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LARGE LOGARITHMS IN LHC JET PROCESSES

Perturbative expansion includes “super-leading” logarithms:
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LARGE LOGARITHMS IN LHC JET PROCESSES

Really, a double logarithmic series starting at 3-loop order:
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COULOMB PHASES BREAK COLOR COHERENCE
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Super-leading logarithms 

▸ Breakdown of color coherence due to                                                 
initial-state soft gluon (Glauber) exchange                                                

▸ Soft anomalous dimension: 

where  if particles  and  are both in initial or final state 

▸ Imaginary part (only at hadron colliders):

sij > 0 i j

Neubert Part B2 EFT2

candidates for dark matter. Because of its feeble interactions with SM particles, finding an ALP is
very challenging, especially because the expected signals depend very sensitively on how the ALP
decays and how long it travels before it decays. This introduces a strong model dependence in the
analysis, which in practice requires one to make drastic assumptions, such as the existence of a single
non-zero coupling, in order to derive useful bounds. But in this way important e↵ects can be missed.
Wouldn’t it be nice to be able to probe all ALP couplings to the SM simultaneously and in a way that
is insensitive to the ALP lifetime and branching fractions?

In project B, I propose a complementary new search strategy for ALPs, which is based on a
systematic, global analysis of virtual ALP e↵ects on precision measurements. Contrary to the
resonant production of ALPs, indirect searches for their contributions in quantum fluctuations
are insensitive to the lifetime of the ALP and the way in which it decays. They can thus provide
largely model-independent bounds on the ALP couplings and mass.

Achieving the two grand goals of the EFT2 proposal will significantly boost the LHC discovery
potential for new phenomena and thus have a transformative impact on the field. This requires
expertise in both SM physics and physics beyond the SM, which has been a hallmark of my research
since over two decades. In EFT2, I plan to approach both challenges using the powerful tools of modern
e↵ective field theories (EFTs). Doing this in the context of a single proposal has the advantage that
important interconnections can be exploited. For example, the global analysis of ALP couplings in
project B will rely on precision measurements of diboson production, top-quark production, and Higgs
production at the LHC. In order not to fake a signal of NP, it is essential that the SM predictions for
these quantities can be calculated reliably and with the highest possible precision. This is exactly the
main goal of project A.

Project A – Theory of non-global observables at hadron colliders

While fixed-order perturbative calculations still define an important frontier in collider physics, in
many cases they do not provide su�ciently accurate predictions. If the radiation in a high-energy
scattering process is restricted by experimental cuts, higher-order terms in the perturbative series can
be enhanced by large logarithms associated with the emission of soft and collinear particles. The
simple structure of these emissions sometimes makes it possible to resum the logarithmic terms to all
orders. An important example are event shapes in e

+
e
� collisions near the two-jet limit [18–22], for

which the cross section can be factorized into a product (in the convolution sense) of a soft function S

accounting for soft gluon emissions, two jet functions J and J̄ describing the collinear radiation inside
the jets, and a hard function H encoding the virtual corrections to the underlying hard-scattering
process e

+
e
�
! q q̄:

� = H J ⇥ J̄ ⇥ S . (1)

Soft-Collinear E↵ective Theory (SCET) o↵ers a convenient framework for performing such resumma-
tions [23–26]. In general, the hard function for a process involving n colored particles with momenta
{p} ⌘ {p1, . . . , pn} is related to the square of a hard-scattering partonic amplitude |Mn({p}, µ)i,
which can be represented as a vector in color space [27]. This object obeys a renormalization-group
(RG) evolution equation with the anomalous dimension [28–32]

�({p}, µ) =
X

(ij)

Ti · Tj

2
�cusp(↵s) ln

µ
2

�sij
+
X

i

�
i(↵s) + O(↵3

s) , (2)

where sij ⌘ 2�ij pi ·pj +i0, and the sign factor �ij = +1 if the momenta pi and pj are both incoming or
outgoing, and �ij = �1 otherwise. The notation (i1 . . . ik) refers to unordered tuples of distinct parton
indices. The cusp anomalous dimension �cusp and the collinear anomalous dimensions �

i are functions
of the QCD coupling. Up to two-loop order the result features only pairwise correlations among the
color charges and momenta of the di↵erent partons. Along with RG evolution equations for the jet
and soft functions, this provides the basis for the systematic resummation of all large logarithmic
corrections to the cross section.
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In more complicated cases, a standard phenomenological approach is to combine fixed-order per-
turbative calculations with parton showers, which simulate the cascades of soft and collinear QCD
radiation produced in high-energy particle collisions. The accuracy of these showers is limited since
they reply on the large-Nc approximation, in which one includes only the leading terms in an expansion
in powers of 1/Nc, where Nc = 3 is the number of colors in QCD. While there is currently a strong
e↵ort under way to extend parton showers beyond the strict Nc ! 1 limit and match them consis-
tently with fixed-order calculations [33–37], obtaining a complete understanding of even the leading
logarithmic e↵ects is a di�cult problem. Dasgupta and Salam showed that observables insensitive to
radiation in certain regions of phase space contain single-logarithmic terms not captured by resumma-
tion techniques based on (1) [38]. These so-called non-global logarithms (NGLs) have a complicated
structure, because they are generated by secondary emissions o↵ the original hard partons. Banfi,
Marchesini and Smye (BMS) derived a non-linear integral equation, which can be used to perform
the resummation of the leading NGLs in the large-Nc limit [39]. Since “strong energy ordering” is
a crucial ingredient for the BMS equation, its logarithmic accuracy cannot easily be improved, even
though important progress in this direction has recently been made in [40]. Since the vast majority
of collider observables include regions of phase space in which radiation is not restricted, the presence
of NGLs severely limits the applicability of higher-order resummation techniques. In [41, 42], we
have generalized the SCET approach to derive a novel factorization theorem for dijet cross sections
in e

+
e
� collisions, based on which all logarithmically enhanced corrections, including the NGLs, can

be controlled by an RG evolution equation. These papers mark a milestone, because they o↵er a
radically new perspective to think about NGLs. Our approach is completely general and works for
any number of colors. In the large-Nc limit, the leading logarithms agree with those derived from the
BMS equation. Related proposals for dealing with NGLs have been put forward in [43, 44].

For hadron-collider processes, in which colored particles appear in both the initial and final states,
the resummation of all logarithmically enhanced terms poses an even more formidable conceptual
problem, which so far has been solved only partially and for a very limited class of observables. The
prototypical non-global observable is the inter-jet energy flow, where a veto associated with a low-
energy scale Q0 is imposed on radiation in a region away from the hard jets with energies of the order
of the collision energy, Q =

p
ŝ � Q0. Being sensitive only to large-angle soft radiation, one naively

expects the leading logarithms to this observable to scale as ↵
n
s L

n (with n � 1), where L = ln(Q/Q0).
This is indeed the case for jet production at lepton colliders, but Forshaw, Kyrieleis and Seymour
argued that at hadron colliders double logarithms arise starting at four-loop order [17], so that the
leading logarithms are, in fact, of the form ↵

3+n
s L

3+2n. The SLLs are a subtle e↵ect, whose origin can
be traced back to the first term in (2). For e

+
e
� collisions all colored particles appear in the final state,

and hence �ij = 1 for all pairs (ij). Color-conservation then ensures that the imaginary part of the
anomalous-dimension matrix is proportional to the unit matrix in color space, and its e↵ect cancels
out when one considers the square of the hard-scattering amplitude. At hadron colliders, however,
the initial-state particles carry color and a non-trivial imaginary part remains,

Im�({p}, µ) = �2⇡ T1 · T2 �cusp(↵s) + . . . , (3)

where the dots represent terms proportional to the unit matrix. This e↵ect gives rise to Coulomb
phases with a highly non-trivial color structure. Their presence spoils the real-virtual cancellations for
collinear emissions o↵ the initial states and thus violates the notion of strict (i.e., process-independent)
factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵

4
sL

5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
second SLL (⇠ ↵

5
sL

7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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factorization [45–47]. Even 15 years after this e↵ect was discovered, remarkably little is known about
it. While the first SLL (⇠ ↵
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5) has been calculated for arbitrary 2 ! 2 hard processes [48], the
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7) is known for some selected partonic channels only [49]. The higher-order
structure of SLLs, their contribution to other hard processes, and their large-order behavior are
completely unknown. Moreover, while the SLLs are responsible for the parametrically leading higher-
order contributions to the cross sections, their e↵ects are not captured in any existing parton shower,
because they appear at subleading order in 1/Nc counting.

In July 2021, my collaborators and I took the first steps toward extending our SCET approach
for non-global observables at lepton colliders to the more complicated case of hadron colliders [50].
As a concrete example, we have considered the pp ! 2 jet cross section with a veto on hard radiation
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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red: Coulomb gluons
blue: gluons emitted along beams 
green: soft gluons between jets

Loss of color coherence from initial-
state Coulomb interactions

▸ Weird “super-leading logarithms”
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revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
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collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
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coherence, however, is the basis for proofs of QCD
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some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
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“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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very small, because they only arise in higher orders,
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corrections to existing fixed-order calculations. The
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sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.
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1
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Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.

P
(i)
↵̄↵ �̄

↵̄

i (tn̄i)�
↵

i (0) =

✓
n̄/
i

2

◆

↵̄↵

�̄
↵̄

i (tn̄i)�
↵

i (0) = �̄i(tn̄i)
n̄/
i

2
�i(0) ,

P
(i)
↵̄↵A

↵̄

?c
(tn̄i)A

↵

?c
(0) = (�g↵̄↵)(�i@t)A

↵̄

?c
(tn̄i)A

↵

?c
(0) = i@tA

µ

?i
(tn̄i)A?iµ(0) .

(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,
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[see also: T. Becher, M. Neubert, L. Rothen, D. Shao (2015, 2016)]

density matrix involving hard-scattering amplitude in color space

high scale
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from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
, (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.
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ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,

(2)

ar
X

iv
:2

10
7.

