

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES Part 1: Resummation of Super-Leading Logarithms

MATTHIAS NEUBERT

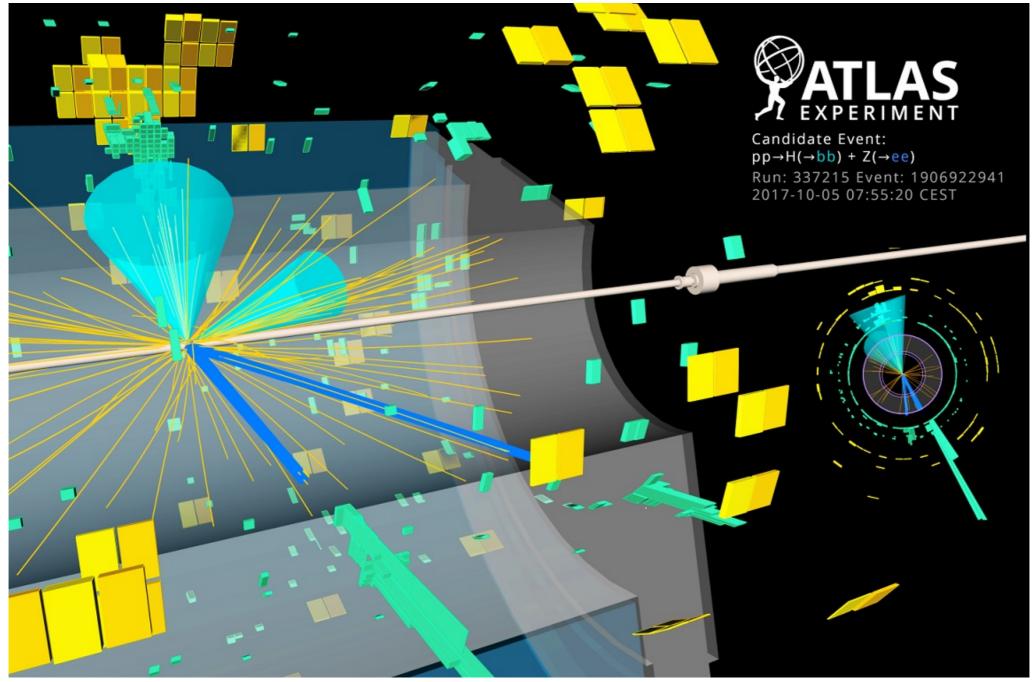
PRISMA+ CLUSTER OF EXCELLENCE & MITP JOHANNES GUTENBERG UNIVERSITY MAINZ

European Research Council AdG EFT4jets

ERWIN SCHRÖDINGER LECTURE I UNIVERSITÄT WIEN — 14 MAY 2024

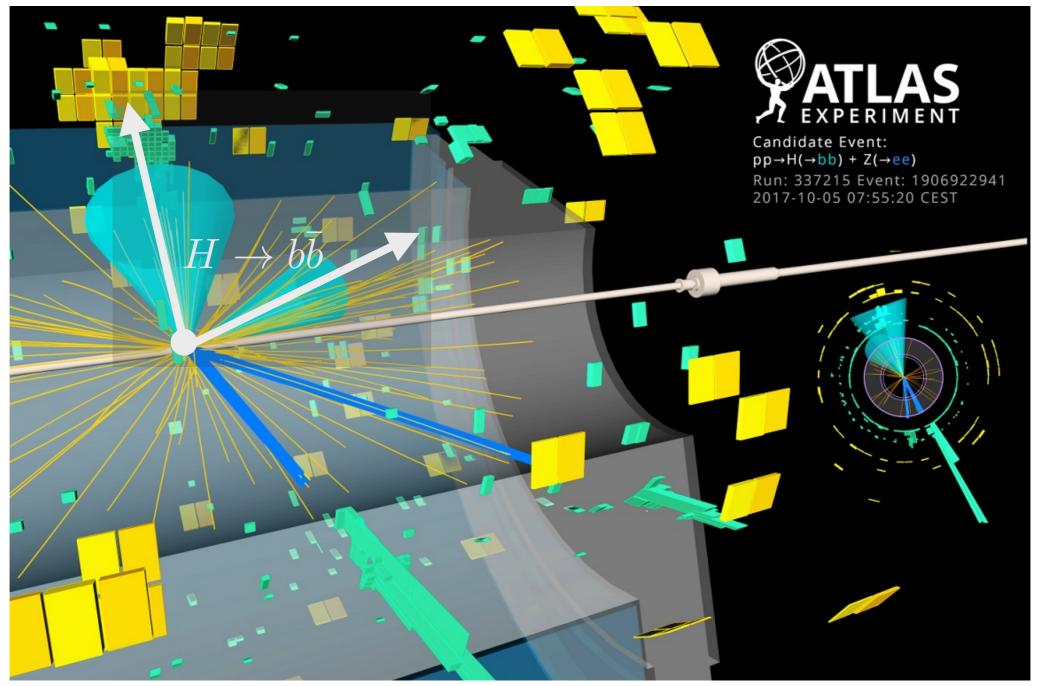
based on:

Thomas Becher, MN, Dingyu Shao [2107.01212]; Thomas Becher, MN, Dingyu Shao, Michel Stillger [2307.06359] Philipp Böer, Patrick Hager, MN, Michel Stillger, Xiaofeng Xu [2405.05305]



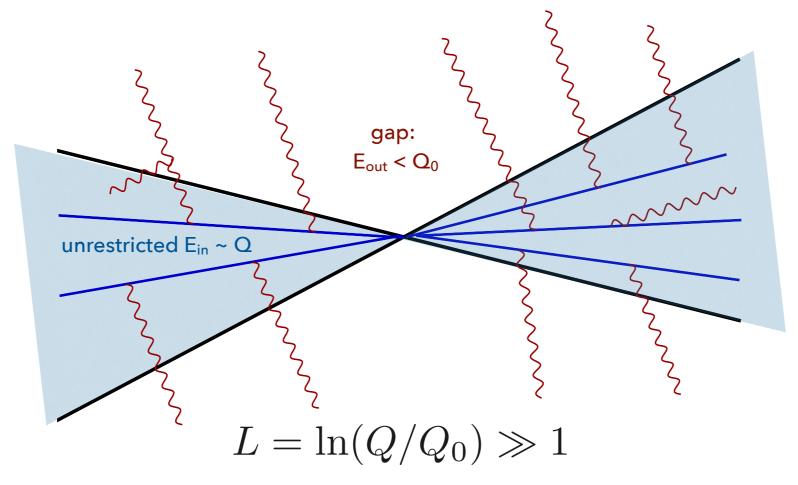
CERN Document Server, ATLAS-PHOTO-2018-022-6

JGU Mainz



CERN Document Server, ATLAS-PHOTO-2018-022-6

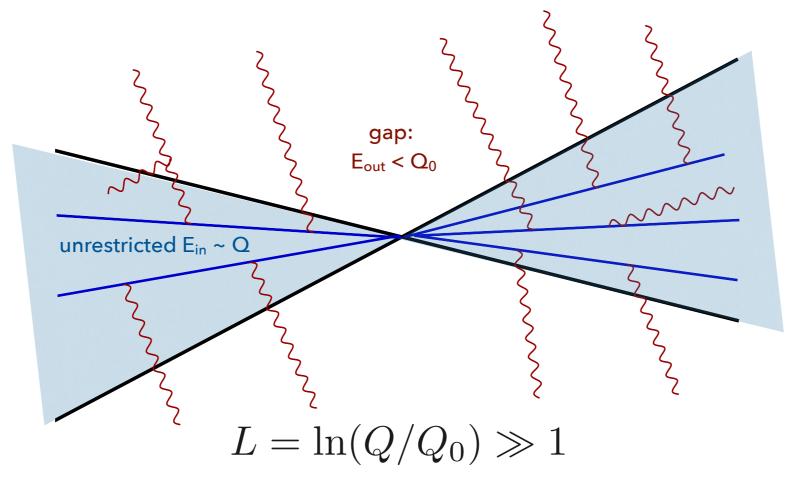
JGU Mainz



Perturbative expansion includes "super-leading" logarithms:

$$\sigma \sim \sigma_{\rm Born} \times \left\{ 1 + \alpha_s L + \alpha_s^2 L^2 + \alpha_s^3 L^3 + \dots \right\}$$

state-of-the-art



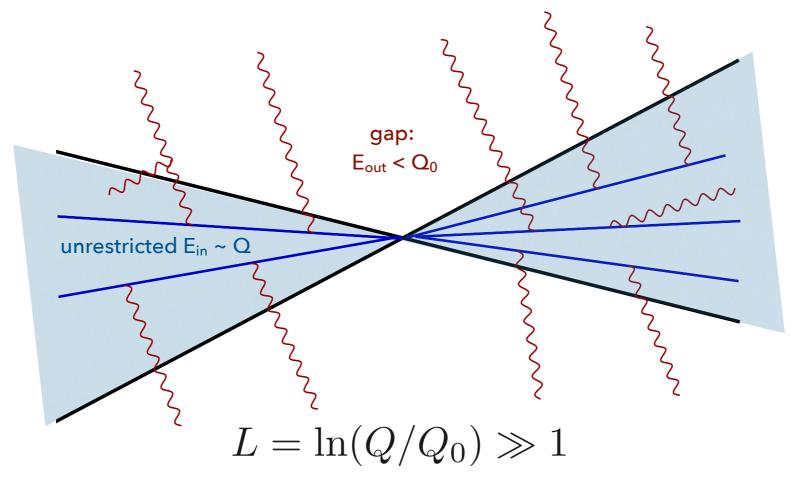
Perturbative expansion includes "super-leading" logarithms:

state-of-the-art

$$\sigma \sim \sigma_{\text{Born}} \times \left\{ 1 + \alpha_s L + \alpha_s^2 L^2 + \alpha_s^3 L^3 + \alpha_s^4 \frac{L^5}{L^5} + \alpha_s^5 \frac{L^7}{L^7} + \dots \right\}$$

formally larger than O(1)

