Dark matter, bound states, and unitarity

Kallia Petraki

Vienna, 09 April 2024

Frontiers in particle dark matter searches

(very simplistic summary)

Frontiers in particle dark matter searches

(very simplistic summary)

Heavy (m_{DM} ≥ TeV) dark matter

How does the phenomenology of dark matter look like? (in popular scenarios, e.g. thermal-relic DM)

New type of dynamics emerges:

Long-range interactions

$$egin{aligned} \lambda_B &\sim rac{1}{\mu v_{ ext{rel}}}, \, rac{1}{\mu lpha} &\lesssim rac{1}{m_{ ext{mediator}}} &\sim ext{interaction range} \ &\mu: ext{ reduced mass } (m_{ ext{dm}}/2) \end{aligned}$$

Sommerfeld effect

distortion of scattering-state wavefunctions \Rightarrow affects all cross-sections, incl annihilation

- Freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Indirect detection signals
- Elastic scattering

•

Sommerfeld effect

distortion of scattering-state wavefunctions \Rightarrow affects all cross-sections, incl annihilation

- Freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Indirect detection signals
- Elastic scattering

Bound states

- Unstable bound states ⇒ extra annihilation channel
 - Freeze-out
 - Indirect detection
 - Novel low-energy indirect detection signals
 - Colliders

•

Sommerfeld effect

distortion of scattering-state wavefunctions \Rightarrow affects all cross-sections, incl annihilation

- Freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Indirect detection signals
- Elastic scattering

Bound states

- Unstable bound states ⇒ extra annihilation channel
 - Freeze-out
 - Indirect detection
 - Novel low-energy indirect detection signals
 - Colliders
- Stable bound states (particularly important for asymmetric DM)
 - Elastic scattering (usually screening)
 - Novel low-energy indirect detection signals
 - Inelastic scattering in direct detection experiments (?)

Sommerfeld effect

distortion of scattering-state wavefunctions \Rightarrow affects all cross-sections, incl annihilation

- Freeze-out ⇒ changes correlation of parameters (mass – couplings)
- Indirect detection signals
- Elastic scattering

Bound states

- Unstable bound states
 ⇒ extra annihilation channel
 - Freeze-out

von Harling, Petraki 1407.7874

- Indirect detection
- Novel low-energy indirect detection signals
- Colliders
- Stable bound states (particularly important for asymmetric DM)
 - Elastic scattering (usually screening)
 - Novel low-energy indirect detection signals
 - Inelastic scattering in direct detection experiments (?)

Outline

 Dark matter freeze-out: dark U(1) model, Boltzmann eqs

 The origin of non-perturbative effects at perturbative coupling

 Unitarity limit and long-range interactions

 Neutralino-squark co-annihilation scenarios

Notorious Higgs

Sommerfeld

Bound

states

Dark matter production via thermal freeze-out

Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Thermal freeze-out with bound states Boltzmann equations

Processes			Detailed balance
Bound state formation (BSF) Ionisation (ion)	$X+ar{X}$ $\mathcal{B}(Xar{X})+\gamma_{\scriptscriptstyle D}$	$egin{array}{lll} ightarrow \mathcal{B}(Xar{X})+\gamma_{\scriptscriptstyle D}\ ightarrow X+ar{X} \end{array}$	$\langle \sigma^{\scriptscriptstyle \mathrm{BSF}}_{oldsymbol{eta}} v_{ m rel} angle (n^{ m eq})^2 = \Gamma^{ m ion}_{oldsymbol{eta}} n^{ m eq}_{oldsymbol{eta}}$
Decay (dec)	${\cal B}(Xar X)$	$ ightarrow 2\gamma_{\scriptscriptstyle D} ~{ m or}~ 3\gamma_{\scriptscriptstyle D}$	
Transitions (trans)	${\cal B}(Xar X) \ {\cal B}(Xar X) + \gamma_{\scriptscriptstyle D}$	$egin{array}{lll} ightarrow \mathcal{B}'(Xar{X})+\gamma_{\scriptscriptstyle D} \ ightarrow \mathcal{B}'(Xar{X}) \end{array}$	$\Gamma^{ ext{trans}}_{\mathcal{B} ightarrow \mathcal{B}'} n^{ ext{eq}}_{\mathcal{B}} = \Gamma^{ ext{trans}}_{\mathcal{B}' ightarrow \mathcal{B}} n^{ ext{eq}}_{\mathcal{B}'}$