01
21

2v
1 

 [h
ep

-p
h]

  2
 Ju

l 2
02

1

�2!M (Q,Q0) =
X

a,b=q,q̄,g

Z
dx1dx2

1X

m=2+M
<latexit sha1_base64="+eAdX5vWj0UX6mJEZJJeGJto+38="></latexit>

ab
<latexit sha1_base64="FA9+UtzrijnQRMXcvf1pbYac034=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oUy2m3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5aCYJ8yMcSh5yisZKDxj0yxW36s5BVomXkwrkaPTLX71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5pdOyZlVBiSMlS1pyFz9PZFhpPUkCmxnhGakl72Z+J/XTU147WdcJqlhki4WhakgJiazt8mAK0aNmFiCVHF7K6EjVEiNDadkQ/CWX14lrVrVu6jW7i8r9Zs8jiKcwCmcgwdXUIc7aEATKITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AX6HjVU=</latexit>

ab
<latexit sha1_base64="FA9+UtzrijnQRMXcvf1pbYac034=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oUy2m3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5aCYJ8yMcSh5yisZKDxj0yxW36s5BVomXkwrkaPTLX71BTNOISUMFat313MT4GSrDqWDTUi/VLEE6xiHrWioxYtrP5pdOyZlVBiSMlS1pyFz9PZFhpPUkCmxnhGakl72Z+J/XTU147WdcJqlhki4WhakgJiazt8mAK0aNmFiCVHF7K6EjVEiNDadkQ/CWX14lrVrVu6jW7i8r9Zs8jiKcwCmcgwdXUIc7aEATKITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AX6HjVU=</latexit>

low scale
T. Becher, M. Neubert, D. Shao (2021) 

[see also: T. Becher, M. Neubert, L. Rothen, D. Shao (2015, 2016)]

soft Wilson lines

high scale

7

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES (PART 1)

where ptot is the total momentum of the final-state particles and p
?
tot denotes the (d � 2)

components transverse to the beam directions n1 and n2. The energies of the incoming

partons are E1 = x1
p
s/2 and E2 = x2

p
s/2. The angular constraint ⇥hard({n}) ensures

that the hard partons cannot enter the gap or veto region. Note that some of the final-state

particles can be color neutral. In particular, we will also consider the production of Z- or

Higgs-bosons in association with M � 0 jets. We stress that the amplitude in (2.3) is

squared in the sense of a density matrix. We use the color/helicity-space formalism [40],

in which the color and helicity indices of the amplitude |Mm({p})i and its conjugate are

not contracted.

The symbol ⌦ in (2.1) indicates an integration over the directions {n3, . . . , nm} of the

final-state particles in the hard scattering process. These integrals must be performed after

the hard functions are combined with the low-energy matrix elements Wm, which encode

the soft and collinear dynamics in the process of interest. Following [21], we have included a

factor c̃✏ = (e�E/⇡)✏ in the denominators of the energy integrals in the definition of the hard

function, where �E is Euler’s constant. The same factor is added to the (d�2)-dimensional

angular integrals, for which we use the measure

[d⌦i] = c̃
✏

d
d�2⌦i

2(2⇡)d�3
. (2.4)

We thus define

Hm({n}, s, x1, x2, µ)⌦Wm({n}, Q0, x1, x2, µ)

⌘

mY

i=3

Z
[d⌦i]Hm({n}, s, x1, x2, µ)Wm({n}, Q0, x1, x2, µ) .

(2.5)

The factors of c̃✏ cancel in the combination of the hard functions and angular integrals but

avoid a proliferation of �E ’s and logarithms of ⇡ at intermediate stages.

The low-energy matrix elements Wm involve soft Wilson lines Si(ni) along the direc-

tions of all hard particles in the process (for color-neutral particles, one uses Si(ni) = 1),

and collinear fields for the two incoming partons. They are given by Fourier transforms

Wm({n}, Q0, x1, x2) =

Z 1

�1

dt1

2⇡
e
�ix1t1n̄1·p1

Z 1

�1

dt2

2⇡
e
�ix2t2n̄2·p2 fWm({n}, Q0, t1, t2) (2.6)

of matrix elements of the form

fWm({n}, Q0, t1, t2)

=

Z

Xs

X
P

(1)
↵̄↵ P

(2)
�̄�

hH1(p1)H2(p2)| �̄
↵̄

1 (t1n̄1) �̄
�̄

2 (t2n̄2)S
†
1(n1) . . . S

†
m(nm) |Xsi

⇥ hXs|S1(n1) . . . Sm(nm)�↵

1 (0)�
�

2 (0) |H1(p1)H2(p2)i ✓(Q0 � E
?
out) ,

(2.7)

where H1 and H2 are the colliding hadrons. In these expressions, the fields �i are the

gauge-invariant collinear building blocks [32, 41] in the directions of the two hadrons, as

appropriate for a given partonic channel, i.e. �i 2 {�i, �̄i,Ai?} for a quark, anti-quark or
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �(
p

ŝ � Etot) �(d�1)(~ptot) ⇥hard

��
p
 �

,

(2)
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low scale

operator in color space and in the 
infinite space of parton multiplicities

1 Introduction

µ
d

dµ
H

ab

l
({n}, Q, µ) = �

X

ml

H
ab

m
({n}, Q, µ)�H

ml
({n}, Q, µ) (1)

H
ab

m
({n}, Q, µ = Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2, µ = Q0) (2)

H
ab

m
({n}, Q)⌦

1X

l=m

Uml({n}, Q,Q0)⌦W
ab

l
({n}, Q0, x1, x2) (3)

U({n}, Q,Q0) = P exp

Z
Q

Q0

dµ

µ
�H({n}, Q, µ)

�
(4)

Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

high scale
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Evaluate factorization theorem at low scale  

▸ Low-energy matrix element: 

▸ Hard-scattering functions: 

▸ Expanding the solution in a power series generates arbitrarily high 
parton multiplicities starting from the  Born process

μs ∼ Q0

2 → M

ab
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Rm =4
X

(ij)

Ti,L · Tj,R

⇢h
�(nk � ni) ln

µ

2Ei
+ �(nk � nj) ln

µ

2Ej

i
�W

m+1
ij ⇥in(nm+1)

�

Vm =2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

⇢
� ln

µ
2

2Ei2Ej
+

Z
d⌦(nk)

4⇡
W

k
ij

�

� 8 i⇡
X

(ij)

(T1,L · T2,L � T1,R · T2,R)⇧ij (11)

(12)

X

(ij)

Ti,L · Tj,L ln
µ

2Ei
= �

X

i

Ti,L · Ti,L ln
µ

2Ei
= �

X

i

Ci ln
µ

2Ei
(13)

�
X

(ij)

Ti,L � Tj,R �(nk � ni) ln
µ

2Ei
= +

X

i

Ti,L � Ti,R �(nk � ni) ln
µ

2Ei
(14)

� = �+ �G +
X

i

�c
i ln

µ
2

ŝ

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=4

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (15)

Wm({n}, Q0, x1, x2, µs) = fa1(x1) fa2(x2)1 . (16)fa/p(x1) fb/p(x2)1+O(↵s)
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.

We thus evaluate
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Evaluate factorization theorem at low scale  

▸ Anomalous-dimension matrix: 

▸ Action on hard functions:

μs ∼ Q0

approach and reflects the intrinsic complexity of the problem at hand. The evolution equa-

tions shows that higher-multiplicity hard functions mix with lower-multiplicity functions

under scale evolution. At one-loop order, and written in the space of particle-multiplicities,

the anomalous-dimension matrix takes the form

�
H({n}, s, µ) =

↵s

4⇡

0

BBBBBB@

V2+M R2+M 0 0 . . .

0 V2+M+1 R2+M+1 0 . . .

0 0 V2+M+2 R2+M+2 . . .

0 0 0 V2+M+3 . . .

...
...

...
...

. . .

1

CCCCCCA
+O(↵2

s) , (2.13)

where (2+M) is the minimal number of particles for an M -jet process at a hadron collider.

The virtual-correction matrix elements Vm on the diagonal leave the number of partons

unchanged, while the real-emission operators Rm map a hard function with m partons onto

one with (m + 1) partons.3 With each higher order in perturbation theory an additional

o↵-diagonal in the upper right half of the matrix is filled, but the entries below the diagonal

remain zero to all orders.

By solving the RG equation (2.11) we can evolve the hard functions from their natural

scale µh ⇠ Q ⇠
p
ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
H(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).
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Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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Evaluate factorization theorem at low scale  

▸ Anomalous-dimension matrix: 

▸ Virtual and real contributions contain collinear singularities, which 
must be regularized and subtracted

μs ∼ Q0

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES (PART 1)
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ŝ, where ŝ = x1x2s is the partonic center-of-mass energy, down to the

scale µs ⇠ Q0 of the low-energy dynamics. A formal solution is given by the path-ordered

exponential

U({n}, s, µh, µs) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, s, µ)

�
, (2.14)

which is defined by its series expansion

H(µh) ?U(µh, µs) = H(µh) +

Z
µh

µs

dµ1

µ1
H(µh) ? �

H(µ1)

+

Z
µh

µs

dµ1

µ1

Z
µh

µ1

dµ2

µ2
H(µh) ? �

H(µ2) ? �
H(µ1) + . . . ,

(2.15)

where the anomalous-dimension matrices on the right-hand side are ordered in the direction

of decreasing scale values (i.e. µ2 > µ1 in the second line). In the last two equations we

have suppressed the energy and direction arguments of the various functions for simplicity.

In the following, we first present a detailed derivation of the anomalous dimension

�
H at one-loop order (Section 3). In contrast to the case of e+e� collisions, the anoma-

lous dimension not only contains soft contributions, but also collinear and soft+ collinear

contributions associated with the initial-state partons. The soft+ collinear parts exhibit

a logarithmic dependence on the factorization scale µ, which leads to double logarithms

upon performing the scale integrals in (2.15). This feature is the source of the SLLs. Fol-

lowing our earlier work [36], we then calculate the leading double-logarithmic terms from

(2.1) and (2.15) order by order in perturbation theory, by evaluating the relevant color

traces (Sections 4 and 6) and iterated scale integrals (Section 5). For this calculation it is

su�cient to work with the lowest-order expressions for the low-energy matrix elements and

3
Recall that �H

stands to the right of the hard functions in (2.11).

– 10 –

Figure 4. Color structures C1!P for di↵erent collinear splittings. In the first three cases, the color
structure is given by the color generator associated with the quark-gluon vertex, appropriately
contracted with the hard function. In the last case, the color structure is given by the SU(Nc)
structure constant. The first and last example can be written as T a

1 in the color space formalism,
where a is the color index of the emitted collinear gluon.

The matrix C1!P connects the colors of the three partons involved in the splitting and maps

from the m-parton space with momenta {p̂} = {P, p2, . . . , pj�1, pj+1, . . . , pm+1} before the

splitting to the (m + 1)-parton space with directions {n̂} = {n1, n2, . . . , nm+1} after the

splitting. We have normalized these matrices to unity for trivial Wm+1 = 1

C†
1!P

C1!P = 1 . (3.33)

For the q ! q or g ! g splittings, the matrix C1!P describes the emission of an ad-

ditional collinear gluon, which can be described in the color-space formalism. With our

normalization, we have

C1!P
Hm C†

1!P
= Hm

1

CP

TP,L � TP,R . (3.34)

The subscripts L,R indicate on which side the color generator multiplies the hard function.