J. R. Forshaw, A. Kyrieleis, M. H. Seymour (2006)



Really, a double logarithmic series starting at 3-loop order:

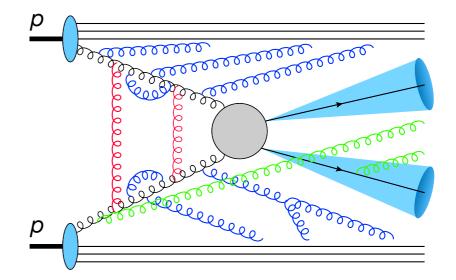
$$\sigma \sim \sigma_{\rm Born} \times \left\{ 1 + \alpha_s L + \alpha_s^2 L^2 + (\alpha_s \pi^2) \left[\alpha_s^2 L^3 + \alpha_s^3 L^5 + \dots \right] \right\}$$

$$(\Im m L)^2 \qquad \text{formally larger than } O(1)$$

COULOMB PHASES BREAK COLOR COHERENCE

Super-leading logarithms

- Breakdown of color coherence due to initial-state soft gluon (Glauber) exchange J. R. Forshaw, A. Kyrieleis, M. H. Seymour (2006)
- Soft anomalous dimension:



$$\Gamma(\{\underline{p}\},\mu) = \sum_{(ij)} \frac{\mathbf{T}_i \cdot \mathbf{T}_j}{2} \gamma_{\text{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s) + \mathcal{O}(\alpha_s^3)$$

$$\text{T. Becher, M. Neubert (2009)}$$

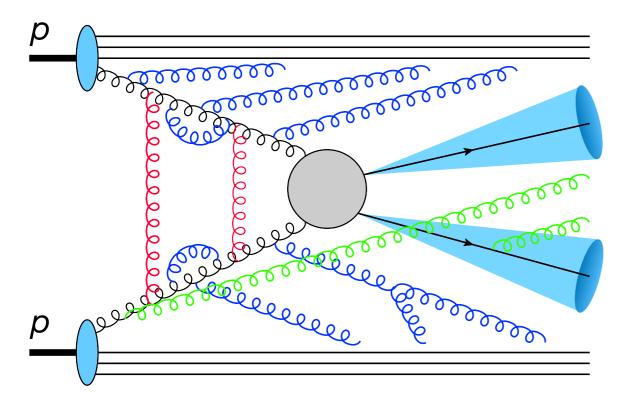
where $s_{ij} > 0$ if particles *i* and *j* are both in initial or final state

Imaginary part (only at hadron colliders):

Im
$$\Gamma(\{\underline{p}\},\mu) = +2\pi \gamma_{\text{cusp}}(\alpha_s) \mathbf{T}_1 \cdot \mathbf{T}_2 + (\dots) \mathbf{1}$$

irrelevant

THEORY OF JET PROCESSES AT LHC



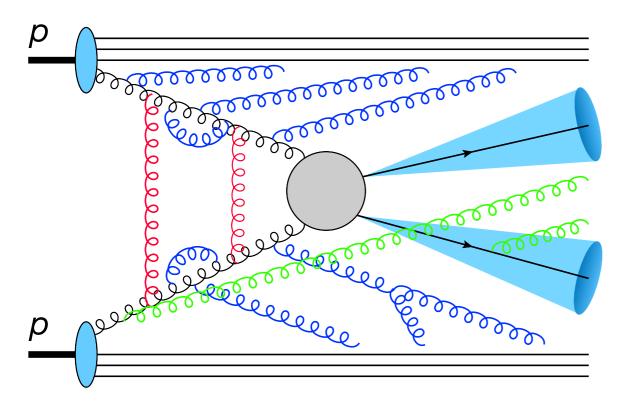
Loss of color coherence from initialstate Coulomb interactions

Weird "super-leading logarithms"

red: Coulomb gluons blue: gluons emitted along beams green: soft gluons between jets

$$d\sigma_{pp \to f}(s) = \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 f_{a/p}(x_1,\mu) f_{b/p}(x_2,\mu) \frac{d\sigma_{ab \to f}(\hat{s} = x_1 x_2 s,\mu)}{\text{SLLs}}$$

THEORY OF JET PROCESSES AT LHC



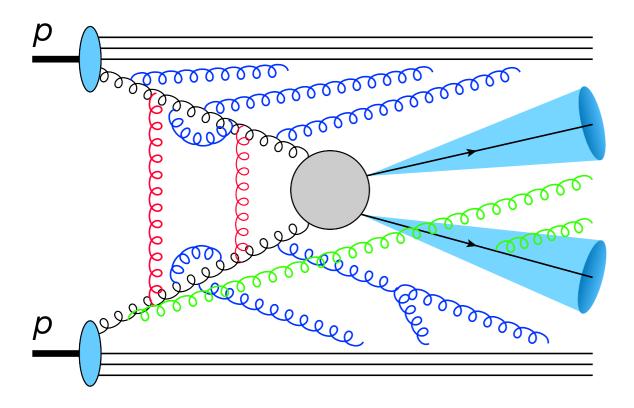
red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets

Loss of color coherence from initialstate Coulomb interactions

- Weird "super-leading logarithms"
- Breakdown of naive factorization

$$d\sigma_{pp \to f}(s) \neq \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 f_{a/p}(x_1,\mu) f_{b/p}(x_2,\mu) \frac{d\sigma_{ab \to f}(\hat{s} = x_1 x_2 s,\mu)}{\text{subs}}$$
with $\mu \approx \sqrt{\hat{s}} \equiv Q$
SLLs

THEORY OF JET PROCESSES AT LHC



red: Coulomb gluons *blue*: gluons emitted along beams *green*: soft gluons between jets Loss of color coherence from initialstate Coulomb interactions

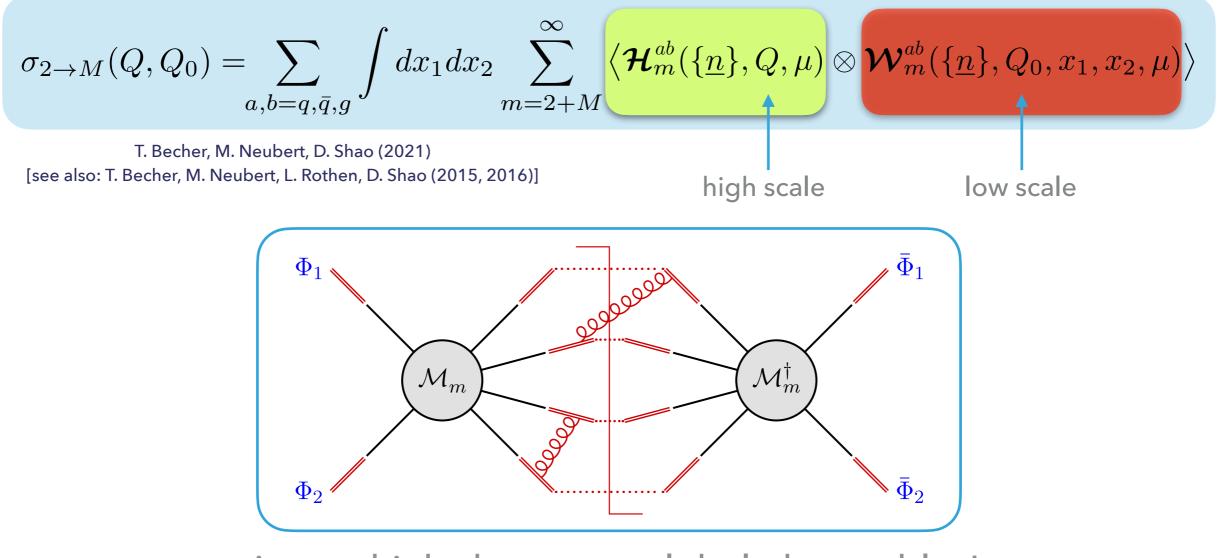
- Weird "super-leading logarithms"
- Breakdown of naive factorization

EFC AdG EFT4jets

Phenomenological consequences?

Need for a complete theory of quantum interference effects in jet processes!

SCET factorization theorem



⇒ new perspective to think about non-global observables!

