Energy Correlators on Tracks

Max Jaarsma

What to expect from this talk?

Outline

- What are energy correlators?
	- **Motivation**
	- Definition **The State**
- Why measure on tracks?
	- **Motivation**
	- **Track functions**
- How to make a prediction?
	- Split in three
	- Re-sum large logs
	- Glue back together
- **Outlook**

EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

1 Accessible in an experiment

2 Calculable to high theoretical precision

3 Connected to some notable aspect of the theory

EEC: For the cosmologist(s) in the audience

EEC for $QCD = CMB$ for cosmology

Secrets of the workings of the universe \rightarrow fingerprints energy correlations

Run: 355848
Event: 1343779629
2018-07-18 03:14:03 CEST

$$
\text{EEC}(z) = \sum_{i,j} \int \mathrm{d}\sigma \, \frac{E_i E_j}{Q^2} \delta\left(z - \frac{1 - \cos \theta_{ij}}{2}\right)
$$

1 Measure the angle between two particles

2 Take their energies and multiply them

³ Sum over all combinations of particles

Credit: Hua Xing Zhu

EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

1 Accessible in an experiment

2 Calculable to high theoretical precision

3 Connected to some notable aspect of the theory

Motivation 1: Accessible in an experiment

Accessible in any detector with a tracker

- BELLE II: $e^+e^-\to\text{jets}$
- **ATLAS & CMS:** $pp \rightarrow$ jets
- ALICE: Ion collisions
- Even accessible in old LEP data
	- OPAL
	- ALEPH

Accessible in an experiment So universal that they can be studied at any particle collider

Motivation 2: Calculable to high theoretical precision

 \blacksquare IRC safety: observable is insensitive to collinear and soft splittings

 $\mathcal{O}(p_1, p_2, p_3) \approx \mathcal{O}(p_1, p_{2+3})$ when $p_2 \parallel p_3$

 $\mathcal{O}(p_1, p_2, p_3) \approx \mathcal{O}(p_1, p_2)$ when $p_3 \rightarrow 0$

■ IRC safe \rightarrow Can be reliably calculated in perturbation theory

The only event-shape known analytically to order α_s^2

Calculable to high precision

The EEC is IRC safe and can therefore be predicted from perturbative QCD

Motivation 3: Clearly connected to theory of interest

■ Top quark mass measurement

Holguin, Moult, Pathak, Procura, Schöfbeck, Schwarz (2024)

Connection to something interesting

Many interesting phenomena leave their fingerprint on energy correlators

Track-Based observables

Run: 300687 Event: 1358542809 2016-06-02 18:19:05 CEST

Run Number: 153565, Event Number: 4487360

Date: 2010-04-24 04:18:53 CEST

Event with 4 Pileup Vertices in 7 TeV Collisions

Track functions: Implementation

Cross section for a general observable $\mathcal O$

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Pi_{N} \, \frac{\mathrm{d}\sigma_{N}}{\mathrm{d}\Pi_{N}} \, \delta\big[\mathcal{O} - \hat{\mathcal{O}}(\{p_{i}\})\big]
$$

- \blacksquare N final state partons
- **Partonic cross section**
- \blacksquare Measurement of $\mathcal O$ on partons

Track function formalism Measure on tracks \Rightarrow attach track function to each parton

Cross section for a track-based observable O

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{N} \int \mathrm{d}\Pi_{N} \frac{\mathrm{d}\sigma_{N}}{\mathrm{d}\Pi_{N}} \int \left(\prod_{i=1}^{N} \mathrm{d}x_{i} T_{i}(x_{i}) \right) \delta\left[\mathcal{O} - \hat{\mathcal{O}}(\{x_{i} p_{i}\})\right]
$$

17 / 53 Chang, Procura, Thaler, Waalewijn (2013)

