

Improving HEP Simulation and Analyses with Invertible Neural Networks

- Seminar at University of Vienna -

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

January 9, 2024

AW /

AUSTRIAN CADEMY OI SCIENCES

We will have a lot more data in the near future.

- We will have $20-25 \times$ more data.
- \Rightarrow We want to understand every aspect of it based on 1st principles! (and find New Physics)

AUSTRIAN

SCIENCES

How do we understand the data based on 1st principles?

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

How do we understand the data based on 1st principles?

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

• (A lot of) high-precision simulations.

AUSTRIAN ACADEMY OF SCIENCES

How do we understand the data based on 1st principles?

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

- (A lot of) high-precision simulations.
- Analyzing high-dimensional data: Simulation-based Inference and data-driven Anomaly Searches.

AUSTRIAN

How do we understand the data based on 1st principles?

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

- (A lot of) high-precision simulations.
- Analyzing high-dimensional data: Simulation-based Inference and data-driven Anomaly Searches.

ML has impacted every aspect of the simulation chain, with one class of models being very powerful: **Normalizing Flows**

Claudius Krause (HEPHY Vienna)

USTRIAN

Normalizing Flows at the LHC

Normalizing Flows learn a change-of-coordinates efficiently.

Having access to the log-likelihood (LL) allows several training options:

- \Rightarrow Based on samples: via maximizing LL(samples).
- \Rightarrow Based on target function f(x): via matching p(x) to f(x).

NFs can also be used for inference: learn p(parameters|data).

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines
- Require a triangular Jacobian for faster evaluation. Gregory/Delbourgo [IMA J. of Num. An., '82]
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Durkan et al. [arXiv:1906.04032].

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines
- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

https://engineering.papercup.com/posts/normalizing-flows-part=2/5-40-45 do do

Durkan et al. [arXiv:1906.04032].

Gregory/Delbourgo [IMA J. of Num. An., '82]

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Normalizing Flows at the LHC

- NFs learn the parameters θ of a series of easy transformations. Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Each transformation is 1d & has an analytic Jacobian and inverse.
 - \Rightarrow We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters θ depend only on a subset of all other coordinates.

Autoregressive Blocks (MAF/IAF)

- Coordinates are transformed autoregressivly $\Rightarrow \theta_{x_i}(x_{j < i})$
- + Are mathematically "exact".
- Have a fast and a slow direction.

Bipartite Blocks (Coupling Layers)

• Coordinates are split in 2 sets, transforming each other

$$\Rightarrow \left| \begin{array}{cc} \theta_{x \in A}(x \in B) & \& & \theta_{x \in B}(x \in A) \end{array} \right|$$

- + Are equally fast in both directions.
- "Require" a min. number of blocks.

AUSTRIAN ACADEMY OF SCIENCES

Normalizing Flows attack Bottlenecks in the Analysis Chain

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC

Normalizing Flows increase the Sensitivity in our Analyses

Lattice QCD \Rightarrow improve MCMC proposals

Improving HEP Simulation and Analyses with INNs

Lattice QCD

AUSTRIAN ACADEMY OF SCIENCES

I: Phase Space integration uses Importance Sampling. $I = \int_0^1 f(\vec{x}) d\vec{x}$

$$I = \langle f(\vec{x}) \rangle_{x \sim \text{uniform}}$$

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC

8/40

AUSTRIAN

I: MadNIS — Neural Importance Sampling

Normalizing Flows at the LHC

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172, SciPost]

. DAW AUSTRIAN ACADEMY OF SCIENCES

I: MadNIS re-uses expensive matrix elements

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172, SciPost]

Normalizing Flows at the LHC

Heimel, CK et al. [2212.06172, SciPost]

Claudius Krause (HEPHY Vienna)

 $M_{e^+e^-}$ [GeV]

January 9, 2024

12 / 40

Claudius Krause (HEPHY Vienna)

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC

January 9, 2024

12/40

AUSTRIAN ACADEMY OF SCIENCES

• VEGAS initialization

• channel dropping

- stratified training
- buffered training

T. Heimel, N. Huetsch, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2311.01548]

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC

Improving HEP Simulation and Analyses with INNs

Lattice QCD

AUSTRIAN ACADEMY OF SCIENCES

II: Detector simulation is computationally expensive.

realism

AUSTRIAN ACADEMY OF SCIENCES

II: Detector simulation is computationally expensive.

realism

II: CALOFLOW uses the same calorimeter geometry as CALOGAN

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6

II: CALOFLOW uses the same calorimeter geometry as CALOGAN

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6

Normalizing Flows at the LHC

II: CALOFLOW uses the same calorimeter geometry as CALOGAN

• The GEANT4 configuration of CALOGAN is available at

https://github.com/hep-lbdl/CaloGAN

- We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]
- Showers of e^+ , γ , and π^+ (100k each)
- All are centered and perpendicular
- E_{inc} uniform in [1,100] GeV and given in addition to the energy deposits per voxel:

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

II: CALOFLOW uses a 2-step approach to learn $p(\vec{\mathcal{I}}|E_{inc})$.