JGU Mainz

SCET factorization theorem

$$\sigma_{2 \to M}(Q, Q_0) = \sum_{a, b=q, \bar{q}, g} \int dx_1 dx_2 \sum_{m=2+M}^{\infty} \langle \mathcal{H}_m^{ab}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_m^{ab}(\{\underline{n}\}, Q_0, x_1, x_2, \mu) \rangle$$
T. Becher, M. Neubert, D. Shao (2021)
[see also: T. Becher, M. Neubert, L. Rothen, D. Shao (2015, 2016)]
high scale

Rigorous operator definitions:

$$\mathcal{H}_{m}^{ab}(\{\underline{n}\},Q,\mu) = \frac{1}{2Q^{2}} \sum_{\text{spins}} \prod_{i=1}^{m} \int \frac{dE_{i} E_{i}^{d-3}}{(2\pi)^{d-2}} \left| \mathcal{M}_{m}^{ab}(\{\underline{p}\}) \right\rangle \langle \mathcal{M}_{m}^{ab}(\{\underline{p}\}) | (2\pi)^{d} \,\delta\left(Q - \sum_{i=1}^{m} E_{i}\right) \delta^{(d-1)}(\vec{p}_{\text{tot}}) \,\Theta_{\text{in}}\left(\{\underline{p}\}\right)$$

density matrix involving hard-scattering amplitude in color space

SCET factorization theorem

$$\sigma_{2 \to M}(Q, Q_0) = \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 \sum_{m=2+M}^{\infty} \langle \mathcal{H}_m^{ab}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_m^{ab}(\{\underline{n}\}, Q_0, x_1, x_2, \mu) \rangle$$
T. Becher, M. Neubert, D. Shao (2021)
[see also: T. Becher, M. Neubert, L. Rothen, D. Shao (2015, 2016)] high scale low scale

Rigorous operator definitions:

$$\mathcal{W}_{m}(\{\underline{n}\},Q_{0},x_{1},x_{2}) = \int_{-\infty}^{\infty} \frac{dt_{1}}{2\pi} e^{-ix_{1}t_{1}\bar{n}_{1}\cdot p_{1}} \int_{-\infty}^{\infty} \frac{dt_{2}}{2\pi} e^{-ix_{2}t_{2}\bar{n}_{2}\cdot p_{2}} \widetilde{\mathcal{W}}_{m}(\{\underline{n}\},Q_{0},t_{1},t_{2})$$

with:

$$\widetilde{\mathcal{W}}_{m}(\{\underline{n}\}, Q_{0}, t_{1}, t_{2})$$

$$= \int_{X_{s}} \mathcal{P}_{\bar{\alpha}\alpha}^{(1)} \mathcal{P}_{\bar{\beta}\beta}^{(2)} \langle H_{1}(p_{1})H_{2}(p_{2}) | \bar{\Phi}_{1}^{\bar{\alpha}}(t_{1}\bar{n}_{1}) \bar{\Phi}_{2}^{\bar{\beta}}(t_{2}\bar{n}_{2}) S_{1}^{\dagger}(n_{1}) \dots S_{m}^{\dagger}(n_{m}) | X_{s} \rangle$$

$$\times \langle X_{s} | S_{1}(n_{1}) \dots S_{m}(n_{m}) \Phi_{1}^{\alpha}(0) \Phi_{2}^{\beta}(0) | H_{1}(p_{1})H_{2}(p_{2}) \rangle \theta(Q_{0} - E_{\text{out}}^{\perp})$$

SCET factorization theorem

$$\sigma_{2 \to M}(Q, Q_0) = \sum_{a,b=q,\bar{q},g} \int dx_1 dx_2 \sum_{m=2+M}^{\infty} \langle \mathcal{H}_m^{ab}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_m^{ab}(\{\underline{n}\}, Q_0, x_1, x_2, \mu) \rangle$$
T. Becher, M. Neubert, D. Shao (2021)
[see also: T. Becher, M. Neubert, L. Rothen, D. Shao (2015, 2016)] high scale low scale

Renormalization-group equation:

$$\mu \frac{d}{d\mu} \mathcal{H}_{l}^{ab}(\{\underline{n}\}, Q, \mu) = -\sum_{m \leq l} \mathcal{H}_{m}^{ab}(\{\underline{n}\}, Q, \mu) \Gamma_{ml}^{H}(\{\underline{n}\}, Q, \mu)$$

• operator in color space and in the infinite space of parton multiplicities

All-order summation of large logarithmic corrections, including the super-leading logarithms!

Evaluate factorization theorem at low scale $\mu_s \sim Q_0$

Low-energy matrix element:

$$\mathcal{W}_m^{ab}(\{\underline{n}\}, Q_0, x_1, x_2, \mu_s) = f_{a/p}(x_1) f_{b/p}(x_2) \mathbf{1} + \mathcal{O}(\alpha_s)$$

Hard-scattering functions:

$$\mathcal{H}_{m}^{ab}(\{\underline{n}\}, Q, \mu_{s}) = \sum_{l \leq m} \mathcal{H}_{l}^{ab}(\{\underline{n}\}, Q, Q) \mathbf{P} \exp\left[\int_{\mu_{s}}^{Q} \frac{d\mu}{\mu} \mathbf{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{lm}$$

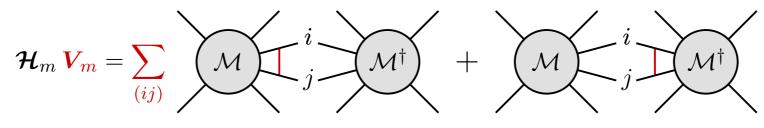
• Expanding the solution in a power series generates arbitrarily high parton multiplicities starting from the $2 \rightarrow M$ Born process

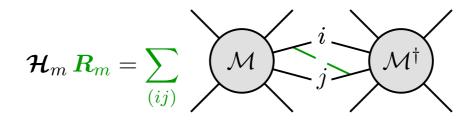
Evaluate factorization theorem at low scale $\mu_s \sim Q_0$

Anomalous-dimension matrix:

$$\Gamma^{H} = \frac{\alpha_{s}}{4\pi} \begin{pmatrix} V_{2+M} & R_{2+M} & 0 & 0 & \dots \\ 0 & V_{2+M+1} & R_{2+M+1} & 0 & \dots \\ 0 & 0 & V_{2+M+2} & R_{2+M+2} & \dots \\ 0 & 0 & 0 & V_{2+M+3} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} + \mathcal{O}(\alpha_{s}^{2})$$

Action on hard functions:





Evaluate factorization theorem at low scale $\mu_s \sim Q_0$

Anomalous-dimension matrix:

$$\boldsymbol{\Gamma}^{H} = \frac{\alpha_{s}}{4\pi} \begin{pmatrix} V_{2+M} \ \boldsymbol{R}_{2+M} & \boldsymbol{0} & \boldsymbol{0} & \dots \\ \boldsymbol{0} & V_{2+M+1} \ \boldsymbol{R}_{2+M+1} & \boldsymbol{0} & \dots \\ \boldsymbol{0} & \boldsymbol{0} & V_{2+M+2} \ \boldsymbol{R}_{2+M+2} & \dots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & V_{2+M+3} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} + \mathcal{O}(\alpha_{s}^{2})$$

Virtual and real contributions contain collinear singularities, which must be regularized and subtracted

$$\Gamma^{H}(\xi_{1},\xi_{2}) = \delta(1-\xi_{1}) \,\delta(1-\xi_{2}) \,\Gamma^{S} + \Gamma_{1}^{C}(\xi_{1}) \,\delta(1-\xi_{2}) + \delta(1-\xi_{1}) \,\Gamma_{2}^{C}(\xi_{2})$$
soft / soft-collinear part collinear parts

soft / soft-collinear part

Detailed structure of the soft anomalous-dimension coefficients

Glauber phase $V_{m} = \overline{V}_{m} + V^{G} + \sum_{i=1,2} V_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $\Gamma = \overline{\Gamma} + V^{G} + \Gamma^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $R_{m} = \overline{R}_{m} + \sum_{i=1,2} R_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$ soft emission collinear emission where: (collinear div. subtracted) $\mathcal{M} \stackrel{:}{:} \quad \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M} \stackrel{:}{:} \quad \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M} \stackrel{:}{:} \quad \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ - \\ - \end{array} \right) \mathcal{M}^{\dagger} \left(\begin{array}{c} - \\ -$ ${\cal H}_m\,oldsymbol{V}^G=$ new color space of emitted gluon $\boldsymbol{\Gamma}^{c} = \sum_{i=1,2} \left[C_{i} \, \mathbf{1} - \boldsymbol{T}_{i,L} \circ \boldsymbol{T}_{i,R} \, \delta(n_{k} - n_{i}) \right]$ $\mathcal{H}_m \mathbf{R}_1^c = \left(\mathcal{M} \right)^{\frac{1}{2}} = \left(\mathcal{M}^{\dagger} \right)^{\frac{1}{2}}$

Matthias Neubert – 12

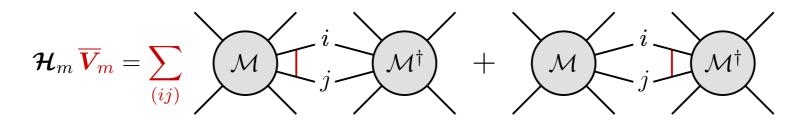
JGU Mainz

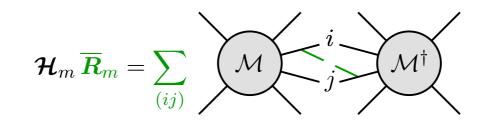
Detailed structure of the soft anomalous-dimension coefficients

 $V_{m} = \overline{V}_{m} + V^{G} + \sum_{i=1,2} V_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $R_{m} = \overline{R}_{m} + \sum_{i=1,2} R_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $\Gamma = \overline{\Gamma} + V^{G} + \Gamma^{c} \ln \frac{\mu^{2}}{Q^{2}}$

where:

soft emission collinear emission (collinear div. subtracted)