Basic properties

Track function interpretation Probability density for **subset** of fragments

■ Support for $x \in [0, 1]$

Normalised to 1 **The Co**

$$
\int_0^1 \mathrm{d}x \, T_i(x,\mu) = 1
$$

Calculable scale dependence $\mathcal{L}_{\mathcal{A}}$

$$
\frac{\mathrm{d}}{\mathrm{d}\mu}T_i(x,\mu)=\ldots
$$

Recently extracted from data $18 / 53$

Energy Correlators on Tracks

Regimes

- **Collinear**
- Fixed-Order
- Back-to-Back
- Resummation
	- General idea
	- Collinear
	- Back-to-Back(Sudakov)

Regimes

Regimes - General Strategy

Resummation

$$
\sigma = 1
$$

\n+ $C_{11}a_s^1 \log^1 + C_{10}a_s$
\n+ $C_{22}a_s^2 \log^2 + C_{21}a_s^2 \log^1 + C_{20}a_s^2$
\n+ $C_{33}a_s^3 \log^3 + C_{32}a_s^3 \log^2 + C_{31}a_s^3 \log^1 + C_{30}a_s^3$
\nNNLO
\n ω
\nNNLO
\nNNLO
\nNNKL
\nNNKL
\nNNKL
\nNNML
\nNNML
\nNNML
\nNNML
\nNNML

24 / 53

Large Logs: fixed-order calculation

$$
\sigma = 1 + C_{11} a_s \log \left(\frac{Q^2}{q_T^2} \right) + \ldots + C_{22} a_s^2 \log^2 \left(\frac{Q^2}{q_T^2} \right) + \ldots
$$

E Logarithmic tower can be captured by factorization

 $\sigma = H(Q, \mu) \times J(q_T, \mu)$

- \blacksquare μ acts as border between hard and collinear
- Large Logs: factorized calculation

$$
\sigma = \left[1 + C_{11}a_s \log\left(\frac{Q^2}{\mu^2}\right) + \dots\right] \left[1 + C_{11}a_s \log\left(\frac{\mu^2}{q_T^2}\right) + \dots\right]
$$

Key to resummation

Factorization $+$ RGE constrains the coefficients of large logs

Large Logs: full vs. factorized

$$
\sigma = 1 + C_{11} a_s \log \left(\frac{Q^2}{q_T^2} \right) + \dots + C_{22} a_s^2 \log^2 \left(\frac{Q^2}{q_T^2} \right) + \dots
$$

= $\left[1 + C_{11} a_s \log \left(\frac{Q^2}{\mu^2} \right) + \dots \right] \left[1 + C_{11} a_s \log \left(\frac{\mu^2}{q_T^2} \right) + \dots \right]$

 μ independence \rightarrow tower of logs captured

$$
\frac{d\sigma}{d\mu} = 0 \qquad \to \qquad C_{22} = \frac{C_{11}^2}{2} \ , \quad C_{33} = \frac{C_{11}^3}{6} \ , \ldots
$$

Key to resummation Solving RGE resums logs

■ Factorization \rightarrow Renormalization Group Equations

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}H(Q,\mu) = -\gamma(\mu) H(Q,\mu)
$$

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}J(q_T,\mu) = +\gamma(\mu) J(q_T,\mu)
$$

Solve RGE \rightarrow exponentiating logs

$$
J(q_T, \mu) = \exp \left[\int_{\mu_J}^{\mu} d\ln \mu \gamma(\mu) \right] J(q_T, \mu_J)
$$

Key to resummation Exponentiate the large logs by evolving from one scale to the other

Start from factorized formula

 $\sigma = H(Q, \mu) \times J(q_T, \mu)$

 \blacksquare Pick scales μ_H and μ_J that keep the logs small

Introduce evolution kernel where the logs are exponentiated

 $\sigma = H(Q, \mu_H) \times U(\mu_H, \mu_I) \times J(q_T, \mu_I)$

Regimes

Resummation - Collinear regime

 $d\sigma$ dz Small angle limit

$$
\theta \to 0 \qquad z \to 0
$$

Large logarithms as $z \rightarrow 0$:

Insensitive to soft Ħ

 $\approx H \otimes J$

 \blacksquare Insensitive to other jet

Resummation - Collinear regime

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}z} \approx \sum_{\mathbf{f}} \frac{\mathrm{d}}{\mathrm{d}z} \int_0^1 \mathrm{d}x \, x^2 H_f(x, Q^2, \mu^2) J_f(z x^2 Q^2, \mu^2)
$$