Flow I learns $p_1(E_0, E_1, E_2|E_{inc})$

 $\Rightarrow\,$ is a Masked Autoregressive Flow, optimized using the log-likelihood.

Flow II learns $p_2(\vec{\mathcal{I}}|E_0, E_1, E_2, E_{inc})$ of normalized showers

• in CALOFLOW v1 (2106.05285 — called "teacher"):

- Masked Autoregressive Flow trained with log-likelihood
- \Rightarrow Slow in sampling ($\approx 500 \times$ slower than CALOGAN)

• in CALOFLOW v2 (2110.11377 — called "student"):

- Inverse Autoregressive Flow trained with Probability Density Distillation from teacher (log-likelihood prohibitive), i.e. matching IAF parameters to frozen MAF van den Oord et al.[1711.10433]
- \Rightarrow Fast in sampling ($\approx 500 \times$ faster than CALOFLOW v1)

II: A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish the two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) this.
- If this classifier is confused, we conclude $\Rightarrow p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$
- Even if not, the classifier extracts a lot of useful information. R. Das, CK, et al. [2305.16774]
- \Rightarrow This captures the full phase space incl. correlations.
- ? But why wasn't this used before?
- ⇒ Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]

AUSTRIAN CADEMY OI SCIENCES

II: CALOFLOW passes the "ultimate metric" test.

According to the Neyman-Pearson Lemma we have: $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if a classifier cannot distinguish data from generated samples.

AUC	Geant4 vs. CaloGAN	GEANT4 vs. (teacher) CALOFLOW v1	GEANT4 vs. (student) CALOFLOW v2	
e ⁺ low-lev	el 1.000(0)	0.870(2)	0.824(4)	
high-lev	vel 1.000(0)	0.795(1)	0.762(3)	
low-lev	el 1.000(0)	0.796(2)	0.760(3)	
high-lev	vel 1.000(0)	0.727(2)	0.739(2)	
π ⁺ low-lev	el 1.000(0)	0.755(3)	0.807(1)	
high-lev	vel 1.000(0)	0.888(1)	0.893(2)	

II: Sampling Speed: The Student beats the Teacher!

	CALOFLOW*		CALOGAN*	Geant4 [†]			
	teacher	student					
training	22+82 min	+ 480 min	210 min	0 min			
generation time per shower	36.2 ms	0.08 ms	0.07 ms	1772 ms			
on our TITAN V GPU ⁺ on the CPU of CaloGAN: Paganini de Oliveira Nachman [1712.10321.]							

II: CALOFLOW: Comparing Shower Averages: e^+ .

AUSTRIAN

ACADEMY OF SCIENCES

CALOGAN

HFPHY

INSTITUTE OF HIGH ENERGY PHYSICS

Claudius Krause (HEPHY Vienna)

AUSTRIAN ACADEMY OF SCIENCES

II: CALOFLOW: histograms: e^+ .

II: CALOFLOW: histograms: e^+ .

II: What else can we do with the likelihood?

Anomaly Detection.

AUSTRIAN

- Find anomalous showers, e.g. coming from multiple photons.
- Works "broader" than dedicated classifiers.

Inference.

• Find which E_{inc} maximizes $p(\text{shower}|E_{inc})$.

• Is prior independent.

Du, CK, Nachman, Pang, Shih [in prep.]

II: Going the next step: towards deployment in FastSimulation.

Have a rapidly evolving field: need a survey of current approaches on a common dataset!

\Rightarrow Fast Calorimeter Challenge 2022		https://calochallenge.github.io/homepage/		
		Michele Faucci Giannelli, Gregor Kasiec Dalila Salamani, David Shih,	zka, CK , Ben Nachman, and Anna Zaborowska	
• Dataset 1:	AtlFast3 trainig data	(γ : 368, π : 533 voxels)		
	[2109.02551, Comput.Softw.Big Sci.]	CALOFLOW works: CK	/Pang/Shih [2210.14245]	
• Dataset 2:	simulated detector	$(e^{-}: 6480 \text{ voxels})$	\Rightarrow need new ideas!	
• Dataset 3:	simulated detector	$(e^{-}: 40500 \text{ voxels})$	\Rightarrow need new ideas!	
Culturiation		han in Dama and at MI 4Iata	00 / NAT AT - 1- 00	

Submissions were presented at a workshop in Rome and at ML4Jets-22 / ML4Jets-23.