Detailed structure of the soft anomalous-dimension coefficients

 $V_{m} = \overline{V}_{m} + V^{G} + \sum_{i=1,2} V_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $\Gamma = \overline{\Gamma} + V^{G} + \Gamma^{c} \ln \frac{\mu^{2}}{\hat{s}}$ $R_{m} = \overline{R}_{m} + \sum_{i=1,2} R_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}$

where:

soft emission collinear emission (collinear div. subtracted)

Glauber phase

$$\overline{\mathbf{\Gamma}} = 2\sum_{(ij)} \left(\mathbf{T}_{i,L} \cdot \mathbf{T}_{j,L} + \mathbf{T}_{i,R} \cdot \mathbf{T}_{j,R} \right) \int \frac{d\Omega(n_k)}{4\pi} \overline{W}_{ij}^k - 4\sum_{(ij)} \mathbf{T}_{i,L} \circ \mathbf{T}_{j,R} \overline{W}_{ij}^k \Theta_{\text{hard}}(n_k)$$

$$\overline{W}_{ij}^{k} = W_{ij}^{k} - \frac{1}{n_{i} \cdot n_{k}} \,\delta(n_{i} - n_{k}) - \frac{1}{n_{j} \cdot n_{k}} \,\delta(n_{j} - n_{k}) \,; \qquad W_{ij}^{k} = \frac{n_{i} \cdot n_{j}}{n_{i} \cdot n_{k} n_{j} \cdot n_{k}}$$
subtracted dipole emitter dipole emitter

SLLs arise from the terms in
$$\mathbf{P} \exp \left[\int_{\mu_s}^{Q} \frac{d\mu}{\mu} \mathbf{\Gamma}^H(\{\underline{n}\}, Q, \mu) \right]_{lm}$$
 with the highest number of insertions of Γ^c

Three properties simplify the calculation:

color coherence in absence of Glauber phases:

$${\cal H}_m\,\Gamma^c\,\overline{\Gamma}={\cal H}_m\,\overline{\Gamma}\,\Gamma^c$$

 $\langle \boldsymbol{\mathcal{H}}_m \, \boldsymbol{\Gamma}^c \otimes \mathbf{1} \rangle = 0$

 $\langle \mathcal{H}_m \, V^G \otimes \mathbf{1} \rangle = 0$

emit ed gluon (blue), city of the trace: . The sums run overcity of the trace: emitted gluon (blue), emitted gluon (blue), n external legs; while emitted gluon (blue),

Allinear safety:

 \cdot 1 external legs, while

1 and 2. The real correc-
dash State arise before the terms in
$$\mathbf{P} \exp \left[\int_{\mu_s}^{Q} \frac{d\mu}{\mu} \mathbf{\Gamma}^H(\{\underline{n}\}, Q, \mu) \right]_{lm}$$
 with the

highest number of insertions of Γ^c

- Under the color trace, insertions of Γ_c are non-zero only if they come in conjunction with (at least) two Glauber phases and one $\overline{\Gamma}$
- Relevant color traces at $\mathcal{O}(\alpha_s^{n+3}L^{2n+3})$:

$$C_{rn} = \left\langle \boldsymbol{\mathcal{H}}_{2 \to M} \left(\boldsymbol{\Gamma}^{c} \right)^{r} \boldsymbol{V}^{G} \left(\boldsymbol{\Gamma}^{c} \right)^{n-r} \boldsymbol{V}^{G} \, \overline{\boldsymbol{\Gamma}} \otimes \boldsymbol{1} \right\rangle$$

Kinematic information contained in (M + 1) angular integrals from $\overline{\Gamma}$:

$$J_j = \int \frac{d\Omega(n_k)}{4\pi} \left(W_{1j}^k - W_{2j}^k \right) \Theta_{\text{veto}}(n_k); \quad \text{with} \quad W_{ij}^k = \frac{n_i \cdot n_j}{n_i \cdot n_k n_j \cdot n_k}$$

General result for $2 \rightarrow M$ hard processes

$$C_{rn} = -256\pi^2 (4N_c)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^4 c_i^{(r)} \langle \mathcal{H}_{2\to M} O_i^{(j)} \rangle - J_2 \sum_{i=1}^6 d_i^{(r)} \langle \mathcal{H}_{2\to M} S_i \rangle \right]$$

Basis of color structures:

$$O_{1}^{(j)} = f_{abe} f_{cde} T_{2}^{a} \{ T_{1}^{b}, T_{1}^{c} \} T_{j}^{d} - (1 \leftrightarrow 2)$$

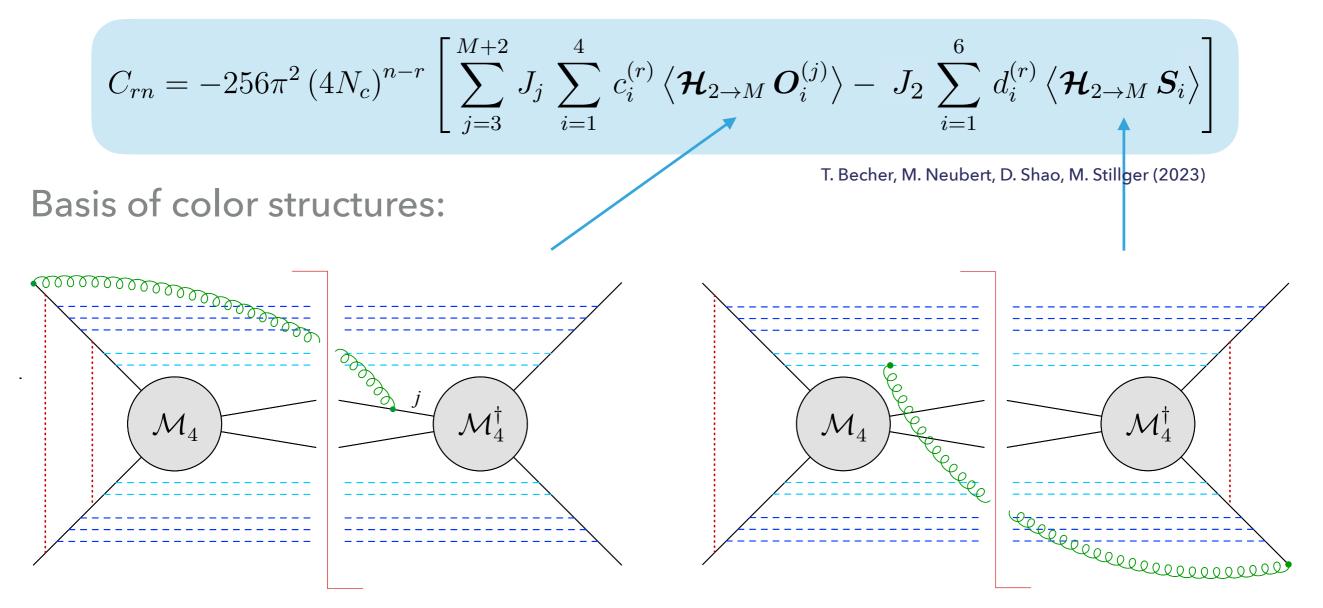
$$O_{2}^{(j)} = d_{ade} d_{bce} T_{2}^{a} \{ T_{1}^{b}, T_{1}^{c} \} T_{j}^{d} - (1 \leftrightarrow 2)$$

$$O_{3}^{(j)} = T_{2}^{a} \{ T_{1}^{a}, T_{1}^{b} \} T_{j}^{b} - (1 \leftrightarrow 2)$$

$$O_{4}^{(j)} = 2C_{1} T_{2} \cdot T_{j} - 2C_{2} T_{1} \cdot T_{j}$$

$$\begin{split} \boldsymbol{S}_{1} &= f_{abe} f_{cde} \left\{ \boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c} \right\} \left\{ \boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d} \right\} \\ \boldsymbol{S}_{2} &= d_{ade} d_{bce} \left\{ \boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c} \right\} \left\{ \boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d} \right\} \\ \boldsymbol{S}_{3} &= d_{ade} d_{bce} \left[\boldsymbol{T}_{2}^{a} \left(\boldsymbol{T}_{1}^{b} \boldsymbol{T}_{1}^{c} \boldsymbol{T}_{1}^{d} \right)_{+} + (1 \leftrightarrow 2) \right] \\ \boldsymbol{S}_{4} &= \left\{ \boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b} \right\} \left\{ \boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{b} \right\} \\ \boldsymbol{S}_{5} &= \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2} \\ \boldsymbol{S}_{6} &= \boldsymbol{1} \end{split}$$

General result for $2 \rightarrow M$ hard processes



General result for $2 \rightarrow M$ hard processes

$$C_{rn} = -256\pi^2 (4N_c)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^4 c_i^{(r)} \langle \mathcal{H}_{2\to M} O_i^{(j)} \rangle - J_2 \sum_{i=1}^6 d_i^{(r)} \langle \mathcal{H}_{2\to M} S_i \rangle \right]$$