Thermal freeze-out with bound states Boltzmann equations

Complete treatement: Binder, Filimonova, Petraki, White 2112.00042

Thermal freeze-out with bound states Boltzmann equations and effective cross-section

$$\begin{array}{c} \text{free particles:} \quad \displaystyle \frac{dn}{dt} + 3Hn = -\left\langle \sigma^{\text{ann}} v_{\text{rel}} \right\rangle \left(n^2 - n^{\text{eq} \ 2}\right) - \sum_{\textbf{g}} \left(\left\langle \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \right\rangle n^2 - \Gamma^{\text{ion}}_{\textbf{g}} n_{\textbf{g}} \right) \\ \text{bound states:} \quad \displaystyle \frac{dn_{\textbf{g}}}{dt} + 3Hn_{\textbf{g}} = + \left(\left\langle \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \right\rangle n^2 - \Gamma^{\text{ion}}_{\textbf{g}} n_{\textbf{g}} \right) - \Gamma^{\text{dec}}_{\textbf{g}} \left(n_{\textbf{g}} - n^{\text{eq}}_{\textbf{g}} \right) - \sum_{\textbf{g}' \neq \textbf{g}} \left(\Gamma^{\text{trans}}_{\textbf{g} \rightarrow \textbf{g}'} n_{\textbf{g}} - \Gamma^{\text{trans}}_{\textbf{g}' \rightarrow \textbf{g}} n_{\textbf{g}'} \right) \\ \\ \hline \\ \frac{dn}{dt} + 3Hn = -\left\langle \sigma^{\text{eff}} v_{\text{rel}} \right\rangle \left(n^2 - n^{\text{eq} \ 2} \right) \\ \text{where, neglecting bound-to-bound transitions,} \\ \left\langle \sigma^{\text{eff}} v_{\text{rel}} \right\rangle \equiv \left\langle \sigma^{\text{ann}} v_{\text{rel}} \right\rangle + \sum_{\textbf{g}} \left\langle \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \right\rangle \times \frac{\Gamma^{\text{dec}}_{\textbf{g}}}{\Gamma^{\text{dec}}_{\textbf{g}} + \Gamma^{\text{ion}}_{\textbf{g}}} \end{array}$$

Thermal freeze-out with bound states Boltzmann equations and effective cross-section

Bound-to-bound transitions only enhance the total effective cross-section!

Thermal freeze-out with bound states Effective cross-section

$$\begin{split} \frac{dn}{dt} + 3Hn &= -\langle \sigma^{\text{eff}} v_{\text{rel}} \rangle \left(n^2 - n^{\text{eq} \ 2} \right) \\ \text{where, neglecting bound-to-bound transitions,} \\ \langle \sigma^{\text{eff}} v_{\text{rel}} \rangle &\equiv \langle \sigma^{\text{ann}} v_{\text{rel}} \rangle + \sum_{\textbf{g}} \langle \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \rangle \times \frac{\Gamma^{\text{dec}}_{\textbf{g}}}{\Gamma^{\text{dec}}_{\textbf{g}} + \Gamma^{\text{ion}}_{\textbf{g}}} \end{split}$$