For the soft terms proportional to �(1� ⇠), the normalization factor CP simply cancels the

Casimir in the prefactor.

After this discussion, we can now present the result for the full anomalous dimen-

sion, including both the soft part and the collinear pieces associated with the initial-state

collinear singularities. At the one-loop order, we split the anomalous dimension into a soft

part and a sum of purely collinear terms

�
H(⇠1, ⇠2) = �(1� ⇠1) �(1� ⇠2)�

S + �
C

1 (⇠1) �(1� ⇠2) + �(1� ⇠1)�
C

2 (⇠2) . (3.35)

To separate the soft+ collinear parts from the purely collinear ones, we introduce a refer-

ence scale µh ⇠
p
ŝ and split

ln
µ

2Ei

= ln
µ

µh

+ ln
µh

2Ei

(3.36)

for i = 1, 2. The large logarithms ln µ

µh

are included with the soft anomalous dimension

�
S
⌘ �

S(µh, µ) and the remaining O(1) terms are included in �
C

i
. In the partonic center-

of-mass frame 2E1 = 2E2 =
p
ŝ so that the extra term is absent for the choice µh ⇠

p
ŝ

– 20 –
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�0
↵sCF

4⇡
4 ln(r) ln

Q
2

Q
2
0

+ . . . (5)

|Mm+1({p, q})i = "
⇤µJµ,a(q)|Mm({p})i = gs

mX

i=1

T a
i
ni · "⇤

ni · q
|Mm({p})i (6)

(T a
i )bc =

8
>>><

>>>:

(ta)bc quark

�(ta)cb anti-quark

�if
abc gluon

(7)

Rm =� 4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥jet(nm+1) (8)

Vm =2
X

(ij)

Z
d⌦(nk)

4⇡
(Ti,L · Tj,L + Ti,R · Tj,R)W

k
ij

� 2 i⇡
X

(ij)

(Ti,L · Tj,L � Ti,R · Tj,R)⇧ij

Ti,L � Tj,R

Ti,L · Tj,L Ti,R · Tj,R

Ti · Tj =
X

a

T a
i T

a
j

Jµ,a(q)J
µ,a(q)

Vm = Vm + V G +
X

i=1,2

V c
i ln

µ
2

ŝ
,

Rm = Rm +
X

i=1,2

Rc
i ln

µ
2

ŝ
,

(9)

with

Vm = 2
X

(ij)

�
Ti,L · Tj,L + Ti,R · Tj,R

� Z d⌦(nk)

4⇡
W

k
ij ,

V c
i = 4Ci 1 ,

V G = �8i⇡
�
T1,L · T2,L � T1,R · T2,R

�
, (10)

Rm = �4
X

(ij)

Ti,L � Tj,R W
m+1
ij ⇥hard(nm+1) ,

Rc
i = �4Ti,L � Ti,R �(nk � ni) .

<latexit sha1_base64="w6gC74xNyoYnQGbpq/x4p2Is4VM=">AAAB73icbVBNS8NAEJ2tX7V+VT16WSyCp5KIqMdSLx4r2A9oQtlsN+nSzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBVcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0UmmKGvTRCSqFxDNBJesbbgRrJcqRuJAsG4wvp353SemNE/kg5mkzI9JJHnIKTFW6nlNHkXYmw6qNafuzIFXiVuQGhRoDapf3jChWcykoYJo3Xed1Pg5UYZTwaYVL9MsJXRMIta3VJKYaT+f3zvFZ1YZ4jBRtqTBc/X3RE5irSdxYDtjYkZ62ZuJ/3n9zIQ3fs5lmhkm6WJRmAlsEjx7Hg+5YtSIiSWEKm5vxXREFKHGRlSxIbjLL6+SzkXdvapf3l/WGs0ijjKcwCmcgwvX0IA7aEEbKAh4hld4Q4/oBb2jj0VrCRUzx/AH6PMHf7qPoQ==</latexit>)
� = �+ V

G + �c ln
µ2

ŝ

1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton
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Figure 6. Action of the cusp operator Rc
1 and the virtual piece V

G on a hard function Hm. The
operator Rc

1 adds an additional final-state leg (dashed blue line) along the direction of the incoming
parton 1.

entry, H2!M ⌘ (H2+M , 0, 0, . . . ). We also combine the real and virtual pieces of the soft

anomalous dimension into the matrix notation

�
c =

X

i=1,2

�
cusp
0

⇥
Ci 1� Ti,L � Ti,R �(nk � ni)

⇤
,

V
G = �2i⇡�cusp0 (T1,L · T2,L � T1,R · T2,R) ,

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij � 4
X

(ij)

Ti,L � Tj,R W
k

ij ⇥hard(nk) .

(4.1)

As in (2.11) and (2.15), these are matrices in multiplicity space that multiply the hard

function from the right and the order of the matrices determines the order in which they

act on the hard function. At the same time, they contain color matrices that can act on

the amplitude or the conjugate amplitude in each step, i.e. multiply the color indices of

the hard function on the left or on the right. The vector nk in (4.1) corresponds to the

direction of the emitted gluon. Each emission generates a new vector and in a product of

anomalous dimensions we will label the vectors with an index nk`
with ` = 0, 1, . . . , where

` = 0 is the last emission, ` = 1 the second to last, and so on.

Three properties of the di↵erent components of the anomalous dimension (4.1) greatly

simplify our calculations. Color coherence, the fact that the sum of the soft emissions o↵

two collinear partons has the same e↵ect as a single soft emission o↵ the parent parton,

implies that

H�
c
� = H��

c
, (4.2)

in other words they commute when multiplying a hard function H

[�c
,�] = 0. (4.3)

To derive this relation, we note that the contributions Rm and Vm only depend on the

sum of colors if two partons i and j become collinear, e.g.

Ti,L · Tk,RW
q

ik + Tj,L · Tk,RW
q

jk = (Ti,L + Tj,L) · Tk,RW
q

ik , (4.4)
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for the collinear-emission operator �c and the Glauber operator V G are [18]4
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T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
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Z
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where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k
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= W k
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�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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1 Preliminaries

We use the notations introduced in our letter [1], where we have shown that the “gap between
jets” cross section for a 2 ! M hard process satisfies the factorization formula [2]

�2!M(Q,Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

1X

m=2+M

⌦
Hm({n}, Q, µ)⌦Wm({n}, Q0, x1, x2, µ)

↵
. (1)

The hard functions Hm describe all possible m-parton processes a1 + a2 ! a3 + · · ·+ am and
are obtained after imposing appropriate kinematic constraints, such as cuts on the transverse
momenta and rapidities of the leading jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons. The color sum, indicated by h. . . i in
(1), is performed after the hard functions are combined with the functions Wm, which encode
the soft and collinear low-energy dynamics. Both quantities depend on the directions {n} of
the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by

�c =
X

i=1,2

⇥
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⇤
,
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k
ij � 4

X

(ij)

Ti,L � Tj,R W
k0
ij ⇥in(nk0) .

(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton

1

Glauber phase

soft emission  
(collinear div. subtracted)

collinear emission

Figure 5. Action of the real-emission operator Rm and the virtual piece Vm on a hard function
Hm. Due to the emitted gluon (green line), the product Hm Rm defines a hard function with
(m+ 1) external legs.

which we adopted in our previous paper [36]. In the laboratory frame, we have instead

2E1 = x1
p
s and 2E2 = x2

p
s. To obtain the cross section, the hard functions Hm and

the soft-collinear functions Wm+1 are integrated over the momentum fractions. The above

anomalous dimension multiplies these functions in the sense of Mellin convolutions over ⇠1
and ⇠2. Since the soft part has trivial dependence on the momentum fractions, we have

suppressed this dependence in [36].

The real and virtual pieces of the purely collinear part �C

i
of the one-loop anomalous-

dimension matrix (2.13) are given by

V
C

i (⇠i) = �2

✓
�
i

0 � Ci�
cusp
0 ln

µh

2Ei

◆
�(1� ⇠i) ,

R
C

i (⇠i) = 2

✓
2P i!P (⇠i)� Ci�

cusp
0 �iP ln

µh

2Ei

�(1� ⇠i)

◆
C
i!P,L

C†
i!P,R

�(nk � ni) ,

(3.37)

where the L and R subscript indicate how the color matrices act on the hard function. Note

that the collinear real-emission operator has di↵erent channels 1 ! P . For example, RC
q

acts on hard functions with initial state P , which could be a quark or gluon, and produces a

new hard function with initial-state quark. With the default choice µh ⇠
p
ŝ the logarithms

in the collinear anomalous dimension operators evaluate (modulo a sign) to the rapidity

di↵erence between the lab and the partonic center-of-mass frame. After convolution with

the PDFs, this is an order one logarithm. Furthermore, for channels in which the two initial-

state partons transform in the same color representation, the logarithms immediately cancel

for the default scale choice, as is evident from (3.12).

It is interesting that the hard evolution is not driven by the usual DGLAP kernels but

by a real part that has a non-trivial color structure and a color-diagonal virtual part. Only

if the color structure of the soft-collinear functions Wm+1 is such that the color structure

of the real emissions trivializes, the two parts will combine into the standard MS kernels.

For the same reason also the soft+ collinear pieces do not cancel out, which will lead to

double-logarithmic terms in the evolution, the SLLs.
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the hard partons, and after combining them the integrals over these directions are performed,
as indicated by the symbol ⌦.

In [1] we have defined the basis color traces as

Crn =
⌦
H2+M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2)

where 0  r  n, and the hard functions are normalized such that hH2+Mi = 1. The insertions
of color operators should be read from left to right. They account for the evolution of the
hard functions from the hard scale µh ⇠ Q to the soft scale µs ⇠ Q0 The relevant anomalous
dimensions are given by
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(3)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton
emitted in the last step of the evolution. The additional p  n collinear gluons, which can be
emitted from the n insertions of �c, are labeled by indices k1, . . . , kp (reading the insertions
of �c from right to left). Physically, the operator �c accounts for virtual corrections on or
collinear emissions o↵ one of the initial-state partons. These are the terms which give rise
to double-logarithmic corrections to the cross section. The operator �, on the other hand,
accounts for virtual corrections or collinear emissions connecting a pair of di↵erent partons
with indices i 6= j. Here, the symbol (ij) on the sums runs over all (unordered) pairs of parton
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for the collinear-emission operator �c and the Glauber operator V G are [18]4
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⇤
,

V
G = �2i⇡

�
T1,L · T2,L � T1,R · T2,R

�
.