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

Coefficient functions:

$$c_{1}^{(r)} = 2^{r-1} \left[\left(3N_{c} + 2 \right)^{r} + \left(3N_{c} - 2 \right)^{r} \right]$$

$$c_{2}^{(r)} = 2^{r-2} N_{c} \left[\frac{\left(3N_{c} + 2 \right)^{r}}{N_{c} + 2} + \frac{\left(3N_{c} - 2 \right)^{r}}{N_{c} - 2} - \frac{\left(2N_{c} \right)^{r+1}}{N_{c}^{2} - 4} \right]$$

$$c_{3}^{(r)} = 2^{r-1} \left[\left(3N_{c} + 2 \right)^{r} - \left(3N_{c} - 2 \right)^{r} \right]$$

$$c_{4}^{(r)} = 2^{r-1} \left[\frac{\left(3N_{c} + 2 \right)^{r}}{N_{c} + 1} + \frac{\left(3N_{c} - 2 \right)^{r}}{N_{c} - 1} - \frac{2N_{c}^{r+1}}{N_{c}^{2} - 1} \right]$$

$$\begin{split} &d_{1}^{(r)} = 2^{3r-1} \left[\left(N_{c}+1\right)^{r} + \left(N_{c}-1\right)^{r} \right] - 2^{r-1} \left[\left(3N_{c}+2\right)^{r} + \left(3N_{c}-2\right)^{r} \right] \\ &d_{2}^{(r)} = 2^{3r-2} N_{c} \left[\frac{\left(N_{c}+1\right)^{r}}{N_{c}+2} + \frac{\left(N_{c}-1\right)^{r}}{N_{c}-2} \right] - 2^{r-2} N_{c} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+2} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-2} \right] \\ &d_{3}^{(r)} = 2^{r-1} N_{c} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+2} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-2} - \frac{\left(2N_{c}\right)^{r+1}}{N_{c}^{2}-4} \right] \\ &d_{4}^{(r)} = 2^{3r-1} \left[\left(N_{c}+1\right)^{r} - \left(N_{c}-1\right)^{r} \right] - 2^{r-1} \left[\left(3N_{c}+2\right)^{r} - \left(3N_{c}-2\right)^{r} \right] \\ &d_{5}^{(r)} = 2^{r} \left(C_{1}+C_{2}\right) \left[\frac{N_{c}+2}{N_{c}+1} \left(3N_{c}+2\right)^{r} - \frac{N_{c}-2}{N_{c}-1} \left(3N_{c}-2\right)^{r} - \frac{2N_{c}^{r+1}}{N_{c}^{2}-1} \right] \\ &- \frac{2^{r-1}N_{c}}{3} \left[\left(N_{c}+4\right) \left(3N_{c}+2\right)^{r} + \left(N_{c}-4\right) \left(3N_{c}-2\right)^{r} - \left(2N_{c}\right)^{r+1} \right] \\ &d_{6}^{(r)} = 2^{3r+1}C_{1}C_{2} \left[\left(N_{c}+1\right)^{r-1} + \left(N_{c}-1\right)^{r-1} \right] \left(1-\delta_{r0}\right) \\ &- 2^{r+1}C_{1}C_{2} \left[\frac{\left(3N_{c}+2\right)^{r}}{N_{c}+1} + \frac{\left(3N_{c}-2\right)^{r}}{N_{c}-1} - \frac{2N_{c}^{r+1}}{N_{c}^{2}-1} \right] \end{aligned}$$

JGU Mainz

General result for $2 \rightarrow M$ hard processes

$$C_{rn} = -256\pi^2 (4N_c)^{n-r} \left[\sum_{j=3}^{M+2} J_j \sum_{i=1}^{4} c_i^{(r)} \langle \mathcal{H}_{2\to M} O_i^{(j)} \rangle - J_2 \sum_{i=1}^{6} d_i^{(r)} \langle \mathcal{H}_{2\to M} S_i \rangle \right]$$

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

Series of SLLs, starting at 3-loop order:

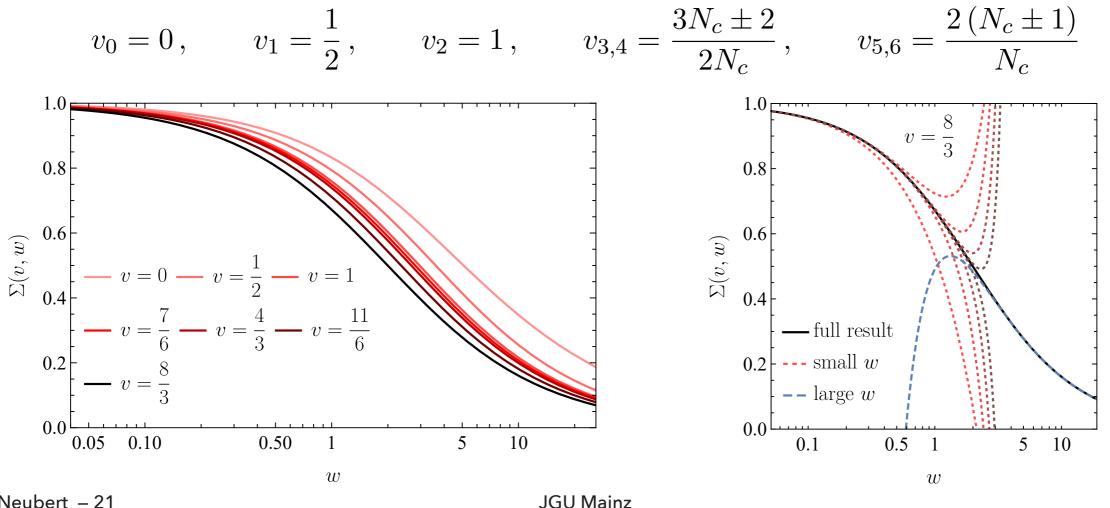
$$\sigma_{\rm SLL} = \sigma_{\rm Born} \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+3} L^{2n+3} \frac{(-4)^n n!}{(2n+3)!} \sum_{r=0}^n \frac{(2r)!}{4^r (r!)^2} C_{rn}$$

from scale integrals (at fixed coupling)

Reproduces all that is known about SLLs (and much more...)

Contribution to partonic cross sections

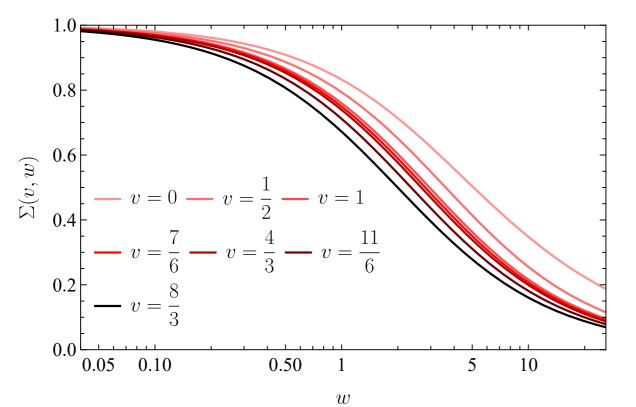
Infinite series can be expressed in closed form in terms of a prefactor times Kampé de Fériet functions $\Sigma(v_i, w)$ with $w = \frac{N_c \alpha_s}{\pi} L^2$ and



Contribution to partonic cross sections

Infinite series can be expressed in closed form in terms of a prefactor times Kampé de Fériet functions $\Sigma(v_i, w)$ with $w = \frac{N_c \alpha_s}{\pi} L^2$ and

$$v_0 = 0$$
, $v_1 = \frac{1}{2}$, $v_2 = 1$, $v_{3,4} = \frac{3N_c \pm 2}{2N_c}$, $v_{5,6} = \frac{2(N_c \pm 1)}{N_c}$



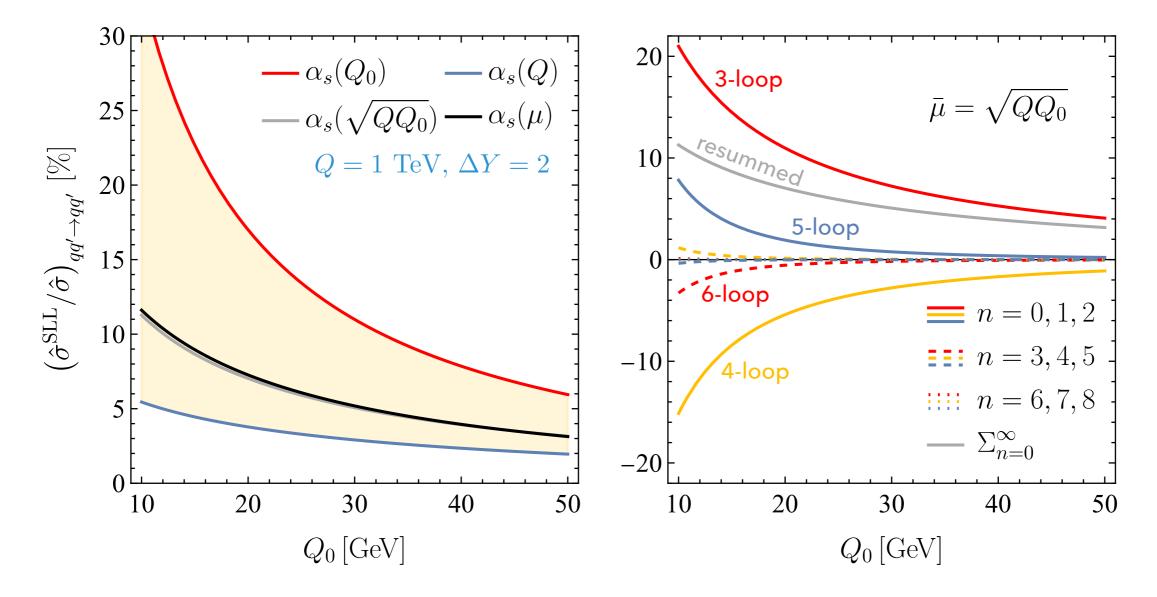
Asymptotic behavior for $w \gg 1$: $\Sigma_0(w) = \frac{3}{2w} \left(\ln(4w) + \gamma_E - 2 \right) + \frac{3}{4w^2} + \mathcal{O}(w^{-3})$ $\Sigma(v, w) = \frac{3\arctan\left(\sqrt{v-1}\right)}{\sqrt{v-1}w} - \frac{3\sqrt{\pi}}{2\sqrt{v}w^{3/2}} + \mathcal{O}(w^{-2})$

