellent agreement between theory and experiment
- Opportunities for extraction of theory parameters

Thank you for your attention!

- Energy correlators are promising observables
- Track-based measurement allows for amazing angular resolution
- Precise theoretical predictions using resummation
- Excellent agreement between theory and experiment
- Opportunities for extraction of theory parameters