(2.7)

They account for (virtual or real) collinear emissions from one of the two initial-state
partons, or Glauber-gluon exchange between the two initial-state partons, respectively.
The operator V G is diagonal in multiplicity space, while �c is an upper bi-diagonal matrix,
and both only involve the color generators of the initial-state partons (i = 1, 2). We use
the color-space formalism, where Ti denotes a color generator acting on particle i, and
Ti · Tj =

P
a
T

a

i
T

a

j
. Moreover, Ci 2 {CF , CA} is the eigenvalue of the quadratic Casimir

operator of SU(Nc) in the fundamental or adjoint representation. The color matrices Ti,L

act on the scattering amplitude and multiply the hard function from the left, while Tj,R

act on the conjugate amplitude and multiply the hard function from the right. This is the
usual color-space notation [24]. The color matrices in the real-emission term in �c have a
di↵erent meaning, since they take an amplitude with m partons and associated color indices
and map it into an amplitude with (m + 1) partons. The symbol � indicates the creation
of extra new color space for the emitted gluon with direction nk. Explicitly, we have [18]

Hm Ti,L � Tj,R = T
a

i
Hm T

ã

j
, (2.8)

where a and ã are the color indices of the additional emitted gluon in the amplitude and
the conjugate amplitude, respectively. In contrast to the virtual case, these color indices
cannot immediately be contracted because, later emissions can attach to the new gluon.

The emission operator � in (2.6) accounts for (virtual or real) gluon emissions away
from the directions of the beams. Its explicit expression reads [18, 19]

� = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L � Tj,R W
k

ij
⇥hard(nk) , (2.9)

where the sum over (ij) includes all (unordered) pairs of parton indices with i 6= j. This
operator contains color generators for all partons in the process. The subtracted soft dipole
(with collinear singularities removed) is defined as

W
k

ij
= W k

ij
�

1

ni · nk

�(ni � nk)�
1

nj · nk

�(nj � nk) ; W k

ij
=

ni · nj

ni · nk nj · nk

. (2.10)

It is understood that the angular �-distribution acts only on the test function, not on the
coe�cient multiplying it. The hard gluons in the real-emission term are restricted to lie
inside the jet region, as indicated by the constraint ⇥hard(nk), while the virtual corrections
are unrestricted.

4
Compared with this reference, we have removed a factor �0 = 4 from the definitions of the operators

�c
and V

G
and absorbed it into the cusp anomalous dimension.
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SLLs arise from the terms in                                                        with the 
highest number of insertions of Γc 

▸ Three properties simplify the calculation: 

• color coherence in absence of Glauber phases: 

• collinear safety: 

• cyclicity of the trace:
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
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we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!
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(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced
higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation
emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,
at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting
at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the
higher-order behavior of these terms and their process dependence. We derive, for the first time,
the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at
hadron colliders and resum them in closed form.
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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FIG. 1. Action of the real-emission operator Rm and the

virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s
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⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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General result for  hard processes 

Basis of color structures:

2 → M

T. Becher, M. Neubert, D. Shao, M. Stillger (2023) 

where
F (6)
abcd = �fBbefCce F

(4)
aBCd . (32)

This would seem to generate increasingly complicated tensor structures, but using the explicit
form of F (4)

abcd in (27) we find that this is, in fact, not the case. Instead, we obtain

F (6)
abcd = F (2)

abcd �Nc �ad �bc �
N2

c

8
dadedbce . (33)

To arrive at this result, we have defined the matrices

(Da)bc = dabc (34)

and used the trace relation [7]

Tr
�
F aF bDc

�
=

Nc

2
dabc . (35)

Generalizing relation (33) to higher orders leads to

F (4+2n)
abcd = F (2n)

abcd + (�Nc)
n �ad �bc �

1

2

✓
Nc

2

◆n+1

dadedbce (36)

for all n 2 N. It follows that any symbol F (2n)
abcd for n � 3 can be reduced to the two symbols

in (27) plus terms proportional to �ad �bc and dadedbce. In other words, only four color tensors
are generated by successive applications of �c, namely

fabefcde , dadedbce , �ab �cd , �ad �bc . (37)

There is no need to symmetrize the first and the third structure in the index pair (b, c), because
the color trace ⌦

H
�
T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2)
�↵

(38)

with which these structures are contracted already has this symmetry.
At this point, we arrive at the result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
+ terms proportional to J12

#
, (39)

where the basis operators are defined as

O
(j)
1 = fabefcde T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
2 = dadedbce T

a
2 {T b

1 ,T
c
1 }T d

j � (1 $ 2) ,

O
(j)
3 = T

a
2 {T a

1 ,T
b
1 }T b

j � (1 $ 2) ,

O
(j)
4 = 2C1 T2 · Tj � 2C2 T1 · Tj .

(40)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c
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4 + 4d(s)1

i
.

(52)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
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6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations
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1 = 2Nc c
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1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,
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(s)
1 + 4Nc d
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2 ,
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(s)
1 + 4Nc d

(s)
3 ,
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4 = 4c(s)1 + 2Nc c

(s)
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(s)
4 ,
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5 = 4 (C1 + C2)

h
4c(s)1 +Nc c
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(s)
4

i
� 2Nc (N2
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3
c(s)1 � 4N2
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(s)
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h
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4 + 4d(s)1

i
.

(52)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

M4 M†
4

M4 M†
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Figure 8. Example diagram for depicting a contribution to the color trace Crn in (5.5) relevant
for M = 2 jet production. The soft wide-angle emission � is shown in green, Glauber terms V

G

with red dotted lines and collinear emissions �
c as dashed blue lines. The diagram shows C4,10

which involves r = 4 emissions (light-blue) before the first Glauber phase and n � r = 6 emissions
after (dark blue). The same color trace also gets contributions, involving Glauber phases in the
conjugate amplitude, and attachments in � to other legs.

The fact that the angular integration is now restricted to the region outside the jets allows

us to replace the subtracted dipoles W
q

ij defined in (4.3) with the original dipoles. Already

at this stage, we observe that all information about the phase-space restrictions on the

direction of the emitted gluon k0 is contained in the angular integrals Jj . If the gluon

is emitted from one of the hard final-state partons present in the Born process, then nj

is equal to the direction of that parton. If instead the gluon is emitted from one of the

collinear gluons emitted by the insertions of �c contained in the definition of the structure

H, then its direction nj is equal to n1 or n2. In this case we encounter the integral

J12 ⌘ J2 = �J1 =

Z
d⌦(nk)

4⇡
W

k

12 ⇥veto(nk) . (7.6)

Overall, there are thus (M + 1) independent kinematic structures Jj for a 2 ! M jet

process.

Given the result (7.4), we will now successively evaluate the e↵ects of the various

insertions of �c and V
G contained in the original structure H in (7.1), working from right

to left.

7.1 First insertions of �
c

We first evaluate the action of the right-most factor of �c in the hard function H in (7.1)

on the result shown above, assuming that (n � r) � 1 (otherwise this step is skipped). We

obtain

⌦
H�

c
V

G
�⌦1

↵
= �256⇡fabc

X

j>2

Jj

X

i=1,2

⌦
H Ci T

a

1 T
b

2 T
c

j �H Ti,L �Ti,R T
a

1 T
b

2 T
c

j

↵
, (7.7)

– 30 –

M4 M†
4

M4 M†
4

7

Figure 9. Example diagram for depicting a contribution to the color trace Crn, as Figure 8. The
example diagram depicted here involves an attachment to a final-state collinear parton and maps
on the operators Si, while the diagram in Figure 8 contributes to O

(j)
i .

Master formula for the color traces

At this point, we obtain the final result

Crn = �256⇡
2 (4Nc)

n�r

"
M+2X

j=3

Jj

4X

i=1

c
(r)
i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d
(r)
i

⌦
H2!M Si

↵
#

,

(7.48)

where the basis operators have been defined in (7.36) and (7.45). It follows from (7.14) that

the coe�cients d
(r)
i

vanish for r = 0. We find that these coe�cients obey the recurrence

relations
d

(s+1)
1 = 2Nc c

(s)
1 + 4c

(s)
3 + 8Nc d

(s)
1 + 8d

(s)
4 ,

d
(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d
(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d
(s+1)
4 = 4c

(s)
1 + 2Nc c

(s)
3 + 8d

(s)
1 + 8Nc d

(s)
4 ,

d
(s+1)
5 = 4 (C1 + C2)

h
4c

(s)
1 + Nc c

(s)
3 � Nc c

(s)
4

i

� 2Nc (N2
c + 8)

3
c
(s)
1 � 4N

2
c c

(s)
3 + 4Nc d

(s)
5 ,

d
(s+1)
6 = 8C1C2

h
2c

(s)
1 � Nc c

(s)
4 + 4d

(s)
1

i
.

(7.49)
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linearly independent color structures must be generalized to
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2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
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#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations
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3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)

10

From our result (21), it follows that for the special case where r = 0 we have

c(0)i = �i1 . (41)

Applying some number s insertions of �c we generate the right-hand side of (39) with co-

e�cients c(s)i . (We also generate terms proportional to J12, which will be discussed below.)
Applying �c one more time, the four structures change to

O
(j)
1 ! 6Nc O

(j)
1 +Nc O

(j)
2 + 4O(j)

3 + 4O(j)
4 ,

O
(j)
2 ! 4Nc O

(j)
2 ,

O
(j)
3 ! 4O(j)

1 + 6Nc O
(j)
3 ,

O
(j)
4 ! 2Nc O

(j)
4 .

(42)

The first relation follows from (30), and the remaining relations are readily derived by repeating
the derivation of (23) from (21) after replacing the overall color tensor fabefcde with dadedbce,
�ab �cd, and �ad �bc, respectively, making use of the trace relations in (26) and (35). The above
replacement rules lead to the recurrence relations

c(s+1)
1 = 6Nc c

(s)
1 + 4c(s)3 ,

c(s+1)
2 = Nc c

(s)
1 + 4Nc c

(s)
2 ,

c(s+1)
3 = 4c(s)1 + 6Nc c

(s)
3 ,

c(s+1)
4 = 4c(s)1 + 2Nc c

(s)
4 .