 \Rightarrow much slower fall-off than Sudakov form factors ~ e^{-cw}

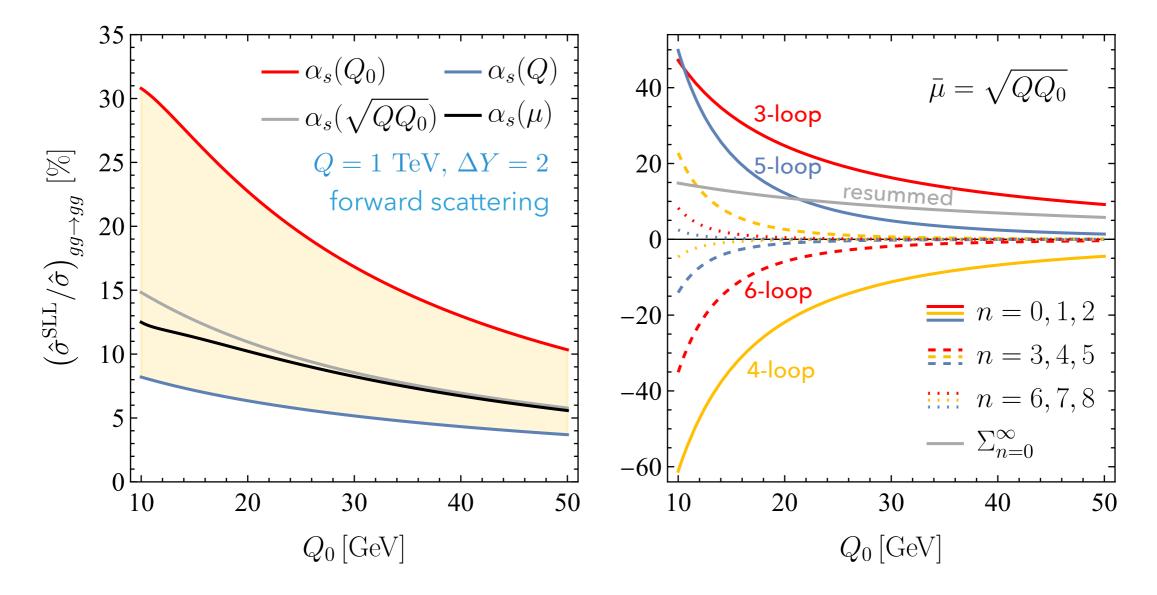
Matthias Neubert – 22

JGU Mainz

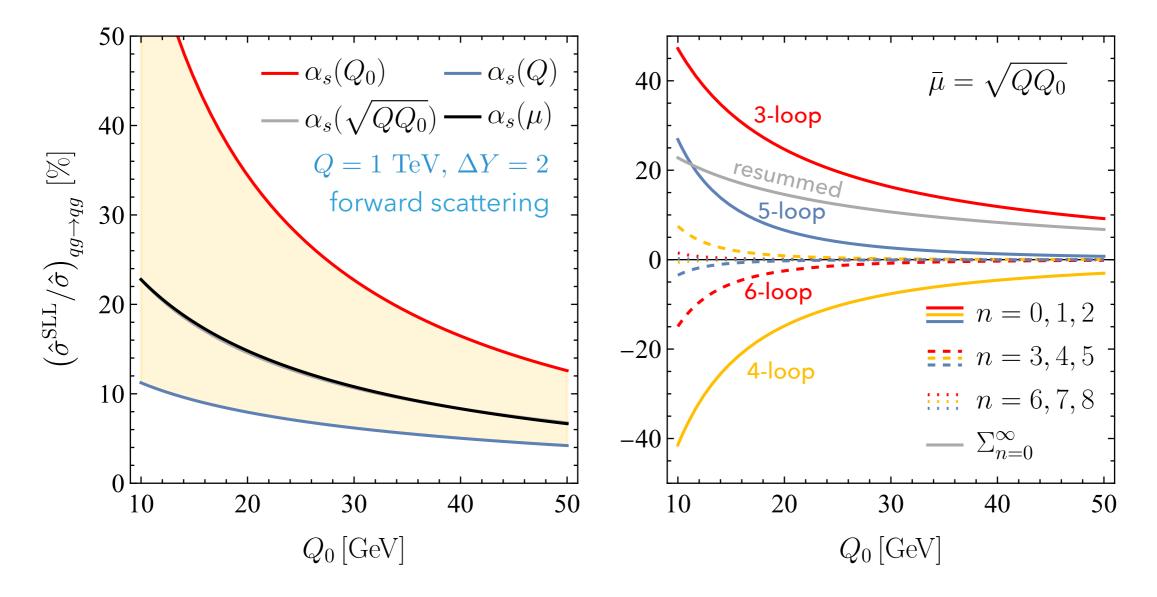
Partonic channels contributing to $pp \rightarrow 2$ jets (gap between jets)



Partonic channels contributing to $pp \rightarrow 2$ jets (gap between jets)

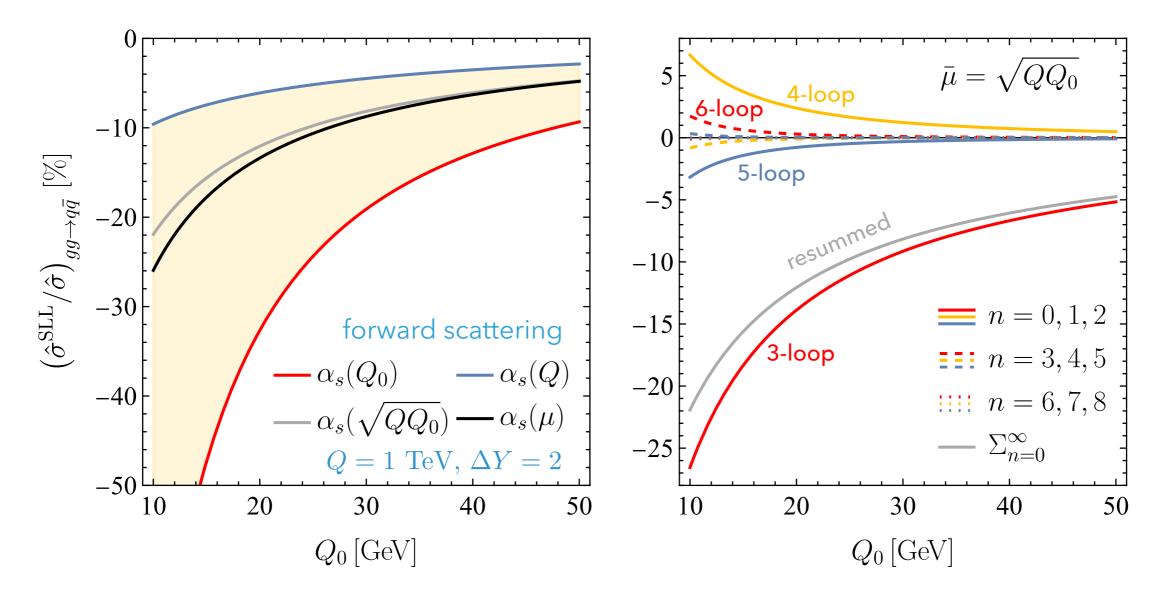


Partonic channels contributing to $pp \rightarrow 2$ jets (gap between jets)



Partonic channels contributing to $pp \rightarrow 2$ jets (gap between jets)

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)



ritp

Matthias Neubert – 26

Rewrite the evolution kernel (ordered exponential) for the SLLs

Expand out all terms except the log-enhanced soft-collinear piece:

$$\boldsymbol{U}_{\mathrm{SLL}}(\{\underline{n}\},\mu_{h},\mu_{s}) = \int_{\mu_{s}}^{\mu_{h}} \frac{d\mu_{1}}{\mu_{1}} \int_{\mu_{s}}^{\mu_{1}} \frac{d\mu_{2}}{\mu_{2}} \int_{\mu_{s}}^{\mu_{2}} \frac{d\mu_{3}}{\mu_{3}} \qquad \text{cusp anomalous dimension} \\ \times \boldsymbol{U}_{c}(\mu_{h},\mu_{1}) \gamma_{\mathrm{cusp}}(\alpha_{s}(\mu_{1})) \boldsymbol{V}^{G} \boldsymbol{U}_{c}(\mu_{1},\mu_{2}) \gamma_{\mathrm{cusp}}(\alpha_{s}(\mu_{2})) \boldsymbol{V}^{G} \frac{\alpha_{s}(\mu_{3})}{4\pi} \overline{\Gamma}$$

where:

$$\begin{aligned} \boldsymbol{U}_{c}(\mu_{i},\mu_{j}) &= \exp\left[\boldsymbol{\Gamma}^{c}\int_{\mu_{j}}^{\mu_{i}}\frac{d\mu}{\mu}\gamma_{\mathrm{cusp}}\big(\boldsymbol{\alpha}_{s}(\mu)\big)\ln\frac{\mu^{2}}{\mu_{h}^{2}}\right] & \mu_{h} = Q \\ & \uparrow & \uparrow \\ & & \uparrow \\ & & \text{matrix on the space} & \text{resums all double-} \\ & & \text{of basis operators} & \text{logarithmic terms} \end{aligned}$$