$$\begin{aligned} \text{At } T \gg \text{ Binding Energy } \Rightarrow \Gamma^{\text{ion}}_{\textbf{g}} \gg \Gamma^{\text{dec}}_{\textbf{g}}, \\ \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \rangle & \frac{\Gamma^{\text{dec}}_{\textbf{g}}}{\Gamma^{\text{dec}}_{\textbf{g}} + \Gamma^{\text{ion}}_{\textbf{g}}} \simeq \langle \sigma^{\text{BSF}}_{\textbf{g}} v_{\text{rel}} \rangle \frac{\Gamma^{\text{dec}}_{\textbf{g}}}{\Gamma^{\text{dec}}_{\textbf{g}} + \Gamma^{\text{ion}}_{\textbf{g}}} \prod \left[\text{At } T \lesssim \text{ Binding Energy} \Rightarrow \Gamma^{\text{ion}}_{\textbf{g}} \ll \Gamma^{\text{dec}}_{\textbf{g}}, \end{aligned}$$

$$\langle \sigma^{\scriptscriptstyle \mathrm{BSF}}_{_{\mathcal{B}}} v_{\mathrm{rel}}
angle \; rac{\Gamma^{\mathrm{dec}}_{_{\mathcal{B}}}}{\Gamma^{\mathrm{dec}}_{_{\mathcal{B}}} + \Gamma^{\mathrm{ion}}_{_{\mathcal{B}}}} \simeq \langle \sigma^{\scriptscriptstyle \mathrm{BSF}}_{_{\mathcal{B}}} v_{\mathrm{rel}}
angle.$$

Typically, most of DM destruction due to BSF occurs in this regime.

Independent of actual BSF cross-section!

 $\simeq rac{g_{\scriptscriptstyle {\cal B}}}{g_{_{_X}}^2} \left(rac{4\pi}{m_{_X}T}
ight)^{3/2} imes e^{|E_{\cal B}|/T} \ \Gamma_{_{\cal B}}^{
m dec}$

 $\Gamma_{\scriptscriptstyle B}^{
m dec} \propto (\sigma^{
m ann} v_{
m rel}) \rightarrow {
m modest}$ increase over the direct annihilation, but increases exponentially as T drops.

Effective cross-section in dark U(1) model

Cross-sections

Thermally averaged cross-sections

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

Thermal freeze-out with long-range interactions Dark U(1) model: Dirac DM X, \overline{X} coupled to γ_{D}

A corollary

Saha equilibrium for metastable bound states

$$egin{aligned} rac{n_{\mathcal{B}}}{n_{\mathcal{B}}^{ ext{eq}}} = \left(rac{n_{ ext{free}}}{n_{ ext{free}}^{ ext{eq}}}
ight)^2 - \left[\left(rac{n_{ ext{free}}}{n_{ ext{free}}^{ ext{eq}}}
ight)^2 - 1
ight]r_{\mathcal{B}} \end{aligned}$$

Binder, Filimonova, Petraki, White 2112.00042

Standard Saha equilibrium

Particles with decay rate > Hubble

The origin of non-perturbative effects at perturbative coupling

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Energy and momentum exchange scale with α !

- Momentum transfer: $|\vec{q}| \sim \mu \alpha$.
- Energy transfer: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.
- Off-shellness of interacting particles: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.

one boson exchange
$$\sim \alpha \times \frac{1}{(\mu\alpha)^2} \propto \frac{1}{\alpha}$$

each added loop $\sim \alpha \times \int dq^0 d^3 q \frac{1}{q_1 - m_1} \frac{1}{q_2 - m_2} \frac{1}{q_\gamma^2}$
 $\sim \alpha \times (\mu\alpha^2)(\mu\alpha)^3 \frac{1}{\mu\alpha^2} \frac{1}{\mu\alpha^2} \frac{1}{(\mu\alpha)^2}$
 ~ 1

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Bound-state ladder

Energy and momentum exchange scale with α !