(43)

Solving this set of equations with the initial conditions in (41), we find

c(r)1 = 2r�1
⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

c(r)2 = 2r�2Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

c(r)3 = 2r�1
⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

c(r)4 = 2r�1


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(44)
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Taking into account the expressions for the coe�cients c(s)i obtained in (44), we find that the
solutions to these relations are

d(r)1 = 23r�1
⇥
(Nc + 1)r + (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r + (3Nc � 2)r

⇤
,

d(r)2 = 23r�2Nc


(Nc + 1)r

Nc + 2
+

(Nc � 1)r

Nc � 2

�
� 2r�2Nc


(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2

�
,

d(r)3 = 2r�1Nc

"
(3Nc + 2)r

Nc + 2
+

(3Nc � 2)r

Nc � 2
� (2Nc)

r+1

N2
c � 4

#
,

d(r)4 = 23r�1
⇥
(Nc + 1)r � (Nc � 1)r

⇤
� 2r�1

⇥
(3Nc + 2)r � (3Nc � 2)r

⇤
,

d(r)5 = 2r (C1 + C2)


Nc + 2

Nc + 1
(3Nc + 2)r � Nc � 2

Nc � 1
(3Nc � 2)r � 2N r+1

c

N2
c � 1

�

� 2r�1Nc

3

⇥
(Nc + 4) (3Nc + 2)r + (Nc � 4) (3Nc � 2)r � (2Nc)

r+1 ⇤ ,

d(r)6 = 23r+1C1C2

⇥
(Nc + 1)r�1 + (Nc � 1)r�1 ⇤ (1� �r0)

� 2r+1C1C2


(3Nc + 2)r

Nc + 1
+

(3Nc � 2)r

Nc � 1
� 2N r+1

c

N2
c � 1

�
.

(53)

Relations (51), (44) and (53) represent our final solution for the color structures Crn.

2.4 Initial-state partons in the fundamental representation

The general result (51) simplifies drastically if particles 1 and 2 both transform in the (anti-
)fundamental representation of SU(Nc), because we can then use the relation (for i = 1, 2)

{T a
i ,T

b
i } =

1

Nc
�ab + �i dabc T

c
i , (54)

where �i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. [Shouldn’t
this be the other way around?] In this case, the basis operators involving symmetric products
of two or three color generators can be simplified. We obtain

O
(j)
1 = (T1 � T2) · Tj �

Nc

2
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
2 =

N2
c � 4

Nc
(�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
3 = � 1

Nc
(T1 � T2) · Tj + (�1 � �2) dabc T

a
1 T

b
2 T

c
j ,

O
(j)
4 = �N2

c � 1

Nc
(T1 � T2) · Tj ,

(55)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)
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linearly independent color structures must be generalized to

S1 = fabefcde {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S2 = dadedbce {T b
1 ,T

c
1 } {T a

2 ,T
d
2 } ,

S3 = dadedbce
h
T

a
2

�
T

b
1 T

c
1 T

d
1

�
+
+ (1 $ 2)

i
,

S4 = {T a
1 ,T

b
1 } {T a

2 ,T
b
2 } ,

S5 = T1 · T2 ,

S6 = 1 .

(49)

In other words, the linear combinations of the di↵erent structures in each line of (45) are
broken up in their substructures. With this generalization, we obtain the mappings

S1 ! 8Nc S1 + 2Nc S2 + 8S4 + 32C1C2 S6 ,

S2 ! 4Nc S2 ,

S3 ! 4Nc S3 ,

S4 ! 8S1 + 8Nc S4 ,

S5 ! 4Nc S5 ,

S6 ! 0 .

(50)

Therefore, the basis {Si} closes under repeated application of �c.
At this point, we obtain the final result

Crn = �256⇡2 (4Nc)
n�r

"
M+2X

j=3

Jj

4X

i=1

c(r)i

⌦
H2!M O

(j)
i

↵
� J12

6X

i=1

d(r)i

⌦
H2!M Si

↵
#
, (51)

where the basis operators have been defined in (40) and (49). It follows from (21) that the

coe�cients d(r)i vanish for r = 0. We find that these coe�cients obey the recurrence relations

d(s+1)
1 = 2Nc c

(s)
1 + 4c(s)3 + 8Nc d

(s)
1 + 8d(s)4 ,

d(s+1)
2 = Nc c

(s)
1 + 2Nc d

(s)
1 + 4Nc d

(s)
2 ,

d(s+1)
3 = 2Nc c

(s)
1 + 4Nc d

(s)
3 ,

d(s+1)
4 = 4c(s)1 + 2Nc c

(s)
3 + 8d(s)1 + 8Nc d

(s)
4 ,

d(s+1)
5 = 4 (C1 + C2)

h
4c(s)1 +Nc c

(s)
3 �Nc c

(s)
4

i
� 2Nc (N2

c + 8)

3
c(s)1 � 4N2

c c
(s)
3 + 4Nc d

(s)
5 ,

d(s+1)
6 = 8C1C2

h
2c(s)1 �Nc c

(s)
4 + 4d(s)1

i
.

(52)
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define � = Vm + Rm. The collinear singularities in the soft anomalous dimension are encoded in the
quantity

�c =
X

i=1,2

4
⇥
Ci 1� Ti,L � Ti,R �(nm+1 � ni)

⇤
, (12)

which enters the anomalous dimension multiplied by ln(µ2
/ŝ), where

p
ŝ = Q is the partonic center-

of-mass energy. When inserted into (8) this gives rise to double logarithms, which are the source of the
SLLs. All final-state collinear singularities cancel between real and virtual contributions, and for this
reason only the initial-state pieces (with i = 1, 2) must be kept. The cancellation for the initial-state
terms is spoiled by the complex Coulomb phases in (3), which are contained in [17]

V G = �8i⇡ (T1,L · T2,L � T1,R · T2,R) . (13)

Color conservation implies that these phases are only relevant for processes involving (at least) two
colored partons in the initial state. The color generators Ti,L act on the amplitude and hence multiply
the hard functions Hm from the left, while the generators Tj,R act on the conjugate amplitude and
stand on the right of Hm. The color matrices in the virtual part act on the color indices of the m

partons, Ti · Tj =
P

a
T a

i
T a

j
, and Ti · Ti = Ci 1 is the quadratic Casimir operator of parton i. The

color matrices in the real-emission terms Rm and in the second term in (12) are di↵erent. They take
an amplitude with m partons and map it to an amplitude with (m + 1) partons. Explicitly, we have
Hm Ti,L � Tj,R = T a

i
Hm T ã

j
, where the color indices a and ã refer to the emitted gluon. We use the

symbol � to indicate the presence of the additional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act on these indices.

Collinear safely, the fact that the singularities associated with real and virtual collinear emissions
cancel against each other, ensures that under the color trace in (8) the operator �c vanishes whenever
it stands left to the 1. Combined with the fact that the commutator [�c

,�] vanishes under the trace
in (8), this implies that Sudakov double logarithms arise only in the presence of the Coulomb phases
V G. It follows that for a given 2 ! 2 scattering process the SLL at (3 + n)th order in perturbation
theory is associated with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G �⌦ 1

↵
, (14)

where 0  r  n. Each insertion of �c gives rise to a double logarithm. This explains why the SLLs
first appear at four-loop order. However, the three-loop term (n = 0) originates from the same color
structures and is numerically significant, even though it only involves the imaginary part ⇡ = | ln(�1)|
of the large logarithm. Neglecting the running of the coupling ↵s, setting µh = Q =

p
ŝ and µs = Q0,

and evaluating the integrals over µ arising in the Taylor expansion of the matrix exponential in (8),
we find for the contribution of SLLs to the cross section

�SLL = �Born

1X

n=0

⇣
↵s

4⇡

⌘
n+3

L
2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn , (15)

where L = ln(Q/Q0). Starting from four-loop order two large logarithms per loop arise.
For the simplest case of quark-initiated 2 ! 2 scattering, we have succeeded to evaluate the color

traces Crn in closed form in terms of only three non-trivial color structures [50]. The result reads

Crn = 28�r
⇡
2 (4Nc)

n

⇢ X

j=3,4

Jj

⌦
H4

⇥
(T2 � T1) · Tj + 2r�1

Nc (�1 � �2) dabc T
a

1 T b

2 T
c

j

⇤↵

+ 2 (1 � �r0) J2
⌦
H4

⇥
CF + (2r � 1)T1 · T2

⇤↵�
,

(16)

where �i = 1 for an initial-state antiquark and �i = �1 for an initial-state quark. The sum in the
first term runs over the final-state partons. The structure H4 is normalized such that hH4i = 1. All
information about the phase-space restrictions is contained in the angular integrals

Jj =

Z
d⌦(nk)

4⇡

⇣
W

k

1j � W
k

2j

⌘
⇥veto(nk) ; with W

k

ij =
ni · nj

ni · nk nj · nk

, (17)
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4

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we

consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three
non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)
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for all “cusp terms” generating double logarithms in (5.6), and

Z 1

y

dx

x
!

Z 1

y

dx

x


1 +

↵s(µh)

4⇡

✓
�
cusp
1

�
cusp
0

�
�1

�0

◆
1

x
+ . . .

�
(5.10)

for the two Glauber terms. In the approximation where one works with a fixed coupling

↵s(µ̄), as in (5.4), one would obtain

Irn(µh, µs)
���
no running

=

✓
↵s(µ̄)

4⇡

◆
n+3 

1 +
�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�n+2 (�4)n n!

(2n+ 3)!

(2r)!

4r (r!)2
ln2n+3

✓
µh

µs

◆
.

(5.11)

To approximately take this e↵ect into account in our numerical results presented in Sec-

tion 7, we will simply replace

↵s(µ̄) !


1 +

�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�
↵s(µ̄) (5.12)

in the fixed-order results. For the results obtained using a running coupling, we will

multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated

at µ̄ =
p
QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically

this has the e↵ect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary

2 ! M process in Section 6. While the resulting expressions for specific partonic channels

can be lengthy, we find that in all cases the dependence on r and n can be factorized in

the general form

Crn = (�cusp0 Nc)
n


k0 �r0 +

6X

i=1

ki v
r

i

�
, (5.13)

with �
cusp
0 = 4 and process-dependent coe�cients ki and parameters

v1 =
1

2
, v2 = 1 , v3,4 =

3Nc ± 2

2Nc

, v5,6 =
2 (Nc ± 1)

Nc

, (5.14)

where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of �c acting

on the space of color structures, see Section 6. Neglecting the running of the coupling, as

is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple

expression for the integrals Irn. Using this expression and the power-like dependence of

Crn on r, we find that the SLL contribution to the partonic cross section is given by the

double sum

�̂
SLL
2!M =

1X

n=0

nX

r=0

Irn(µh, µs)Crn =

✓
↵s(µ̄)

4⇡

◆3 1

6
ln3

✓
µh

µs

◆
k0⌃0(w) +

6X

i=1

ki⌃(vi, w)

�
,

(5.15)

where

w =
Nc↵s(µ̄)

⇡
ln2

✓
µh

µs

◆
(5.16)

– 28 –

v0 = 0 ,
<latexit sha1_base64="0zMJ+7mD8jCBYY2MpZRvCPFZec4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBQym7VdCLUPTisYL9kHYp2TTbhibZJckWytJf4cWDIl79Od78N6btHrT1wcDjvRlm5gUxZ9q47reTW1vf2NzKbxd2dvf2D4qHR00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHdzG+NqdIsko9mElNf4IFkISPYWOlp3HNvXNQtl3vFkltx50CrxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp9NCN9E0xmSEB7RjqcSCaj+dHzxFZ1bpozBStqRBc/X3RIqF1hMR2E6BzVAvezPxP6+TmPDaT5mME0MlWSwKE45MhGbfoz5TlBg+sQQTxeytiAyxwsTYjAo2BG/55VXSrFa8i0r14bJUu83iyMMJnMI5eHAFNbiHOjSAgIBneIU3RzkvzrvzsWjNOdnMMfyB8/kD1fGPHg==</latexit>

0.05 0.10 0.50 1 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Behavior of the functions ⌃(v, w) for di↵erent values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

much weaker for the SLLs. We will come back to this after we analyze the color traces for

a few simple processes.

