Probing interacting dark sectors with cosmology

Mathias Garny (TUM Munich)

Seminar on particle physics, University of Vienna, 21.01.25

Dark Matter

Galactic (rotation curves) [kpc]

Freeman, Rubin, Ford,... 1970s

e.g. Genzel et al Nature 543 (2017) 397

Galaxy clusters [Mpc]

Fritz Zwicky 1933

Bullet Cluster, Clowe et al AJ 648 (2006) L109

 Cosmic microwave background (CMB)/large-scale structure (LSS) [100 Mpc – Gpc]

$$\begin{array}{rcl} \Omega_{DM} h^2 & = & \frac{\rho_{DM}}{10.50 \, {\rm GeV/m^3}} \\ & = & 0.120 \pm 0.001 \end{array}$$

Planck Mission (ESA) 1807.06209 SDSS/BOSS 1909.11006, DESI 2404.03002 2411.12022

Balazs et al 2411.05062

Production mechanism?

Is DM cold and collisionless?

What is the Dark Sector?

The Waning of the WIMP: Endgame?

Giorgio Arcadi^{a,1,2}, David Cabo-Almeida^{b,1,2,3}, Maíra Dutra^{c,4,5}, Pradipta Ghosh^{d,6}, Manfred Lindner^{e,7}, Yann Mambrini^{f,8}, Jacinto P. Neto^{g,1,9,10}, Mathias Pierre^{h,11}, Stefano Profumo^{i,12,13}, Farinaldo S. Queiroz^{j,9,10,14}

2403.15860

the quest for new physics

slide from Yotam Soreq

New Physics in the Dark Sector?

Production mechanism?

Is DM cold and collisionless?

the quest for new physics

Kuhlen, Vogelsberger, Angulo 1209.5745

$$\delta(\mathbf{x}, z) =
ho(\mathbf{x}, z)/ar{
ho}(z) - 1$$

 $\langle \delta(\mathbf{k}, z) \delta(\mathbf{k}', z)
angle = \delta_D(\mathbf{k} + \mathbf{k}') P(k, z)$
 $\Delta^2(k, z) = 4\pi k^3 P(k, z)$

DESI Arizona (yr1 results 2024)

DESI one-year data 2404.03002

DESI, from O. Lahav

DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements arXiv:2411.12022

H_0 ?

Riess et al 2408.11770

Freedman et al 2408.06153

Sytematics or Beyond-ACDM Physics?

Indirect measurements set by the ratio of the sound horizon at recombination, and the angular diameter distance

$$\begin{array}{lll} r_s(z_{rec}) & = & \int_{z_{rec}}^{\infty} dz' \frac{c_s(z')}{H(z')} \propto 1/\sqrt{\rho_{\mathsf{total}}(z \sim z_{rec})} \,, \\ d_A(z_{obs}) & = & \int_0^{z_{obs}} dz' \frac{1}{H(z')} \propto 1/H_0 \end{array}$$

Increasing the inferred value of H₀ from CMB and galaxy surveys (BAO) requires to lower the sound horizon, e.g. via additional (dark sector) energy around recombination

[.. and changing ω_m , ..., see e.g. Poulin et al 2407.18292]

Extra (self-interacting) dark radiation?

Rompineve, Hertzberg, Poulin, Simon, Schöneberg ...

Extra (early) dark energy?

Poulin, Smith, Karwal, Kamionkowski 18,...

Poulin, Smith, Karwal, Kamionkowski 18

Niedermann, Sloth 19

Vey (4, X) 7=72 Φ

cold NEDE

hot NEDE (this talk)

Niedermann, Sloth 19+

Niedermann, Sloth 21

MG, Niedermann, Rubira, Sloth 24

New Physics in the Dark Sector?

Example: weakly coupled non-Abelian gauge symmetry with dark Higgs

$$\mathcal{L} = \mathcal{L}_{SM} + (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - \mu^{2}\phi^{\dagger}\phi - rac{\lambda}{4}(\phi^{\dagger}\phi)^{2} - rac{1}{4}F^{\mu
u}_{a}F^{a}_{\mu
u}F^{a}_{\mu
u}$$

• Dark gauge bosons $A^{\mu}_{a} = \text{dark radiation DR}$

• Dark Higgs $\phi = (\phi_1, \dots, \phi_N)^T$ leads to spont. symmetry breaking

$$SU(N) \rightarrow SU(N-1)$$

Parameters: $\alpha_d \equiv \frac{g_d^2}{4\pi}, \mu^2, \lambda, \xi \equiv \frac{T_{DR}}{T_{SM}}$