- Momentum transfer: $|\vec{q}| \sim \mu \alpha$.
- Energy transfer: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.
- Off-shellness of interacting particles: $q^0 \sim |\vec{q}|^2/\mu \sim \mu \alpha^2$.

$$\begin{array}{ll} \text{one boson exchange} &\sim \ \alpha \times \frac{1}{(\mu\alpha)^2} \propto \frac{1}{\alpha} \\ \text{each added loop} &\sim \ \alpha \times \int dq^0 d^3 q \ \frac{1}{q_1 - m_1} \frac{1}{q_2 - m_2} \ \frac{1}{q_\gamma^2} \\ &\sim \ \alpha \times (\mu\alpha^2)(\mu\alpha)^3 \ \frac{1}{\mu\alpha^2} \frac{1}{\mu\alpha^2} \ \frac{1}{(\mu\alpha)^2} \\ &\sim \ 1 \end{array}$$

1/α scaling responsible for non-perturbative effects

(not largeness of coupling)

Every mediator exchange introduces an $\alpha = g^2/(4\pi)$ suppression in the amplitude. How did we get an enhancement and bound states?

Energy and momentum exchange scale with both α and $v_{\rm rel}$!

 $\mu v_{\rm rel}$ is the expectation value of the momentum in CM frame, the quantum uncertainty scales with α .

The Sommerfeld effect appears when quantum uncertainty \sim expectation value.

Unitarity limit and long-range interactions

$$S^\dagger S = 1 \quad \stackrel{S=1+iT}{\longrightarrow} \quad -i(T-T^\dagger) = T^\dagger T$$

Project on a partial wave and insert complete set of states on RHS

\Downarrow

$$\sigma_{ ext{inel}}^{(\ell)} \leqslant rac{\pi(2\ell+1)}{k_{ ext{cm}}^2} \stackrel{ ext{non-rel}}{\longrightarrow} rac{\pi(2\ell+1)}{\mu^2 v_{ ext{rel}}^2} \stackrel{\mu=M_{ ext{DM}}/2}{\longrightarrow} rac{4\pi(2\ell+1)}{M_{ ext{DM}}^2 v_{ ext{rel}}^2}$$

[Griest, Kamionkowski (1990); Hui (2001)]

Physical meaning: saturation of probability for inelastic scattering

$$\sigma^{(\ell)}_{
m inel} v_{
m rel} ~\leqslant~ \sigma^{(\ell)}_{
m uni} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

Implies upper bound on the mass of thermal-relic DM Griest, Kamionkowski (1990)

$$\sigma_{\text{ann}} v_{\text{rel}} \simeq 2.2 \times 10^{-26} \text{ cm}^3/\text{s} \leqslant \frac{4\pi}{M_{\text{DM}}^2 v_{\text{rel}}}$$

$$\langle v_{\text{rel}}^2 \rangle^{1/2} = (6T/M_{\text{DM}})^{1/2} \xrightarrow{\text{freeze-out}}_{M_{\text{DM}}/T \approx 25} 0.49$$

$$\Rightarrow M_{\text{uni}} \simeq \begin{cases} 117 \text{ TeV}, \quad \text{self-conjugate DM} \\ 83 \text{ TeV}, \quad \text{non-self-conjugate DM} \end{cases}$$

$$3 \text{ TeV}, \qquad \text{non-self-conjugate DM}$$

$$3 \text{ TeV}, \qquad \text{non-self-conjugate DM} \end{cases}$$

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

1) Velocity dependence of σ_{uni}

Assuming σv_{rel} = constant, setting it to maximal (inevitably for a fixed v_{rel}) and thermal averaging is formally incorrect!

 \Rightarrow Unitarity violation at larger v_{rel}, non-maximal cross-section at smaller v_{rel}.

Sommerfeld-enhanced inelastic processes exhibit exactly this velocity dependence at large couplings / small velocities, e.g. in QED

$$\sigma^{\ell=0}_{
m ann} v_{
m rel} ~\simeq~ rac{\pi lpha_D^2}{M_{
m _DM}^2} imes rac{2\pi lpha_D/v_{
m rel}}{1-\exp(-2\pi lpha_D/v_{
m rel})} ~~ rac{lpha_D \gg v_{
m rel}}{M_{
m _DM}^2 v_{
m rel}} ~~ rac{2\pi^2 lpha_D^3}{M_{
m _DM}^2 v_{
m rel}}$$

⇒ Velocity dependence of σ_{uni} definitely *not* unphysical!