The functional form of ⌃(v, w) for two di↵erent values of v is illustrated in Figure 7,

where we also show the perturbative expansion up to the eighth order in w (dotted lines)

and the asymptotic form (5.27) (dashed line). Note that in the phenomenologically inter-

esting region w & 1 the convergence of the Taylor series (5.20) is slow. In Figure 8 we show

the functions ⌃(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly

universal. As discussed in Section 7, this induces cancellations that strongly reduce the

super-leading e↵ects in 2 ! 0 and 2 ! 1 processes, for which the results can be expressed

in terms of di↵erences of ⌃(vi, w) functions belonging to di↵erent eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under

the color trace in (4.6) by their commutator [V G
,�]. Introducing the abbreviation

H = H2!M (�c)r V G (�c)n�r
, (6.1)

we find after a straightforward calculation

H [V G
,�] = �16⇡fabc

X

i,j

(�i1 � �i2)

⇥

⇢h⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘
H+H

⇣
T

a

1 T
b

2 T
c

j + T
c

j T
a

1 T
b

2

⌘i Z
d⌦(nk0)

4⇡
W

k0

ij

� 2
⇣
T

a

1 T
b

2 HT
c

j + T
c

j HT
a

1 T
b

2

⌘
W

k0

ij ⇥hard(nk0)

�
. (6.2)
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Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain

⌃(v, w) =
3

2z
p
w


4⇡ T

✓
p
2 z,

p
w

z

◆
�

p
⇡ z erf (

p
vw)

p
vw

+

p
⇡ e

�w erf(z)
p
w

+⇡ erf
�p

w
�
erf(z) + 2 arccos

✓
1
p
v

◆
� ⇡

�
,

(5.25)

with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2

⌘
+

3

4w2
+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding

⌃(v, w) =
3 arctan

�p
v � 1

�
p
v � 1w

�
3
p
⇡

2
p
v w3/2

+O(w�2) . (5.27)

Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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for all “cusp terms” generating double logarithms in (5.6), and

Z 1

y

dx

x
!

Z 1

y

dx

x


1 +

↵s(µh)

4⇡

✓
�
cusp
1

�
cusp
0

�
�1

�0

◆
1

x
+ . . .

�
(5.10)

for the two Glauber terms. In the approximation where one works with a fixed coupling

↵s(µ̄), as in (5.4), one would obtain

Irn(µh, µs)
���
no running

=

✓
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cusp
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To approximately take this e↵ect into account in our numerical results presented in Sec-

tion 7, we will simply replace

↵s(µ̄) !


1 +

�
cusp
1

�
cusp
0

↵s(µ̄)

4⇡

�
↵s(µ̄) (5.12)

in the fixed-order results. For the results obtained using a running coupling, we will

multiply the integrals Irn in (5.6) with the same factor to the (3 + n)-th power evaluated

at µ̄ =
p
QQ0, to avoid reevaluating the integrals in (5.6) according to (5.9). Numerically

this has the e↵ect of increasing the running coupling by about six percent.

5.2 Resummation and asymptotic behavior of the super-leading logarithms

We will derive an exact, closed-form expression for the color traces Crn for an arbitrary

2 ! M process in Section 6. While the resulting expressions for specific partonic channels

can be lengthy, we find that in all cases the dependence on r and n can be factorized in

the general form

Crn = (�cusp0 Nc)
n


k0 �r0 +

6X

i=1

ki v
r

i

�
, (5.13)

with �
cusp
0 = 4 and process-dependent coe�cients ki and parameters

v1 =
1

2
, v2 = 1 , v3,4 =

3Nc ± 2

2Nc

, v5,6 =
2 (Nc ± 1)

Nc

, (5.14)

where v3 and v5 correspond to the plus signs. These vi arise as eigenvalues of �c acting

on the space of color structures, see Section 6. Neglecting the running of the coupling, as

is formally permitted at strict double-logarithmic accuracy, we derived in (5.4) a simple

expression for the integrals Irn. Using this expression and the power-like dependence of

Crn on r, we find that the SLL contribution to the partonic cross section is given by the

double sum

�̂
SLL
2!M =
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Figure 8. Behavior of the functions ⌃(v, w) for di↵erent values of v corresponding to the eigenvalues
in (5.14). Darker colors correspond to larger values of v.

much weaker for the SLLs. We will come back to this after we analyze the color traces for

a few simple processes.

The functional form of ⌃(v, w) for two di↵erent values of v is illustrated in Figure 7,

where we also show the perturbative expansion up to the eighth order in w (dotted lines)

and the asymptotic form (5.27) (dashed line). Note that in the phenomenologically inter-

esting region w & 1 the convergence of the Taylor series (5.20) is slow. In Figure 8 we show

the functions ⌃(v, w) for all relevant eigenvalues vi. We observe that the shape is fairly

universal. As discussed in Section 7, this induces cancellations that strongly reduce the

super-leading e↵ects in 2 ! 0 and 2 ! 1 processes, for which the results can be expressed

in terms of di↵erences of ⌃(vi, w) functions belonging to di↵erent eigenvalues.

6 Evaluation of the color traces

The second relation in (4.5) implies that we can replace the last two color operators under

the color trace in (4.6) by their commutator [V G
,�]. Introducing the abbreviation

H = H2!M (�c)r V G (�c)n�r
, (6.1)

we find after a straightforward calculation
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Figure 7. Plot of the function ⌃(v, w) for the largest parameter v5 and the smallest non-zero value
v1. The full result is shown as a solid line. The red dotted lines show the perturbative expansion
up to the eighth order in w. The blue dashed line is the large-w asymptotics shown in (5.27).

It is possible to carry out the integral in (5.23) and obtain a representation in terms of the

Owen T -function, which has an implementation in Mathematica. We obtain

⌃(v, w) =
3

2z
p
w


4⇡ T

✓
p
2 z,

p
w

z

◆
�

p
⇡ z erf (

p
vw)

p
vw

+

p
⇡ e

�w erf(z)
p
w

+⇡ erf
�p

w
�
erf(z) + 2 arccos

✓
1
p
v

◆
� ⇡

�
,

(5.25)

with z =
p

(v � 1 + i")w, where the i" prescription is needed for the analytic continuation

to v < 1.

It will be useful to derive the asymptotic behavior of the function ⌃(v, w) in the limit

w ! 1. For ⌃0(w) we find from (5.17)

⌃0(w) =
3

2w

⇣
ln(4w) + �E � 2

⌘
+

3

4w2
+O(w�3) . (5.26)

For the general case v 6= 0, we can derive the asymptotic behavior from (5.23), finding

⌃(v, w) =
3 arctan
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3
p
⇡

2
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v w3/2

+O(w�2) . (5.27)

Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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Note that the limits v ! 0 and w ! 1 do not commute, and hence one does not recover

(5.26) from (5.27). It is interesting to contrast the asymptotic form of ⌃(v, w) and ⌃0(w)

to the standard double-logarithmic behavior, which in the variable w translates to e
�cw,

where the coe�cient c of the double logarithm depends on the process under consideration.

The standard behavior leads to the exponential Sudakov suppression. The suppression is
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Figure 15. Numerical results for super-leading contributions to partonic qq
0
! qq

0 (top row) and
qq̄ ! q

0
q̄
0 (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic

center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

theory can di↵er quite substantially between di↵erent channels. For example, in both

qq̄ ! gg and gg ! qq̄ scattering (Figure 16), the three-loop contribution (n = 0) yields

the dominant correction to the cross sections.6 In other cases, such as gg ! gg and, to a

lesser extent, qg ! qg scattering (Figure 17), also higher-loop contributions can be very

large, and significant cancellations among them take place, so our resummation formalism

is crucial to obtain reliable results.
6
In the strict sense of the word, these n = 0 terms are not a “super-leading” e↵ect, even though they

result from two Glauber exchanges.
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix

( eH4)IJ = M
(I)
4 M

(J)⇤
4 . (7.21)

The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.
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Figure 16. Numerical results for super-leading contributions to partonic qq̄ ! gg (top row) and
gg ! qq̄ (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

Once we leave the kinematic region of small-angle scattering, the calculation of the

SLL terms becomes more complicated. An interesting new feature of 2 ! 2 hard-scattering

processes is that there are in general several di↵erent color configurations which contribute

to a given process. Choosing an orthonormal basis {|BIi} of color configurations, the

amplitudes in a given channel can be decomposed as

|M4i =
X

I

M
(I)
4 |BIi , (7.20)
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Rewrite the evolution kernel (ordered exponential) for the SLLs 

▸ Expand out all terms except the log-enhanced soft-collinear piece: 

where:

of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be
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operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd

8

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES (PART 1)

cusp anomalous dimension

µh = Q
<latexit sha1_base64="zfNk112YhJF4kzvGr5lCEy8PMV4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6EUIevGYgHlAsoTZyWwyZB7LzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXlHBmrO9/e2vrG5tb24Wd4u7e/sFh6ei4ZVSqCW0SxZXuRNhQziRtWmY57SSaYhFx2o7G9zO//US1YUo+2klCQ4GHksWMYOukdk+k/dFto18q+xV/DrRKgpyUIUe9X/rqDRRJBZWWcGxMN/ATG2ZYW0Y4nRZ7qaEJJmM8pF1HJRbUhNn83Ck6d8oAxUq7khbN1d8TGRbGTETkOgW2I7PszcT/vG5q45swYzJJLZVksShOObIKzX5HA6YpsXziCCaauVsRGWGNiXUJFV0IwfLLq6RVrQSXlWrjqly7y+MowCmcwQUEcA01eIA6NIHAGJ7hFd68xHvx3r2PReual8+cwB94nz/+bI9X</latexit>

P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2024) 



Matthias Neubert  — JGU Mainz

A MORE POWERFUL FORMALISM

28

Rewrite the evolution kernel (ordered exponential) for the SLLs 

▸ Expand out all terms except the log-enhanced soft-collinear piece: 

▸ All double-logarithmic terms are exponentiated! 