Rewrite the evolution kernel (ordered exponential) for the SLLs

Expand out all terms except the log-enhanced soft-collinear piece:

$$\begin{split} \boldsymbol{U}_{\mathrm{SLL}}(\{\underline{n}\},\mu_h,\mu_s) &= \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_s}^{\mu_1} \frac{d\mu_2}{\mu_2} \int_{\mu_s}^{\mu_2} \frac{d\mu_3}{\mu_3} \\ &\times \boldsymbol{U}_c(\mu_h,\mu_1) \, \gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_1)\big) \, \boldsymbol{V}^G \, \boldsymbol{U}_c(\mu_1,\mu_2) \, \gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_2)\big) \, \boldsymbol{V}^G \, \frac{\alpha_s(\mu_3)}{4\pi} \, \overline{\Gamma} \end{split}$$

- > All double-logarithmic terms are exponentiated!
- One scale integral for each insertion of V^G and $\overline{\Gamma}$
- Easy to include running-coupling effects
- Asymptotic behavior of $U_c(\mu_i, \mu_j)$ determines the asymptotic behavior of the resummed series

Introduce a color basis

Simplest case of (anti-)quark-initiated scattering processes:

$$egin{aligned} m{X}_1 &= \sum_{j>2} J_j \, i f^{abc} \, m{T}_1^a \, m{T}_2^b \, m{T}_j^c \,, & m{X}_4 &= rac{1}{N_c} \, J_{12} \, m{T}_1 \cdot m{T}_2 \,, \ m{X}_2 &= \sum_{j>2} J_j \, (\sigma_1 - \sigma_2) \, d^{abc} \, m{T}_1^a \, m{T}_2^b \, m{T}_j^c \,, & m{X}_5 &= J_{12} \, m{1} \,, \ m{X}_3 &= rac{1}{N_c} \sum_{j>2} J_j \, (m{T}_1 - m{T}_2) \cdot m{T}_j \,, \end{aligned}$$

where $\sigma_i = -1$ (+1) for an initial-state quark (anti-quark), and all structures are normalized such that their trace with a hard function is at most of $O(N_c^0)$ in the large- N_c limit

Introduce a color basis

Represent Γ^c , V^G and $V^G \overline{\Gamma}$ as objects acting in that basis:

$$\Gamma^{c} \rightarrow N_{c} \, \Pi^{c} \quad \text{with} \quad \Pi^{c} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -\frac{C_{F}}{N_{c}} & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} \textbf{Recall:} \\ \textbf{U}_{SLL}(\{\underline{n}\},\mu_h,\mu_s) &= \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_s}^{\mu_1} \frac{d\mu_2}{\mu_2} \int_{\mu_s}^{\mu_2} \frac{d\mu_3}{\mu_3} \\ &\times \textbf{U}_c(\mu_h,\mu_1) \, \gamma_{cusp}\big(\alpha_s(\mu_1)\big) \, \textbf{V}^G \, \textbf{U}_c(\mu_1,\mu_2) \, \gamma_{cusp}\big(\alpha_s(\mu_2)\big) \, \textbf{V}^G \, \frac{\alpha_s(\mu_3)}{4\pi} \, \overline{\Gamma} \end{aligned}$$

Introduce a color basis

Represent Γ^c , V^G and $V^G \overline{\Gamma}$ as objects acting in that basis:

$$\boldsymbol{U}_{c}(\mu_{i},\mu_{j}) \rightarrow \mathbb{U}_{c}(\mu_{i},\mu_{j}) = \begin{pmatrix} U_{c}(1;\mu_{i},\mu_{j}) & 0 & 0 & 0 \\ 0 & U_{c}(1;\mu_{i},\mu_{j}) & 0 & 0 \\ 0 & 0 & U_{c}(\frac{1}{2};\mu_{i},\mu_{j}) & 0 & 0 \\ 0 & 0 & 2\left[U_{c}(\frac{1}{2};\mu_{i},\mu_{j}) - U_{c}(1;\mu_{i},\mu_{j})\right] & U_{c}(1;\mu_{i},\mu_{j}) & 0 \\ 0 & 0 & \frac{2C_{F}}{N_{c}}\left[1 - U_{c}(\frac{1}{2};\mu_{i},\mu_{j})\right] & 0 & 1 \end{pmatrix}$$

Generalized Sudakov factors:
$$U_c(v;\mu_i,\mu_j) = \exp\left[vN_c\int_{\mu_j}^{\mu_i}\frac{d\mu}{\mu}\gamma_{\text{cusp}}(\alpha_s(\mu))\ln\frac{\mu^2}{\mu_h^2}\right] \le 1$$

$$\begin{aligned} \textbf{Recall:} \\ \textbf{U}_{SLL}(\{\underline{n}\},\mu_h,\mu_s) &= \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_s}^{\mu_1} \frac{d\mu_2}{\mu_2} \int_{\mu_s}^{\mu_2} \frac{d\mu_3}{\mu_3} \end{aligned} \qquad \begin{array}{c} \text{double-log terms (SLLs)} \\ \text{always lead to suppression!} \\ \times \textbf{U}_c(\mu_h,\mu_1) \gamma_{cusp}(\alpha_s(\mu_1)) \textbf{V}^G \textbf{U}_c(\mu_1,\mu_2) \gamma_{cusp}(\alpha_s(\mu_2)) \textbf{V}^G \frac{\alpha_s(\mu_3)}{4\pi} \overline{\Gamma} \end{aligned}$$

Introduce a color basis

Represent Γ^c , V^G and $V^G \overline{\Gamma}$ as objects acting in that basis:

Recall:

$$\boldsymbol{U}_{\mathrm{SLL}}(\{\underline{n}\},\mu_h,\mu_s) = \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_s}^{\mu_1} \frac{d\mu_2}{\mu_2} \int_{\mu_s}^{\mu_2} \frac{d\mu_3}{\mu_3} \times \boldsymbol{U}_c(\mu_h,\mu_1) \, \gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_1)\big) \, \boldsymbol{V}^G \, \boldsymbol{U}_c(\mu_1,\mu_2) \, \gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_2)\big) \, \boldsymbol{V}^G \, \frac{\alpha_s(\mu_3)}{4\pi} \, \overline{\Gamma}$$

Introduce a color basis

Represent Γ^c , V^G and $V^G \overline{\Gamma}$ as objects acting in that basis:

$$V^{G}\overline{\Gamma} \rightarrow 16i\pi X_{1} \equiv 16i\pi X^{T}\varsigma \qquad \qquad \varsigma = \begin{pmatrix} 1\\0\\0\\0\\0\\0 \end{pmatrix}$$

Recall:

$$\boldsymbol{U}_{\mathrm{SLL}}(\{\underline{n}\},\mu_h,\mu_s) = \int_{\mu_s}^{\mu_h} \frac{d\mu_1}{\mu_1} \int_{\mu_s}^{\mu_1} \frac{d\mu_2}{\mu_2} \int_{\mu_s}^{\mu_2} \frac{d\mu_3}{\mu_3}$$
$$\times \boldsymbol{U}_c(\mu_h,\mu_1) \,\gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_1)\big) \, \boldsymbol{V}^G \, \boldsymbol{U}_c(\mu_1,\mu_2) \, \gamma_{\mathrm{cusp}}\big(\alpha_s(\mu_2)\big) \, \boldsymbol{V}^G \, \frac{\alpha_s(\mu_3)}{4\pi} \, \overline{\boldsymbol{\Gamma}}$$

Introduce a color basis

This yields:

$$\sigma_{2 \to M}^{\text{SLL}}(Q_0) = \sum_{\text{partonic channels}} \int d\xi_1 \int d\xi_2 f_1(\xi_1, \mu_s) f_2(\xi_2, \mu_s) \left\langle \mathcal{H}_{2 \to M}(\mu_h) \, \mathbf{X}^T \right\rangle \mathbb{U}_{\text{SLL}}(\mu_h, \mu_s) \varsigma$$

5 process-dependent color traces

with:

$$\mathbb{U}_{SLL}(\mu_{h},\mu_{s}) = 16i\pi N_{c} \int_{\mu_{s}}^{\mu_{h}} \frac{d\mu_{1}}{\mu_{1}} \int_{\mu_{s}}^{\mu_{1}} \frac{d\mu_{2}}{\mu_{2}} \int_{\mu_{s}}^{\mu_{2}} \frac{d\mu_{3}}{\mu_{3}} \frac{\alpha_{s}(\mu_{3})}{4\pi} \\ \times \mathbb{U}_{c}(\mu_{h},\mu_{1}) \gamma_{cusp}(\alpha_{s}(\mu_{1})) \mathbb{V}^{G} \mathbb{U}_{c}(\mu_{1},\mu_{2}) \gamma_{cusp}(\alpha_{s}(\mu_{2}))$$

P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024)