 \blacksquare In collinear limit

$$
p_i \cdot p_j \sim zx^2 Q^2
$$

Hard-Collinear factorization

$$
\Lambda_{\rm QCD}^2 \ll z x^2 Q^2 \ll Q^2
$$

DGLAP-like evolution Natural scales

$$
\mu_H^2 \sim Q^2 \qquad \mu_J^2 \sim z x^2 Q^2
$$

Resummation - Collinear regime

Restricting to charged particles

 \blacksquare let on tracks becomes

 $J_i = \mathcal{J}_{i \to i} T_i(2) + \mathcal{J}_{i \to jk} T_i(1) T_k(1)$

 $T(2)$ contact term

 $T(1) T(1)$ non-contact term

mix under evolution

Large angle limit

Double Logs (Sudakov)

 $d\sigma$ dz $\thickapprox H\otimes J\otimes J\otimes S$

 \blacksquare Sensitive to both jets

Recoil from soft radiation Ħ

Resummation - Back-to-Back regime

■ Collinear and Soft overlap \rightarrow double logs

 \blacksquare Collinear and Soft overlap \rightarrow rapidity scale

Two sets of sliders:

 \blacksquare μ : virtuality

 ν : rapidity

Sudakov logarithms

Overlap of soft and collinear introduces double logs, which are resummed by a combination of rapidity RGE and virtuality RGE

Resummation - Back-to-Back regime

RGE for virtuality

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}H = \left[\gamma_H(\mu) + \Gamma_{\text{cusp}}(\mu)\,\ln\left(\frac{Q^2}{\mu^2}\right)\right]H
$$

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}J = \left[\gamma_J(\mu) + \Gamma_{\text{cusp}}(\mu)\,\ln\left(\frac{\nu}{Q}\right)\right]J
$$

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}S = \left[\gamma_S(\mu) + \Gamma_{\text{cusp}}(\mu)\,\ln\left(\frac{\mu^2}{\nu^2}\right)\right]S
$$

RGE for rapidity

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\nu}J = -\frac{1}{2}\gamma_{\nu}(b_{\perp}, \mu) J
$$

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\nu}S = \gamma_{\nu}(b_{\perp}, \mu) S
$$

Resummation - Back-to-Back regime

 \sim

TMD-like factorization

$$
q_T^2 = (1 - z)Q^2
$$

Virtuality scales:

 $\mu_H \thicksim Q \qquad \mu_J \thicksim \mu_S \thicksim b_\perp^{-1}$ ⊥

Rapidity scales:

$$
\begin{aligned} \mathsf{EEC}(z) &\approx \sum_{q} \int_{0}^{\infty} \mathrm{d}b_{\perp} \, b_{\perp} J_{0} \big(\sqrt{1 - z} b_{\perp} Q \big) H(Q, \mu) \\ &\times J_{q}(b_{\perp}, Q, \mu, \nu) J_{\bar{q}}(b_{\perp}, Q, \mu, \nu) S(b_{\perp}, \mu, \nu) \end{aligned}
$$

$$
\nu_J \sim Q \qquad \nu_S \sim b_\perp^{-1}
$$

Jet function on tracks

 $J_i(b_\perp, Q, \mu, \nu) = T_i(1, \mu) C_{ii}(1, b_\perp, Q, \mu, \nu)$

TMD-matching coefficients known to α_s^3

Gluing the pieces back together

Glue back together

To stitch the three parts together we:

- Smoothly turn off resummation with z
- \blacksquare This is done using profile scales:

 $\mu_{H,IS} \rightarrow \mu_{H,IS}(z)$

At some point

 $\mu_H(z_{\textsf{FO}})=\mu_J(z_{\textsf{FO}})=\mu_S(z_{\textsf{FO}})=\mu_{\textsf{FO}}$

Stitching the parts together

Stitching together is done by smoothly turning off resummation as a function of z . $\mu_H(z_{\text{FO}}) = \mu_J(z_{\text{FO}}) = \mu_S(z_{\text{FO}}) = \mu_{\text{FO}} \xrightarrow{g} \frac{1}{z_{\text{10}}^2}$

Stitching the parts together

itching together is done by smoothly

ing off resummation as a function of z.