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

1) Velocity dependence of σ_{uni}

Proper thermal average and taking into account delayed chemical decoupling

s-wave annihilation

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

• For contact-type interactions, higher ℓ are $v_{\rm rel}^{2\ell}$ suppressed:

$$\sigma_{\mathrm{ann}} v_{\mathrm{rel}} = \sum_{\ell} \sum_{r=0}^{\infty} c_{\ell r} \, \overline{v_{\mathrm{rel}}}^{2\ell+2r}$$

• For long-range interactions:

$$\sigma^{(\ell=0)} v_{
m rel} \sim rac{\pi lpha_D^2}{M_{
m _DM}^2} imes \left(rac{2\pi lpha_D/v_{
m rel}}{1 - e^{-2\pi lpha_D/v_{
m rel}}}
ight) \qquad \stackrel{lpha_D \gg v_{
m rel}}{\longrightarrow} \; rac{2\pi^2 lpha_D^3}{M_{
m _DM}^2 v_{
m rel}}$$

$$\sigma^{(\ell=1)} v_{
m rel} \sim rac{\pi lpha_D^2}{M_{
m _DM}^2} v_{
m rel}^2 imes \left(rac{2\pi lpha_D/v_{
m rel}}{1-e^{-2\pi lpha_D/v_{
m rel}}}
ight) \left(1+rac{lpha_D^2}{v_{
m rel}^2}
ight) \stackrel{lpha_D \gg v_{
m rel}}{\longrightarrow} rac{2\pi^2 lpha_D^5}{M_{
m _DM}^2 v_{
m rel}}$$

Same $v_{\rm rel}$ scaling (as expected from unitarity!), albeit $v_{\rm rel}^2 \rightarrow \alpha_D^2$ suppression.

Baldes, KP: 1703.00478

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{d}M}^2 v_{ ext{rel}}}$$

2) Higher partial waves

In direct annihilation processes, s-wave dominates.

However, DM may annihilate via formation and decay of bound states.

$$\sigma_{
m inel}^{(\ell)} v_{
m rel} ~\leqslant~ \sigma_{
m uni}^{(\ell)} v_{
m rel} ~=~ rac{4\pi(2\ell+1)}{M_{
m _DM}^2 v_{
m rel}}$$

2) Higher partial waves

Baldes, KP: 1703.00478

In direct annihilation processes, *s*-wave dominates.

However, DM may annihilate via formation and decay of bound states.

$$\sigma_{ ext{inel}}^{(\ell)} v_{ ext{rel}} \ \leqslant \ \sigma_{ ext{uni}}^{(\ell)} v_{ ext{rel}} \ = \ rac{4\pi(2\ell+1)}{M_{ ext{\tiny DM}}^2 v_{ ext{rel}}}$$

Can be approached or attained only by long-range interactions

Freeze-out

Sommerfeld & BSF alter predicted mass – coupling relation. Important for all experimental probes.

 Indirect detection Sommerfeld & BSF must be considered in computing signals. Novel lower energy signals produced in BSF.

Neutralino-squark co-annihilation scenarios

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP

⇒ DM density determined by "effective" Boltzmann equation $n_{\text{tot}} = n_{\text{LSP}} + n_{\text{NLSP}}$ $\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$ Scenario probed in colliders. Important to compute DM density accurately! → QCD corrections

$$egin{aligned} \mathcal{L} &\supset \; rac{1}{2} \overline{\chi^c} \, i \partial \!\!\!/ \chi - rac{1}{2} m_\chi \, \overline{\chi^c} \chi \ &+ \; \left[(\partial_\mu + i g_s G^a_\mu T^a) X
ight]^\dagger \left[(\partial^\mu + i g_s G^{a,\mu} T^a) X
ight] - m_X^2 |X|^2 \ &+ \; (\chi \leftrightarrow X, X^\dagger) ext{ interactions in chemical equilibrium during freeze-out} \end{aligned}$$

