Energy Correlators on Tracks

Max Jaarsma




What to expect from this talk?
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—— Fully Corrected Data
—— Track Function Theory Calculation
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Energy correlators




EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

Accessible in an experiment
Calculable to high theoretical precision

Connected to some notable aspect of the theory
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EEC: For the cosmologist(s) in the audience

Angular scale
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EEC for QCD = CMB for cosmology

Secrets of the workings of the universe — fingerprints energy correlations
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EXPERIMENT

Run: 355848

Event:

ATLAS

1343779629
2018-07-18 03:14:03 CEST




Sum over all combinations of particles
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Credit: Hua Xing Zhu
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EEC Motivation

Desirable properties of an observable

For an observable to be considered interesting it has to satisfy 3 criteria:

Accessible in an experiment
Calculable to high theoretical precision

Connected to some notable aspect of the theory
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Motivation 1: Accessible in an experiment

Accessible in any detector with a tracker
m BELLE II: efe™ — jets
m ATLAS & CMS: pp — jets
m ALICE: lon collisions

Even accessible in old LEP data
m OPAL
= ALEPH

Accessible in an experiment
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Motivation 2: Calculable to high theoretical precision

m |IRC safety: observable is insensitive to collinear and soft splittings
O(p1, 12, p3) = O(p1, 02+ 3) when 1 || s
O(p1,p2, 1) =~ O(p1,p2) when p, — 0

m IRC safe — Can be reliably calculated in perturbation theory

m The only event-shape known analytically to order a2

Calculable to high precision
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Motivation 3: Clearly connected to theory of interest

BEY (AN T
1IN THEREL

a— ——
m Top quark mass measurement m Dead-cone effect
Holguin, Moult, Pathak, Procura, Schofbeck, Schwarz (2024) Craft, Lee Megaj, Moult (2024)

Connection to something interesting

Many interesting phenomena leave their fingerprint on energy correlators
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Track-Based observables




ATLAS

EXPERIMENT
Run: 300687
Event: 1358542809 /
2016-06-02 18:19:05 CEST
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Track functions: Implementation

Cross section for a general observable O

m N final state partons
do ' doy _ .
10 = Z / dlly — : m Partonic cross section
N - :

Track function formalism
Measure on tracks = attach track function to each parton

Cross section for a track-based observable O

N

do ' doy T
do — Z/ My dm / (H(l'l‘T‘("’) >

1=1

Chang, Procura, Thaler, Waalewijn (2013) 1753



Basic properties

Track function interpretation
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Energy Correlators on Tracks




Sp“tting the plOt in three 10° ALEPH e'e, {s=91.2 GeV, Preliminary
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ALEPH e*e’, Vs =91.2 GeV, Preliminary

Splitting the plot in three 10°

—— Fully Corrected Data
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Regimes - General Strategy

Identify Logs
Count powers
Factorize

B Derive RGE
Solve RGE

Back-to-Back

Collinear
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Resummation




Resummation - General idea

o= LO
+ + Choas NLO
+ + Cy1a2log' + Cypa? NNLO
+ + Cspa% log® + Cy1a? log' + Caga® NNNLO
NLL NNVLL m
log ~ 1
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Resummation - General idea

m Large Logs: fixed-order calculation 0
2 2

0:1—|—Cnaslog(Q—2>—|—...+C’22a§10g2(Q—2)+... u
dr dr

m Logarithmic tower can be captured by factorization
o=H(Q,n) x J(gr,p)

® /i acts as border between hard and collinear

m Large Logs: factorized calculation U

o= [1 + Cnaslog(g—j) + .. } [1 + C’Haslog(g) +.. } dr
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Resummation - General idea

Key to resummation 0

Factorization + RGE constrains the coefficients of large logs

m Large Logs: full vs. factorized H
2 2
oc=1+Cia, log(Q—Q) +...+ 022a§ log2<Q—2) + ...
qr 4T
Q2 M2
= 1+C’11aslog(—2>+... 1+C’11aslog(—2)+...
K dr
m /. independence — tower of logs captured u
dizo — (Yzz:('ﬁfl (,Y:m:(il~-- ¢
du 2 6 Ir
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Resummation - General idea

Key to resummation 0
Solving RGE resums logs

m Factorization — Renormalization Group Equations !
L H(Quu) = (1) H(@. 1)
dln 'LLZ 7# - / :“ 7”
d ,
i MQJ(qya-,u) = +7(1) J(qr, 1)
m Solve RGE — exponentiating logs p
IJ/ / \
J(qr. 1) = exp [/ dlIn g (;//,)} J(qr, 1) 0
o
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Resummation - General idea

Key to resummation 0
Exponentiate the large logs by evolving from one scale to the
other U
m Start from factorized formula
o=H(Q,p) x J(qr, )
m Pick scales /17 and /i, that keep the logs small
m Introduce evolution kernel where the logs are exponentiated H
o=H(Q,pnm) x Ulpw, ps) x J(qr. o) qr
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Back-to-Back
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Resummation - Collinear regime

m Small angle limit
0—0 z—0

m Large logarithms as z — 0:

1 1
- Ckkaf logk z+- C’kk_laf logk_1 Z4+...
2\ - J/ 2\ J/

LL NLL

m Insensitive to soft

dz ( ® Insensitive to other jet
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Resummation - Collinear regime
’ m In collinear limit

pi - p; ~ 22 Q?