This is done by using profile scales

Glue back together

To stitch the three parts together we:

- Smoothly turn off resummation with z
- \blacksquare This is done using profile scales:

 $\mu_{H,IS} \rightarrow \mu_{H,IS}(z)$

At some point

 $\mu_H(z_{\textsf{FO}})=\mu_J(z_{\textsf{FO}})=\mu_S(z_{\textsf{FO}})=\mu_{\textsf{FO}}$

Stitching the parts together

Stitching together is done by smoothly turning off resummation as a function of z . $\mu_H(z_{\text{FO}}) = \mu_J(z_{\text{FO}}) = \mu_S(z_{\text{FO}}) = \mu_{\text{FO}} \xrightarrow{g} \frac{1}{z_{\text{10}}^2}$

Stitching the parts together

itching together is done by smoothly

ing off resummation as a function of z.

This is done by using profile scales

6 Technical Slides: Non-Perturbative Effects

Non-perturbative effects: Collins-Soper kernel

d $\frac{d}{d \ln \nu} \ln J(b_\perp, Q, \mu, \nu) = -\frac{1}{2}$ $\frac{1}{2}\gamma_\nu(b_\perp,\mu)$ d $\frac{d}{d \ln \nu} \ln S(b_\perp, \mu, \nu) = \gamma_\nu(b_\perp, \mu)$

■ Rapidity evolution: CS kernel

NP-part extracted from lattice and data

Non-perturbative effects: Power correction

The most dominant power correction

The detector triggers on hadrons fragmenting from a soft gluon

Present for all event shapes

■ Non-perturbative

Non-perturbative effects: Power correction

Probed by renormalons

$$
\mathsf{EEC}(z)|_{\mathsf{NP}} \propto \frac{\Omega_1}{Q} \frac{1}{[z(1-z)]^{\frac{3}{2}}}
$$

 $\mathbf{\Omega}_1$ constrained from event-shapes

Non-perturbative effects: Power correction

Problematic as $z \to 0$ and $z \to 1$

Resummation in back-to-back limit required

In back-to-back limit PC $\sim \Omega_1 b_1$

$$
\mathsf{EEC}(z)\big|_\mathsf{NP}^{z\to1}\propto\int\mathrm{d}b_\perp\,b_\perp J_0(\sqrt{1-z}b_\perp Q)\,\Omega_1b_\perp
$$

■ resummed PC vs. "fixed-order" PC

Non-perturbative effects: Free hadron region

Free hadron region (in collinear limit) is characterized by

$$
zQ^2 \ll \Lambda_{\rm QCD}^2
$$

Resummed EEC keeps growing due to single-log structure

The collinear plateau The EEC will eventually reach a plateau in the free hadron region

Non-perturbative effects: Free hadron region

- **1** The di-jet configuration dominates the EEC
- **2** Assume similar number of hadrons
- **3** Assume similar distribution of energy
- 4 Collinear limit: $N(N-1)$ contributions
- $\,$ back-to-back limit: $\,N^2$ contributions
- 6 For $Q \sim m_Z$ we have $N \sim 10 100$
- **7** Tri-jet configuration: collinear contribution is larger than back-to-back contribution.

The collinear plateau

Height of plateau comparable to that of the back-to-back limit.

Constraining non-perturbative parameters?

Asymmetry in EEC is less sensitive to NP effects $\rightarrow \alpha_s$ measurement?

- **Energy correlators are promising** observables
- Track-based measurement allows for amazing angular resolution
- **Precise theoretical predictions using** resummation
- Excellent agreement between theory and experiment
- Opportunities for extraction of theory parameters

Thank you for your attention!

- **Energy correlators are promising** observables
- Track-based measurement allows for amazing angular resolution
- **Precise theoretical predictions using** resummation
- Excellent agreement between theory and experiment
- Opportunities for extraction of theory parameters