Long-range interaction

$$\begin{split} \hat{\mathrm{R}} & \left\{ \begin{array}{c} X_{[\mathrm{R}]} \\ & & \\ &$$

Kats, Schwartz 0912.0526

Bound-state formation and decay

Harz, KP 1805.01200: Cross-sections for radiative BSF in non-Abelian theories

In agreement with Brambilla, Escobedo, Ghiglieri, Vairo 1109.5826: Gluo-dissociation of quarkonium in pNRQCD

Bound-state formation vs Annihilation

Harz, KP: 1805.01200

Squark-neutralino co-annihilation scenarios

- Degenerate spectrum \rightarrow soft jets \rightarrow evade LHC constraints
- Large stop-Higgs coupling reproduces measured Higgs mass and brings the lightest stop close in mass with the LSP
 - ⇒ DM density determined by "effective" Boltzmann equation

$$\sigma_{\text{ann}}^{\text{eff}} = [n_{\text{LSP}}^2 \sigma_{\text{ann}}^{\text{LSP}} + n_{\text{NLSP}}^2 \sigma_{\text{ann}}^{\text{NLSP}} + n_{\text{LSP}} n_{\text{NLSP}} \sigma_{\text{ann}}^{\text{LSP-NLSP}}]/n_{\text{tot}}^2$$

$$Scenario \text{ probed in colliders.}$$

$$Important \text{ to compute DM density accurately!}$$

$$\rightarrow \text{ QCD corrections}$$

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Binding of bound states

Harz, KP: 1711.03552

Harz, KP: 1901.10030

DM coannihilation with scalar colour triplet MSSM-inspired toy model The effect of the Higgs-mediated potential

The Higgs as a light mediator

- Sommerfeld enhancement of direct annihilation
- Harz, KP: 1711.03552

Binding of bound states

Harz, KP: 1901.10030

• Formation of bound states via Higgs (doublet) emission ?

Capture via emission of neutral scalar suppressed, due to selection rules: quadruple transitions

March-Russel, West 0812.0559 KP, Postma, Wiechers: 1505.00109 An, Wise, Zhang: 1606.02305 KP, Postma, de Vries: 1611.01394

Capture via emission of charged scalar [or its Goldstone mode] very very rapid: monopole transitions ! Ko,Matsui,Tang: 1910:04311 Oncala, KP: 1911.02605

Ko,Matsui,Tang: 1910:04312 Oncala, KP: 1911.02605 Oncala, KP: 2101.08666 Oncala, KP: 2101.08667

Sudden change in effective Hamiltonian precipitates transitions. Akin to atomic transitions precipitated by β decay of nucleus.

Renormalisable Higgs-portal WIMP models

Singlet-Doublet coupled to the Higgs: $L \supset -y \overline{D} H S$

 $m_D \simeq m_S \rightarrow D$ and S co-annihilate. Freeze-out begins before the EWPT if $m_{DM} > 5$ TeV

Oncala, KP: 2101.08666/7

Renormalisable Higgs-portal WIMP models

Singlet-Doublet coupled to the Higgs: $L \supset -y \overline{D} H S$ $m_D \simeq m_S \rightarrow D$ and S co-annihilate.

Freeze-out begins before the EWPT if $m_{DM} > 5$ TeV

Oncala, KP: 2101.08666/7

Conclusions

• Bound states impel complete reconsideration of thermal decoupling at / above the TeV scale: *emergence of a new type of inelasticity*

Unitarity limit can be approached / realised only by long-range interactions ⇒ bound states play very important role! Baldes, KP: 1703.00478

There is no unitarity limit on the mass of thermal relic DM!

- Experimental implications:
 - DM heavier than anticipated: multi-TeV probes very important.
 - Indirect detection:

Enhanced rates due to BSF Novel signals: low-energy radiation emitted in BSF Indirect detection of asymmetric DM

- Colliders: improved detection prospects due increased mass gap in coannihilation scenarios
- Further existing/upcoming work: excited bound states, restoring unitarity, Higgs

extra slides

Radiative capture into bound states

• Emission of **force mediator** (boson that generates long-range potential)

attn: there may be multiple force mediators.