RG-IMPROVED SLL RESUMMATION

Perform the scale integrals in terms of the running coupling

Generalized Sudakov factors in RG-improved perturbation theory:

$$U_{c}(v;\mu_{i},\mu_{j}) = \exp\left[vN_{c}\int_{\mu_{j}}^{\mu_{i}}\frac{d\mu}{\mu}\gamma_{cusp}(\alpha_{s}(\mu))\ln\frac{\mu^{2}}{\mu_{h}^{2}}\right]$$

$$= \exp\left\{\frac{\gamma_{0}vN_{c}}{2\beta_{0}^{2}}\left[\frac{4\pi}{\alpha_{s}(\mu_{h})}\left(\frac{1}{x_{i}}-\frac{1}{x_{j}}-\ln\frac{x_{j}}{x_{i}}\right)+\left(\frac{\gamma_{1}}{\gamma_{0}}-\frac{\beta_{1}}{\beta_{0}}\right)\left(x_{i}-x_{j}+\ln\frac{x_{j}}{x_{i}}\right)+\frac{\beta_{1}}{2\beta_{0}}\left(\ln^{2}x_{j}-\ln^{2}x_{i}\right)\right]\right\}$$

with $x_i \equiv \alpha_s(\mu_i)/\alpha_s(\mu_h)$ and:

$$U_c(v;\mu_i,\mu_j) U_c(v;\mu_j,\mu_k) = U_c(v;\mu_i,\mu_k), \qquad U_c(0;\mu_i,\mu_j) = 1$$

Encounter products of two Sudakov factors:

$$U_c(v^{(1)}, v^{(2)}; \mu_h, \mu_1, \mu_2) \equiv U_c(v^{(1)}; \mu_h, \mu_1) U_c(v^{(2)}; \mu_1, \mu_2)$$

RG-IMPROVED SLL RESUMMATION

Explicit form of the evolution function for SLLs

RG-improved perturbation theory:

$$\mathbb{U}_{\mathrm{SLL}}(\mu_h,\mu_s)\,\varsigma = -\frac{32\pi^2}{\beta_0^3}\,N_c\int_1^{x_s}\frac{dx_2}{x_2}\,\ln\frac{x_s}{x_2}\int_1^{x_2}\frac{dx_1}{x_1}\begin{pmatrix}0\\-\frac{1}{2}\,U_c(1;\mu_h,\mu_2)\\U_c(\frac{1}{2},1;\mu_h,\mu_1,\mu_2)\\2\left[U_c(\frac{1}{2},1;\mu_h,\mu_1,\mu_2)-U_c(1;\mu_h,\mu_2)\right]\\\frac{2C_F}{N_c}\left[U_c(1;\mu_1,\mu_2)-U_c(\frac{1}{2},1;\mu_h,\mu_1,\mu_2)\right]\end{pmatrix}$$

P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024)

RG-IMPROVED SLL RESUMMATION

Explicit form of the evolution function for SLLs

RG-improved perturbation theory:

$$\mathbb{U}_{\mathrm{SLL}}(\mu_h, \mu_s) \varsigma = -\frac{32\pi^2}{\beta_0^3} N_c \int_1^{x_s} \frac{dx_2}{x_2} \ln \frac{x_s}{x_2} \int_1^{x_2} \frac{dx_1}{x_1} \left[2 \left[\frac{2C_F}{2C_F} \right] \right]_{2C_F}$$

Fixed-coupling approximation:

$$\begin{pmatrix} 0 \\ -\frac{1}{2} U_c(1; \mu_h, \mu_2) \\ U_c(\frac{1}{2}, 1; \mu_h, \mu_1, \mu_2) \\ 2 \left[U_c(\frac{1}{2}, 1; \mu_h, \mu_1, \mu_2) - U_c(1; \mu_h, \mu_2) \right] \\ \frac{2C_F}{N_c} \left[U_c(1; \mu_1, \mu_2) - U_c(\frac{1}{2}, 1; \mu_h, \mu_1, \mu_2) \right] \end{pmatrix}$$

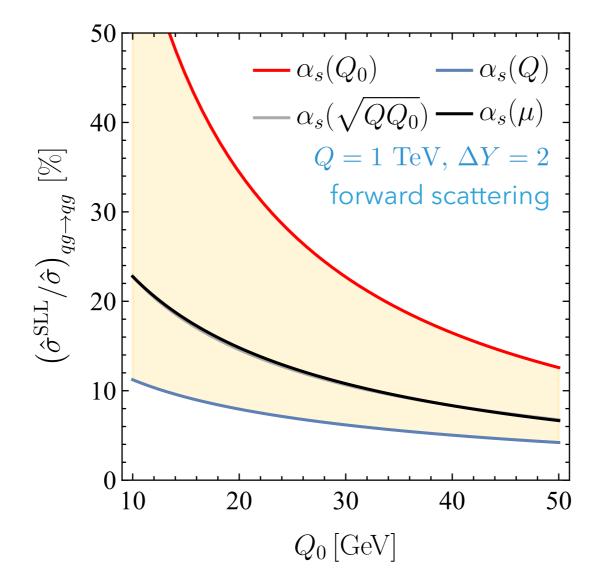
P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024)

$$\mathbb{U}_{\rm SLL}(\mu_h,\mu_s)\,\varsigma = -\frac{2\pi^2}{3}\,N_c\,\left(\frac{\alpha_s}{\pi}\,L\right)^3 \begin{pmatrix} 0\\ -\frac{1}{2}\,\Sigma(1,1;w)\\ \Sigma(\frac{1}{2},1;w)\\ 2\left[\Sigma(\frac{1}{2},1;w) - \Sigma(1,1;w)\right]\\ \frac{2C_F}{N_c}\left[\Sigma(0,1;w) - \Sigma(\frac{1}{2},1;w)\right] \end{pmatrix} \quad \text{Kampé de Fériet function}$$

S

PHENOMENOLOGICAL IMPACT OF RG IMPROVEMENT

SLL resummation with controlled scale uncertainties

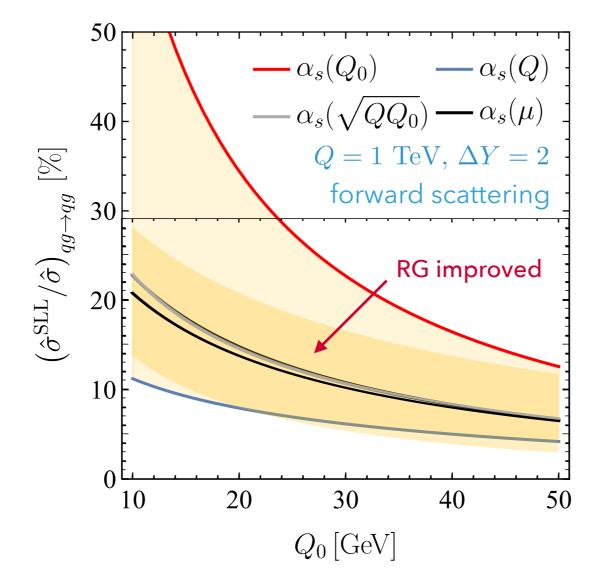


P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024)

JGU Mainz

PHENOMENOLOGICAL IMPACT OF RG IMPROVEMENT

SLL resummation with controlled scale uncertainties



P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024)

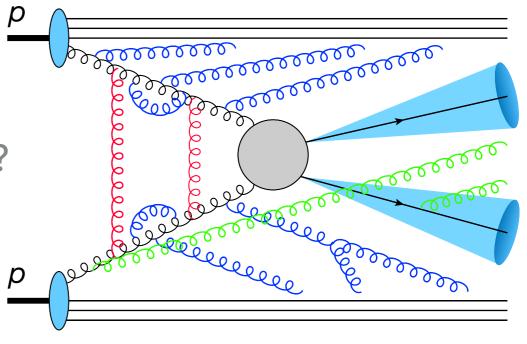
JGU Mainz

Important open questions

How to include multiple Glauber phases and multiple soft emissions (single-log effects), and how large is their effect?

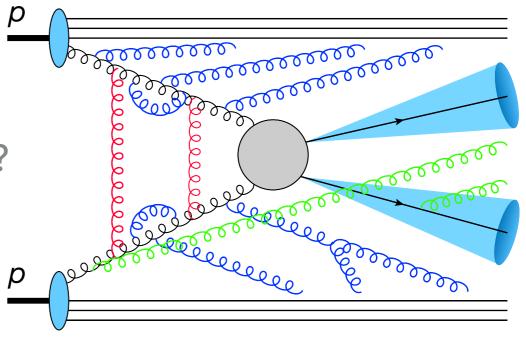
Important open questions

- How to include multiple Glauber phases and multiple soft emissions (single-log effects), and how large is their effect?
- Can collinear factorization violations be understood in a quantitative way? At what scale (Q_0 or $\Lambda_{\rm QCD}$) do they occur?



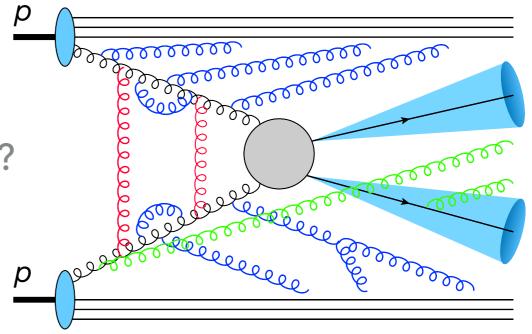
Important open questions

- How to include multiple Glauber phases and multiple soft emissions (single-log effects), and how large is their effect?
- Can collinear factorization violations be understood in a quantitative way? At what scale (Q_0 or $\Lambda_{\rm QCD}$) do they occur?
- What are the implications for LHC phenomenology?



Important open questions

- How to include multiple Glauber phases and multiple soft emissions (single-log effects), and how large is their effect?
- Can collinear factorization violations be understood in a quantitative way? At what scale (Q_0 or $\Lambda_{\rm QCD}$) do they occur?
- What are the implications for LHC phenomenology?



Results are relevant for future improvements of parton showers with quantum interference