Hard-Collinear factorization

Ajep < 20°Q* < Q*

m DGLAP-like evolution
m Natural scales
d d 1 o 2 02 0 202
d_z ~ Z & / dz $2Hf($a QQ, ,MQ)Jf(Z.’I,‘ZQZ7 qu) p ~ Q [~ 2 Q)
f 0
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Resummation - Collinear regime

Restricting to charged particles

o

m Jet on tracks becomes

Ji = Jissj T5(2) + Timsjr Tj(1) Ty (1)

7'(2) contact term

m /(1) 7(1) non-contact term

m mix under evolution
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Resummation - Back-to-Back regime

m Large angle limit
& 0 —180° z—1

m Double Logs (Sudakov)

log*(1 — 2 log®(1 — 2
1—=2 1—=2
—— —
LL NLL

d o :
d_a ~HRJRJ®S m Sensitive to both jets
z

m Recoil from radiation
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Resummation - Back-to-Back regime

m Collinear and overlap — double logs
-
m Collinear and overlap —
Two sets of sliders:

m /0 virtuality

Sudakov logarithms ¢

L4
A Collinear
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Resummation - Back-to-Back regime

RGE for virtuality

d
WH - 'YH(/L) + 1—‘cusp(,u) 1n<

d r
dln [12 J = ’YJ(,M) + FCUSp(H) ln(

d -
Qg — | 1)+ Tas(p) m(

RGE for
__1 ,
[m e A Collinear
|
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Resummation - Back-to-Back regime
#

m TMD-like factorization

g = (1—2)Q°

m Virtuality scales:

pg~Q gy~ s~ bt
m Rapidity scales:
> -1
EEC(2) ~ Z/ dby by Jo(VT =20, Q)H(Q, 1) v~ Q ~b]
0
q

X Jy (b, Q,p,v)Jg(b,Q, p,v)
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Resummation - Back-to-Back regime

m Jet function on tracks

Ji(bL-/ (gbﬂﬂ V) = T/<l/l)cjl(1~ bL-/ (gbﬂv I/)

m TMD-matching coefficients known to o3
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Gluing the pieces back together




Glue back together

To stitch the three parts together we:

m Smoothly turn off resummation with z

m This is done using profile scales: 1o ALEPH &', {5 =91.2 GV, Proliminary

—— Fully Corrected Data
—— Track Function Theory Calculation

MH J S _) /LH J S (Z) 102 (NNLL Collinear + NNNLL Sudakov)

. I 10
m At some point - £
H N 1 *;
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o 0* -
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Glue back together

To stitch the three parts together we:

m Smoothly turn off resummation with z

m This is done using profile scales:

5 ALEPH e'e, \s = 91.2 GeV, Preliminary

10
—— Fully Corrected Data
—— Track Function Theory Calculation
(NNLL Collinear + NNNLL Sudakov)
— 107
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6 Technical Slides: Non-Perturbative Effects




Non-perturbative effects: Collins-Soper kernel

A\/khadlev Shanahan Wagman Zhao (2024)
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m NP-part extracted from lattice and data
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Non-perturbative effects: Power correction

The most dominant power correction

The detector triggers on hadrons fragmenting from a soft gluon

m Present for all event shapes

m Non-perturbative
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Non-perturbative effects: Power correction

m Probed by renormalons

Shindler, Stewart, Sun (2024)
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Non-perturbative effects: Power correction

020~ -
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015} .:
m Problematicas z —0and z — 1
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Non-perturbative effects: Free hadron region

m Free hadron region (in collinear limit) is characterized by

2Q* < AQQCD
m Resummed EEC keeps growing due to single-log structure

The collinear plateau
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Non-perturbative effects: Free hadron region

The di-jet configuration dominates the EEC
Assume similar number of hadrons

Assume similar distribution of energy
Collinear limit: N(N — 1) contributions
back-to-back limit: N? contributions

@ For @ ~ myz we have N ~ 10 — 100

Tri-jet configuration: collinear contribution is larger than back-to-back contribution.

The collinear plateau
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10° ALEPH e'e’, (s =91.2 GeV, Preliminary

—— Fully Corrected Data
—— Track Function Theory Calculation
(NNLL Collinear + NNNLL Sudakov)
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ALEPH e'e, 15 = 91.2 GeV, Preliminary

—— Fully Corrected Data.
~— Track Function Theory Calculation
(NNLL Collinear + NNNLL Sudakov)

dz

-

4 d(sum E‘EV/EI)

N
I
2

10* 10? 12 1-10? 1-10*
2= (1- cos(8))/2

m Asymmetry in EEC is less sensitive to

m Constraining non-perturbative
NP effects — a, measurement?

parameters?
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m Energy correlators are promising
observables

m Track-based measurement allows for
amazing angular resolution

ALEPH e'e, Vs =91.2 GeV, Preliminary

m Precise theoretical predictions using
resummation e Foreson Thoy Clitin

(NNLL Collinear + NNNLL Sudakov)

m Excellent agreement between theory
and experiment

| d(Sum EE/E)
Nevenl dz
2
.

m Opportunities for extraction of theory o
parameters Collinear Back-to-Back
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