ALICTRIAN CADEMY O CUENCES

II: Larger datasets require new ideas — L2LFlows.

L2LFlows: Learn shower shapes one at a time, leveraging how the shower develops. • learns $p_1(E_1, E_2, E_3, \dots, E_{45}|E_{inc})$ \rightarrow how energy is distributed among layers. \bigcirc learns $p_i(\hat{\mathcal{I}}_i|E_i, E_{inc}, E_{i-k}, \hat{\mathcal{I}}_{i-k})$ \rightarrow how the shower in the layer *i* looks like.

. DAW

II: Larger datasets require new ideas — iCALOFLOW.

iCALOFLOW: Split learning $p(\vec{\mathcal{I}}|E_{inc})$ into 3 steps, leveraging the detector geometry. • learns $p_1(E_1, E_2, E_3, \dots, E_{45}|E_{inc}) \rightarrow$ how energy is distributed among layers. • learns $p_2(\mathcal{I}_1|E_1, E_{inc}) \rightarrow$ how the shower in the first layer looks like. • learns $p_3(\mathcal{I}_n|\mathcal{I}_{n-1}, n, E_n, E_{n-1}, E_{inc}) \rightarrow$ how the shower in layer *n* looks like, given layer n-1

WAC

AUSTRIAN

ACADEMY OF

II: iCALOFLOW: shows promising results.

II: The Fast Calorimeter Simulation Challenge 2022.

Final write-up is currently being prepared. It compares:

- high-level features (observables)
- low-level features (voxels) via classifiers
- time and memory usage
- ...

see C.Krause at ML4Jets 2023

Improving HEP Simulation and Analyses with INNs

Lattice QCD

III: How to look for New Physics at the LHC with few assumptions

Assumptions in Bump Hunts:

- signal is localized in *m*
- background in *m* is smooth
- \exists additional discriminating features x

Select events with

- Scan Signal Region (SR) across m
- Perform background fit and obtain *p*-value for bump.

III: The LHC-Olympics looked at di-jet Resonances.

33 / 40

ADEMY O

III: We can get the likelihood ratio using ML: Classifiers.

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) this.

- Classification without Labels (CWoLa) learns from mixed samples.
- An optimal classifier is also optimal for distinguishing S from B.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 [HEP]

III: Simulation-based approaches are model-dependent.

Simulation-based approaches:

• fully supervised:

train classifier on simulated signal and background

- depends on quality of simulation
- high signal model dependence
- provides upper limit on all approaches
- idealized anomaly detector:

train classifier on data and simulated background

- depends on quality of simulation
- still background model dependent
- provides upper limit on data-driven anomaly detection

III: Data-driven approaches are background model-independent.

• compute

 $\frac{p_{\text{inner}}(x|m_{JJ})}{p_{\text{outer}}(x|m_{JJ})} \text{ for } m_{JJ} \in SR$

- robust against correlations, but harder learning task.
- B. Nachman, D. Shih, [2001.04990, PRD]

Classification without Labels (CWoLa) Hunting:

- assume $p_{bg, SR}(x) = p_{data, SB}(x)$
- train classifier between data (SR) and data (SB)
- not robust against correlations

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP] J.H. Collins, K. Howe, B. Nachman, [1805.02664 PRL, 1902.02634 PRD]

"Coala Hunting" via midjourney.com \Rightarrow

HEPHY

IICTDIAN

III: Data-driven approaches are background model-independent.

Classifying Anomalies THrough Outer Density Estimation (CATHODE):

- train "outer" density estimator $p_{data}(x|m_{JJ} \in SB)$
- sample "artificial" events from $p_{\text{outer}}(x|m_{JJ} \in SR)$
- can also oversample
- train a classifier on these samples vs data

\Rightarrow combines the best of CWoLa-Hunting and ANODE!

A. Hallin, J. Isaacson, G. Kasieczka, CK, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, M. Sommerhalder [2109.00546, PRD]

Results:

• CATHODE approaches idealized AD

USTRIAN

- outperforms ANODE (only 1 density estimator)
- outperforms CWoLa (robust against correlations)
- benefits from oversampling

A. Hallin, CK et al. [2109.00546, PRD]

⇒ These strategies are now being explored in ATLAS and CMS.
ATLAS [2005.02983, PRL]

Improving HEP Simulation and Analyses with Invertible Neural Networks

- We expect $20 \times$ more LHC data in the future.
- Understanding everything based on 1st principles suffers from computational bottlenecks that can be tackled with ML, and especially Normalizing Flows.

Improving HEP Simulation and Analyses with Invertible Neural Networks

- We expect $20 \times$ more LHC data in the future.
- Understanding everything based on 1st principles suffers from computational bottlenecks that can be tackled with ML, and especially Normalizing Flows.