▸ One scale integral for each insertion of        and 

▸ Easy to include running-coupling effects 

▸ Asymptotic behavior of                  determines the asymptotic behavior 
of the resummed series 
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where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp
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µ
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↵s(µ)

�
ln
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µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
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dµl+1

µl+1

"
lY
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�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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Introduce a color basis 

▸ Simplest case of (anti-)quark-initiated scattering processes: 

where   for an initial-state quark (anti-quark), and all 
structures are normalized such that their trace with a hard function is 
at most of  in the large-  limit

σi = − 1 (+1)

O(N0
c ) Nc

values of l in (3.4) contribute to the Glauber series. In leading logarithmic approximation,
the contribution of the Glauber series to the cross section in (2.1) is then obtained in the
form

�SLL+G
2!M

(Q0) =
X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⇥
⌦
H2!M({n}, s, ⇠1, ⇠2, µh)USLL+G({n}, µh, µs)⌦ 1

↵
,

(3.6)

where µh ⇠ Q and µs ⇠ Q0.
A priori, the iterated insertions of the color operators �c and V

G in the evolution
operator generate increasingly more complicated color structures inside the color trace,
where each factor of the real-emission term in �c in (2.7) adds a collinear gluon with its
own color space. However, it has been shown in [18, 19] that the infinite series of SLLs
can be reduced to a finite set of basis operators {Xi} in color space. Remarkably, this
statement remains true if higher-order terms in the Glauber series are included. The basis
contains 5 operators for partonic scattering processes containing quarks and/or anti-quarks
in the initial state [26]. For gluon–gluon and quark–gluon initiated scattering processes,
the basis contains 20 and 14 operators, respectively [27].

In this section, we will discuss the simplest case of quark-initiated scattering in detail,
for which the initial-state partons in the hard scattering are of the form q1q2, q̄1q̄2, or q1q̄2,
where the flavors can be di↵erent. The cases of quark–gluon or gluon–gluon scattering have
been considered in [27] and are discussed in Appendix A. For quark-initiated scattering, one
finds that under the color trace, the product USLL+G({n}, µh, µs) ⌦ 1 can be decomposed
into the five color structures [18, 26]

X1 =
X

j>2

Jj if
abc

T
a

1 T
b

2 T
c

j
, X4 =

1

Nc

J12 T1 · T2 ,

X2 =
X

j>2

Jj (�1 � �2) d
abc

T
a

1 T
b

2 T
c

j
, X5 = J12 1 ,

X3 =
1

Nc

X

j>2

Jj (T1 � T2) · Tj ,

(3.7)

times coe�cients accounting for the dependence on the matching scales µh and µs. Here
�i = 1 for an initial-state anti-quark and �i = �1 for an initial-state quark. The sum over
j in the first three structures extends over the final-state partons of the Born process. We
have defined the angular integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j �W k

2j

�
⇥veto(nk) ,

J12 =

Z
d⌦(nk)

4⇡
W k

12 ⇥veto(nk) ,

(3.8)

which contain the information about the directions of the hard partons in the process.
These integrals describe the emission of a soft gluon (emitted from parents 1, 2, or j) into
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Introduce a color basis 

▸ Represent      ,        and            as objects acting in that basis: 

Recall:

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
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corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that
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with

Positive eigenvalues:  {0, 1/2, 1} 
(additional ones for initial-state gluons)
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Introduce a color basis 

▸ Represent      ,        and            as objects acting in that basis: 

Recall:

The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions

7

of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
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(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =
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BBBBBB@
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0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form
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⇥
Uc(
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⇤
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⇥
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(3.15)
with
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vNc
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µ
�cusp
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↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that
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where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@
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0 0 Uc(
1
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⇥
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1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
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⇤
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CCCCCCA
,
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with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
c(µi, µj) =

0

BBBBBB@
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N
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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where

(l)
SLL(µh, µs) = 16 (i⇡)l N l�1

c

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1
c(µh, µ1)

⇥

"
l�1Y

i=1

�cusp
�
↵s(µi)

�
G

c(µi, µi+1)

#
�cusp

�
↵s(µl)

� ↵s(µl+1)

4⇡
,

(3.12)

and

c(µi, µj) = exp


Nc I�

c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.13)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (3.14)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.

The matrix exponential (3.13) now takes the form

c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with

Uc(v;µi, µj) = exp


vNc

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
. (3.16)

This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that

G
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0

BBBBBB@

0 �2�qq̄
N

2
c�4
N2

c
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4
N2
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1
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�
1
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0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
.

(3.17)
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and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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The three operators in (2.6) satisfy the identities [18]

[�c,�] = 0 ,
⌦
H�c

⌦ 1
↵
= 0 ,

⌦
HV

G
⌦ 1

↵
= 0 , (2.11)

where H can be an arbitrary hard function. It follows that if at least one particle in the
initial state is color neutral, i.e. there is no Glauber operator V

G, the cross section does
not receive double-logarithmic contributions. The series of SLLs is obtained from terms
involving a single emission operator �, two Glauber phases (to obtain a real cross section),
and an arbitrary number of insertions of the collinear-emission operator, leading to color
traces of the form [18]

Crn =
⌦
H2!M (�c)r V G (�c)n�r

V
G �⌦ 1

↵
, (2.12)

where 0  r  n. The cyclicity of the color trace implies that the virtual- and real-emission
contributions in the operator �⌦ 1 add up to produce the angular integral

Z
d⌦(nk)

4⇡
W

k

ij
[1�⇥hard(nk)] =

Z
d⌦(nk)

4⇡
W k

ij
⇥veto(nk) , (2.13)

corresponding to an emission into the veto region. At least one such soft emission is required
to obtain a sensitivity to the veto scaleQ0, without which there would be no large logarithms
in the cross section. Note that on the right-hand side the subtraction terms in (2.10) can
be omitted, because the direction nk of the emitted gluon is never collinear with n1 or n2.

The color traces Crn are associated with terms contributing at O(↵n+3
s

L2n+3) in pertur-
bation theory, where L = ln(Q/Q0) � 1 is the large logarithm. Performing the relevant
scale integrals in (2.4) using a fixed coupling ↵s(µ̄), one obtains the result (1.1). The color
traces associated with higher-order terms in the Glauber series are generalizations of the
traces shown in (2.12), with additional insertions of Glauber operators V G intertwined with
insertions of powers of the collinear-emission operator �c, see relation (3.1) in [26].

3 Resummation in RG-improved perturbation theory

In previous work [18, 19], the evolution operator (2.3) was expanded in a power series,
see (2.4), and it was shown that at a given order in perturbation theory the terms with
the largest number of double-logarithmic contributions (from insertions of �c) are associ-
ated with the color traces Crn in (2.12). For fixed values of r and n, the relevant scale
integrals Irn were evaluated, and the series of SLLs was then expressed as a double sumP1

n=0

P
n

r=0 IrnCrn. Using a fixed coupling ↵s(µ̄) in the evaluation of the integrals Irn, the
double sum was expressed in closed form in terms of Kampé de Fériet functions. However,
for a running coupling, the all-order resummation has not yet been achieved.

In the present work, we develop an alternative resummation approach, in which all
double-logarithmic corrections are exponentiated from the beginning. Starting from the
series expansion (2.4), and noting that with the initial conditions (2.5) for the low-energy
matrix elements a non-zero color trace can only be obtained if the two right-most insertions
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of �H are proportional to V
G �, it is not di�cult to show that the infinite series of the

SLLs is generated by the evolution operator [27]

USLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1

Z
µ1

µs

dµ2

µ2

Z
µ2

µs

dµ3

µ3

⇥Uc(µh, µ1) �cusp
�
↵s(µ1)

�
V

G
Uc(µ1, µ2) �cusp

�
↵s(µ2)

�
V

G
↵s(µ3)

4⇡
� ,

(3.1)
where we have defined the generalized Sudakov operator

Uc(µi, µj) = exp

"
�c

Z
µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

#
. (3.2)

No path-ordering is required in this expression since the matrix structure in the exponent
is scale-independent. Expression (3.1) can straightforwardly be generalized to the case of
additional Glauber-operator insertions, where for each factor of V G one encounters a new
scale integral. We define

U
(l)
SLL({n}, µh, µs) =

Z
µh

µs

dµ1

µ1
. . .

Z
µl

µs

dµl+1

µl+1

"
lY

i=1

Uc(µi�1, µi) �cusp
�
↵s(µi)

�
V

G

#
↵s(µl+1)

4⇡
� ,

(3.3)
where µ0 ⌘ µh, and the terms in the product are ordered from left to right according to
increasing values of i. Note that � carries an implicit dependence on the directions {n} of
the final-state particles. These integrals generate the entire Glauber series,

USLL+G({n}, µh, µs) =
1X

l=1

U
(l)
SLL({n}, µh, µs) . (3.4)

where we made the dependence on {n} explicit.
Since QCD cross sections are real in the Born approximation, the sum over l can be

restricted to even numbers l = 2` in this case, where ` denotes the number of Glauber-
operator pairs. Relation (3.3) then provides an alternative way in which to reproduce the
results obtained in [26,27]. However, it has been pointed out in [21] that cross sections for
scattering processes involving the massive electroweak gauge bosons can be complex even
at tree level. In general, if the Born-level scattering amplitude is of the form |M2!Mi =

|M
(r)
2!M

i + i|M(i)
2!M

i, where the two terms have di↵erent color structures, then the hard
function has the structure (apart from phase-space integrations indicated by the ⇠ symbol)

H2!M ⇠ |M
(r)
2!M

ihM
(r)
2!M

|+ |M
(i)
2!M

ihM
(i)
2!M

|

+ i
⇣
|M

(i)
2!M

ihM
(r)
2!M

|� |M
(r)
2!M

ihM
(i)
2!M

|

⌘
,

(3.5)

and contains a non-vanishing imaginary part. In this case, SLLs can be generated already
with a single insertion of the Glauber operator V G, and more generally both even and odd
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Introduce a color basis 

▸ This yields: 

with:
5 process-dependent color traces
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1 Equations

�SLL
2!M(Q0) =

X

partonic channels

Z
d⇠1

Z
d⇠2 f1(⇠1, µs) f2(⇠2, µs)

⌦
H2!M(µh)X

T
↵

SLLµh, µs) &

(1.1)
where

SLL(µh, µs) = 16i⇡Nc

Z µh

µs

dµ1

µ1

Z µ1

µs

dµ2

µ2

Z µ2

µs

dµ3

µ3

↵s(µ3)

4⇡

⇥ c(µh, µ1) �cusp
�
↵s(µ1)

�
G

c(µ1, µ2) �cusp
�
↵s(µ2)

�
(1.2)

and

c(µi, µj) = exp


Nc I�

c

Z µi

µj

dµ

µ
�cusp

�
↵s(µ)

�
ln

µ2

µ2
h

�
(1.3)

The explicit forms of the matrices I�c and G for quark-initiated scattering read [?]