Assume Debye length $\sim 1/(g_d\,T_{DR}) \ll$ confinement length scale $1/\Lambda_c \propto e^{-1/g^2}$

(similar to quark-gluon plasma phase in QCD at high-T)

Coleman-Weinberg mechanism for classically scale-inv. theory with VEV $\langle \phi \rangle = (0, .., 0, v)^T$ generated by dimensional transmutation

$$\lambda(\mu_{\overline{MS}} = v) = \mathcal{O}(g_d^4)$$

Light Higgs compared to dark gauge bosons that acquire mass $m_A \sim g_d v$

$$rac{m_{\phi}}{m_A} \sim \mathcal{O}(g_d)$$

Coleman, E. Weinberg 73

Can allow for soft breaking of class. scale inv. by mass term in Higgs potential as long as

$$\gamma \equiv rac{|\mu^2|}{g_d^4 v^2} \ll 1$$

 \Rightarrow Parameters: $\alpha_d \equiv rac{g_d^2}{4\pi}, v^2, \gamma, \xi \equiv rac{T_{DR}}{T_{SM}}$

Symm. breaking via supercooled phase transition at $z = z_*$

$$\Delta V = V_{CW}(0) - V_{CW}(v) \sim g_d^4 v^4 \gg T_{DR}(z_*)^4$$

Witten 1981

Transition temperature* (unless for exp. small γ)

 $T_{DR}(z_*)\sim \sqrt{\gamma}g_dv$

(*) small negative μ^2 -term; barrier in eff. pot. vanishes at z_*

- $z>z_*\,$ Vacuum energy $\Delta V=$ "early dark energy"
- $z < z_*$ Thermalization heats dark sector (DR = remaining massless SU(N-1) gauge bosons and light Higgs)

 \Rightarrow increase of $\Delta N_{
m eff} \propto \Delta V$ at $z=z_{*}$

 $z < z_t$ Mass threshold of light Higgs leads to further (small) increase at

$$z_t \sim z_* rac{m_\phi}{m_A} \sim g_d z_*$$

analogous to step model, see Schmaltz, Weiner, Joseph, Aloni, Allali Rompineve, Hertzberg, Poulin, Simon, Schöneberg ...

In summary: two "steps" in $\Delta N_{
m eff}$ at z_* and $z_t \sim g_d z_*$

MG, Niedermann, Rubira, Sloth 2404.07256

	Base + BBN					$+ H_0$					/0 ^{H0}
	H_0	$\Delta N_{\rm IR}$	χ^2	$\Delta \chi^2$	ΔAIC	H_0	$\Delta N_{\rm IR}$	χ^2	$\Delta \chi^2$	ΔAIC	V QDMAP
ΛCDM	68.13 ± 0.42	-	3810.5	-	-	68.81 ± 0.39	-	3829.7	-	-	4.3σ
SIDR	$68.77^{+0.52}_{-0.73}$	$0.094^{+0.024}_{-0.093}$	3810.5^{a}	0.0	2.0	70.37 ± 0.72	0.27 ± 0.10	3825.7	-4.0	-2.0	3.9σ
Hot NEDE	$69.13^{+0.62}_{-1.0}$	$0.151^{+0.041}_{-0.15}$	3810.4	-0.1	1.9	71.17 ± 0.83	0.42 ± 0.13	3818.3	-11.4	-9.4	2.8σ

MG, Niedermann, Rubira, Sloth 2404.07256

MG, Niedermann, Rubira, Sloth 2404.07256

image: Dodelson, Modern Cosmology

image: Dodelson, Modern Cosmology

 \Rightarrow suppression of P(k) over wide range of scales (ETHOS n = 0)

(note: different for Abelian (dark photon) or contact interaction)

Moore, Teaney hep-ph/0412346; Buen-Abad, Lesgourgues, Marquez-Tavarez, Schmaltz 1505.03542, 1507.04351; Cyr-Racine, Sigurdson, Zavala, Bringmann, Vogelsberger 1512.05344; ...; Rubira, Mazoun, MG 2209.03974

• Dark sector temperature $\xi = T_{DR}/T_{\gamma}$: scale of suppression

DM+DR interaction strength: amount of suppression

fig. from Mazoun, Bocquet, MG, Mohr, Rubira, Vogt 2312.17622

cf. also Euclid weak lensing shear forecast Euclid coll. 2406.18274

21cm forecast Plombat, Simon, Flitter, Poulin 2410.01486

Simon++, Joseph++

Chacko++, Rompineve+

dark SU(N), *m*_x=1000 GeV, N=3, f=100%

Rubira, Mazoun, MG 2209.03974

Production mechanism?

Is DM cold and collisionless?