• Emission of another (light enough) particle that does not contribute to the long-range potential.

Properties of radiated particle determine:

- (angular momentum) selection rules
- strength and energy dependence of cross-sections

Radiative capture into bound states I. vector emission

Many works, from Quarkonia and Dark Matter sides

Radiative capture into bound states II. (neutral) scalar emission

Petraki, Postma, Wiechers: 1505.00109 Petraki, Postma, de Vries: 1611.01394

Radiative capture into bound states II. (neutral) scalar emission

Petraki, Postma, Wiechers: 1505.00109 Petraki, Postma, de Vries: 1611.01394

Radiative capture into bound states II. (neutral) scalar emission

monopole $\Delta \ell = 0$:	$\int d^3p \; \psi^*_{ m Bound}(r) \; \psi_{ m Scatt}(r) \left(y_1+y_2 ight)$	cancels due to orthogonality of wavefunctions
dipole $\Delta \ell = 1$:	$\int d^3p \; \psi^*_{ m Bound}(r) \; \psi_{ m Scatt}(r)(P_arphi \cdot r) \left(-rac{y_1m_2}{m_1+m_2} + rac{y_2m_1}{m_1+m_2} ight)$	cancels for $rac{y_1}{m_1}=rac{y_2}{m_2}, \ { m suppressed} \ { m by} \ lpha$
quadrapole $\Delta \ell = 2$:	$\int d^3p \; \psi^*_{ m Bound}(r) \; \psi_{ m Scatt}(r) (P_arphi \cdot r)^2 \; rac{1}{2} \left[\left(rac{y_1 m_2}{m_1 + m_2} ight)^2 + \left(rac{y_2 m_1}{m_1 + m_2} ight)^2 ight] \; .$	suppressed by α^2

Petraki, Postma, Wiechers: 1505.00109 Petraki, Postma, de Vries: 1611.01394

Radiative capture into bound states III. <u>charged</u> scalar emission

Scalar DM X, X^{\dagger} coupled to doubly charged light scalar mediator Φ

 $\mathcal{L} \ \supset \ -ig X^\dagger V^\mu (\partial_\mu X) \ -i2g \Phi^\dagger V^\mu (\partial_\mu \Phi) \ -rac{y m_X}{2} X X \Phi^\dagger + h.c.$ $m_{\rm x} \gg m_{\rm b}$

 ${\cal A}^{
m 2PI}_{XX^\dagger}$

 $4^{2\mathrm{PI}}_{XX^{\dagger}}$

 $\mathcal{A}_{XX}^{
m 2PI}$

 $\mathcal{A} = \mathcal{A}_{XX}^{2\mathrm{PI}} \cdots$ BSF_{Φ}

Oncala, KP: 1911.02605

 \Rightarrow monopole transition

extremely fast!

X \mathcal{B} $\mathcal{M} \sim 2y \int d^3p \ \psi^*_{n\ell m}(r) \ \phi_k(r)$

Scalar DM X, X^{\dagger} coupled to doubly charged light scalar mediator Φ

Vrel

Scalar DM X, X^{\dagger} coupled to doubly charged light scalar mediator Φ

Capture into bound states via scattering on relativistic thermal bath

 $egin{aligned} \sigma_{ ext{BSF}}^{ ext{scatt}} &\sim & \sigma_{ ext{BSF}}^{ ext{rad}} imes R \ & R &\sim & (T/\omega_{ ext{rad}})^3 &\sim (T/|\mathcal{E}_{\mathcal{B}}|)^3 \end{aligned}$

typically does not affect DM density significantly

Abelian gauge theories:Binder, Mukaida, Petraki 1910.11288Non-Abelian gauge theories:Binder, Blobel, Harz, Mukaida 2002.07145Scalar mediators:Oncala, Petraki 2101.08666