I�c =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1
2 0 0

0 0 �1 1 0

0 0 �
CF
Nc

0 0

1

CCCCCCA
, G =

0

BBBBBB@

0 �2�qq̄
N2

c�4
N2

c

4
N2

c
0 0

�
1
2 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

CCCCCCA
, (1.4)

where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.
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Z xs

1

dx2
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dx1
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�
1
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Uc(
1
2 , 1;µh, µ1, µ2)

2
⇥
Uc(

1
2 , 1;µh, µ1, µ2)� Uc(1;µh, µ2)
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Uc(1;µ1, µ2)� Uc(

1
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w =
Nc ↵s(µ̄)

⇡
L2 (1.3)

SLL(µh, µs) & = �
2⇡2

3
Nc

⇣↵s

⇡
L
⌘3

0

BBBBBB@
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�
1
2 ⌃(1, 1;w)

⌃(12 , 1;w)

2
⇥
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2CF
Nc

⇥
⌃(0, 1;w)� ⌃(12 , 1;w)

⇤

1

CCCCCCA
, (1.4)

In the following, we collect explicit expressions for the relevant functions as well as their
asymptotic expansions for w � 1.

1
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Perform the scale integrals in terms of the running coupling 

▸ Generalized Sudakov factors in RG-improved perturbation theory: 

 with                                and:        

▸ Encounter products of two Sudakov factors:                     

The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
non-zero. Using the fact that the vector & is an eigenvector of I�c with eigenvalue 1, which is
true irrespective of the nature of the initial-state partons [18], the rightmost factor always
results in Uc(1;µl�1, µl). Note also that the (1,3) entry of the product G

c(µi, µj), which
contains the only contribution corresponding to the eigenvalue 1

2 of �
c, is absent in the large-

Nc limit. This fact greatly simplifies the treatment of higher-order terms in the Glauber
series in the large-Nc limit [28].

In the above result, all double-logarithmic e↵ects are resummed into the Sudakov factors
Uc(v;µi, µj) with eigenvalues v 2 {

1
2 , 1}. It is straightforward to evaluate these factors at

leading order in RG-improved perturbation theory. To this end, we change variables from
µ to the running coupling ↵s(µ) via d↵s(µ)/d lnµ = �

�
↵s(µ)

�
and use the perturbative
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with expansion coe�cients given in Appendix B. We find
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(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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The explicit forms of the matrices I�c and G for quark-initiated scattering read [26]
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where �qq̄ ⌘
1
4 (�1 � �2)2 equals 1 for the qq̄0 initial states, and 0 for qq0 or q̄q̄0 initial states.
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c(µi, µj) =

0

BBBBBB@

Uc(1;µi, µj) 0 0 0 0

0 Uc(1;µi, µj) 0 0 0

0 0 Uc(
1
2 ;µi, µj) 0 0

0 0 2
⇥
Uc(

1
2 ;µi, µj)� Uc(1;µi, µj)

⇤
Uc(1;µi, µj) 0

0 0 2CF
Nc

⇥
1� Uc(

1
2 ;µi, µj)

⇤
0 1

1

CCCCCCA
,

(3.15)
with
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This function satisfies 0 < Uc(v;µi, µj)  1, where the value 1 is obtained only for µi = µj

or v = 0. It is instructive to explore the matrix structure of the result (3.12) in more detail,
using that
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(3.17)

11

The eigenvalue 0 does not appear in this expression and, therefore, can only contribute
through the leftmost factor c(µh, µ1) in (3.12). The multiplication with the vector &
in (3.11) projects out the first column of the product of (l � 1) such matrices. It follows
that for odd values of l only the first component of the resulting vector is non-zero, while
for even values of l the first component vanishes but the remaining four components are
non-zero. Using the fact that the vector & is an eigenvector of I�c with eigenvalue 1, which is
true irrespective of the nature of the initial-state partons [18], the rightmost factor always
results in Uc(1;µl�1, µl). Note also that the (1,3) entry of the product G

c(µi, µj), which
contains the only contribution corresponding to the eigenvalue 1

2 of �
c, is absent in the large-

Nc limit. This fact greatly simplifies the treatment of higher-order terms in the Glauber
series in the large-Nc limit [28].

In the above result, all double-logarithmic e↵ects are resummed into the Sudakov factors
Uc(v;µi, µj) with eigenvalues v 2 {

1
2 , 1}. It is straightforward to evaluate these factors at

leading order in RG-improved perturbation theory. To this end, we change variables from
µ to the running coupling ↵s(µ) via d↵s(µ)/d lnµ = �
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�
and use the perturbative

expansions of the QCD �-function and the cusp anomalous dimension,
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with expansion coe�cients given in Appendix B. We find
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(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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(3.19)

where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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where xi ⌘ ↵s(µi)/↵s(µh), and in the exponent it is important to keep the two-loop approx-
imations for the cusp anomalous dimension and the QCD �-function. For the special case
where µi = µh and v = 1 this result reduces to the well-known expression for the Sudakov
exponent S(µh, µj) encountered in applications of soft-collinear e↵ective theory [29]. We
note the useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (3.20)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (3.19) must be generalized if the lower scale lies below the top-
quark threshold (µj < µt).

In (3.19) we have expressed the Sudakov factor Uc(v;µi, µj) as a function of the variables
xi, xj. The remaining integrals in (3.12) can also be recast as integrals over the variables
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with expansion coe�cients given in Appendix B. We find

Uc(v;µi, µj) = exp
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(1.9)

where xi ⌘ ↵s(µi)/↵s(µh). In the exponent, it is important to keep the two-loop approxi-
mations for the cusp anomalous dimension and the �-function. For the special case µi = µh

and v = 1, this result reduces to the well-known expression for the Sudakov exponent
S(µh, µj) encountered in applications of soft-collinear e↵ective theory [?]. We note the
useful identities

Uc(v;µi, µj)Uc(v;µj, µk) = Uc(v;µi, µk) , Uc(0;µi, µj) = 1 , (1.10)

which can be used to simplify products of functions Uc(v;µi, µj). In Appendix B we also
show how the expression (1.9) must be generalized if the lower scale lies below the top-quark
threshold (µj < µt).

In (1.9) we have expressed the generalized Sudakov factor Uc(v;µi, µj) as a function of
xi and xj. The remaining integrals in (1.2) can also be recast as integrals over the variables
xi. Inverting the order of the integrals, we obtain
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#
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(1.11)

where we have already performed the integral over xl+1 and used the one-loop approximation
for the cusp anomalous dimension in the Glauber terms (with �0 = 4). This formula
accomplishes the resummation of the infinite series of terms involving l insertions of Glauber
operators at leading order in RG-improved perturbation theory. Introducing the shorthand
notation

Uc(v
(1), v(2);µh, µ1, µ2) ⌘ Uc(v

(1);µh, µ1)Uc(v
(2);µ1, µ2) (1.12)

we obtain for the first two terms

(1)
SLL(µh, µs) & =

16i⇡

�2
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1

dx1

x1
ln

xs

x1
Uc(1;µh, µ1) & , (1.13)

where the right-hand side is proportional to the vector &, i.e. only its first component is

3
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In the following, we collect explicit expressions for the relevant functions as well as their
asymptotic expansions for w � 1.
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In the following, we collect explicit expressions for the relevant functions as well as their
asymptotic expansions for w � 1.
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In the following, we collect explicit expressions for the relevant functions as well as their
asymptotic expansions for w � 1.
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Figure 17. Numerical results for super-leading contributions to partonic gg ! gg (top row) and
qg ! qg (bottom row) small-angle scattering as a function of the jet-veto scale Q0, at fixed partonic
center-of-mass energy Q = 1TeV and for a central rapidity gap with �Y = 2. The meaning of the
curves is the same as in Figure 11.

where the coe�cients M(I)
4 are functions of the kinematic invariants. The “unintegrated”

hard function (3.9) can then be represented by a matrix
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(J)⇤
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The one-loop hard functions for all 2 ! 2 parton processes have been compiled in [59].

The authors of [60] have extended these results to two-loop order and also provided a

Mathematica notebook to access the results. Due to the simple kinematics for 2 ! 2

scattering in the partonic center-of-mass system, we find from (2.1) and (2.16) that in the
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Figure 5: Numerical results for super-leading contributions to partonic qg ! qg forward (left)

and gg ! gg small-angle scattering (right) as a function of the jet-veto scale Q0. The meaning of

the curves and the yellow band is the same as in Figure 2.

7 Conclusions

This article advances the resummation of the Glauber series for non-global LHC observables
to be systematically performed in RG-improved perturbation theory. Compared to the
previous works [18, 19, 26, 27], including the running of the coupling ↵s(µ) constitutes an
important milestone in reliably estimating the perturbative uncertainties, and in providing
a systematically improvable framework for such contributions. This step is achieved by a
new strategy that involves treating the Glauber operators V G perturbatively and expanding
the evolution operator in (3.4) accordingly. Re-ordering this series results in the collection
of all double-logarithmic corrections in the evolution operator (3.2), which takes the form
of a matrix-valued Sudakov operator. This operator is no longer path-ordered but only
an ordinary matrix exponential, and its evaluation becomes straightforward with the help
of the color bases developed in [27]. The remaining task is then to obtain the relevant
coe�cient vectors. We have explicitly demonstrated this for the quark case in the main
text and for the more complicated case featuring gluons in the initial state in Appendix A.
When restricting to the super-leading logarithms, one can determine the coe�cients using
a process-independent set of operators, demonstrated in Appendix 6. In the large-Nc limit,
the matrix representation (3.17) simplifies, motivating a closer investigation [28].

The l-th term in the series of coe�cient vectors, where l denotes the number of Glauber-
operator insertions, contains l + 1 scale integrals, one of which can always be performed
straightforwardly. We evaluate the remaining l integrals numerically in leading-order RG-
improved perturbation theory, i.e. using the two-loop expressions of the cusp anomalous
dimension and the QCD �-function for the logarithmically enhanced terms. This is a
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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▸ Can collinear factorization violations be 
understood in a quantitative way?               
At what scale (  or ) do they occur?  Q0 ΛQCD
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▸ What are the implications for LHC 
phenomenology?

▸ Results are relevant for future improvements of parton showers with 
quantum interference

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES (PART 1)

Neubert Part B2 EFT4jets

ERC Advanced Grant 2022 – Part B2

2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

▸ Can collinear factorization violations be 
understood in a quantitative way?               
At what scale (  or ) do they occur?  Q0 ΛQCD


