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CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

@ We will have 20-25x more data.
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= We want to understand every aspect of it based on 1% principles! :':? i%t/g
(and find New Physics) AR
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How do we understand the data based on 1st principles?
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Hadronization Detectors.

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder
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How do we understand the data based on 1st principles?

Forward

Hadronization

Detectors

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Q (A lot of) high-precision simulations.
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HIGH ENERGY PHYSICS.

Forward

>
>

Hadronization Detectors.
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Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Inverse

© (A lot of) high-precision simulations.

@ Analyzing high-dimensional data: Simulation-based Inference and data-driven
Anomaly Searches.
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HIGH ENERGY PHYSICS.

How do we understand the data based on 1st principles?

Forward

Shower

<=

Hadronization

Detectors

>
>

Inverse

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

© (A lot of) high-precision simulations.

Anomaly Searches.

@ Analyzing high-dimensional data: Simulation-based Inference and data-driven

ML has impacted every aspect of the simulation chain, with one class
of models being very powerful: Normalizing Flows

Claudius Krause (HEPHY Vienna)
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Normalizing Flows learn a change-of-coordinates eff1c1ent1y.

“easy” base biiective “target”
distribution < ) ; & distribution
transformation
m(z) p(x)
p(x) = m(f(x)) |det L2
density estimation, p(x)

N

sample generation

~

= Based on samples: via maximizing LL(samples).

= Based on target function f(x): via matching p(x) to f(x).
NFs can also be used for inference: learn p(parameters|data).

Having access to the log-likelihood (LL) allows several training options:

A2 HEPHY

Ysics.

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters 6 of a series of easy transformations. Dinh et al. [arXiv:1410.8516],
Rezende/Mohamed [arXiv:1505.05770]

@ Each transformation is 1d & has an analytic Jacobian and inverse.

= We use Rational Quadratic Splines Durkan et al. [arXiv:1906.04032],
. . X . Gregory/Delbourgo [IMA ]. of Num. An., '82]
@ Require a triangular Jacobian for faster evaluation.

= The parameters 6 depend only on a subset of all other coordinates.

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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How do Normalizing Flows tame Jacobians?

HIGH ENERGY PHYSICS.

@ NFs learn the parameters 6 of a series of easy transformations. Dinh et al. [arXiv:1410.8516],

. . . . Re}zende/Mohamed [arXiv:1505.05770]
@ Each transformation is 1d & has an analytic Jacobian and inverse.

= We use Rational Quadratic Splines Durkan et al. [arXiv:1906.04032],
. . X . Gregory/Delbourgo [IMA ]. of Num. An., '82]
@ Require a triangular Jacobian for faster evaluation.

= The parameters 6 depend only on a subset of all other coordinates.

nitial sample from N(0, 1)

https://engineering.papercup.com/posts/normalizing-flows-papt-2/" * = * » * * *
Normalizing Flows at the LHC

Claudius
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How do Normalizing Flows tame Jacobians?

HIGH ENERGY PHYSICS.

@ NFs learn the parameters 6 of a series of easy transformations. Dinh et al. [arXiv:1410.8516],

ezende/ Mohamed [arXiv:1505.05770]
o Each transformation is 1d & has an analytic Jacobian and inverse.

= We use Rational Quadratic Splines Durkan et al. [arXiv:1906.04032],
Gregory/Delbourgo [IMA J. of Num. An., ‘82]
@ Require a triangular Jacobian for faster evaluation.

= The parameters 6 depend only on a subset of all other coordinates.

nitial sample from N(0, 1)

After layer 1

After layer 5

After layer 2

After layer 3

After layer 6

Claudius Krause (HEPHY Vienna)
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How do Normalizing Flows tame Jacobians?

NFs learn the parameters 6 of a series of easy transformations. Dinh et al. [arXiv:1410.8516],
Each transformation is 1d & has an analytic Jacobian and inverse.

= We use Rational Quadratic Splines
Require a triangular Jacobian for faster evaluation.

= The parameters 6 depend only on a subset of all other coordinates.

Rezende/Mohamed [arXiv:1505.05770]

Durkan et al. [arXiv:1906.04032],
Gregory/Delbourgo [IMA J. of Num. An., ‘82]

Autoregressive Blocks (MAF/IAF)

@ Coordinates are transformed
autoregressivly = |0, (xj<;)

+ Are mathematically “exact”.

— Have a fast and a slow direction.

Bipartite Blocks (Coupling Layers)

@ Coordinates are split in 2 sets,
transforming each other

= 0,ca(x €B) & Oiep(x€A)|

+ Are equally fast in both directions.

— “Require” a min. number of blocks.

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC January 9, 2024
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Normalizing Flows attack Bottlenecks in the Analysis Chain

Phase Space Sampling ’ ‘ End-to-End Simulation Detector Simulation

= sample according to do = sample from p(events) = sample from p(showers|E)

N 1 /’

”

Hadronization Doh% Events

b

CMSPub|
ATLAS Preliminary Total CPU HL LHC (2031/No R&D Improvements) fractions
2022 Computing Mude\ CPU: 2031, Conservative R&D 2022 Estimates Other:
Tot: 33.8 MHS06*y GENA 9%

RECO: 35% DIGI: 9%

W Data Proc
g9, M MC-Full(Sim) Alnxlysls: a%
MC-Full(Rec)

= MC-Fast(Sim)
== MC-Fast(Rec)

. EvGen
1% Heavy lons Sim: 15%
W= Data Deriv
17% . MC Deriv
8% Analysis RECOSim: 26%
CERN-LHCC-2022-005 CMS-NOTE-2022-008

(HEPHY £ Normaliz;
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Normalizing Flows increase the Sensitivity in our Analyses
Phase Space Sampling End-to-End Simulation Detector Simulation
= sample accordmg to do = sample from p(events) = sample from p(showers|E)

| |
\rward l,

Shower Hadronization Dohﬁ

=< S

S N
= T ~_

-—
Inference Bump-Hunt Searches Unfolding
= learn p(parameters|data) = use p(data) as bg estimate = learn p(parton|event)

[ Lattice QCD = improve MCMC proposals J

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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Improving HEP Simulation and Analyses with INNs
[ 1. Phase Space Sampling J { End-to-End Simulation 1 ‘ 2. Detector Simulation J
~ { —
~
Hadronization Detecfrs

-~
T ~_

Inference ‘ ‘ 3. Bump-Hunt Searches J t Unfolding

Lattice QCD }
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I: Phase Space integration uses Importance Sampling.

/\ I= [y f(%) di

flat sampling:
inefficient.

I= (f(x‘)>x~uniform

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC



~ A\AJ  AUSTRIAN M \l,
OAW e [ —— i HEPHY

I: Phase Space integration uses Importance Sampling.

/\ = [)f(®) dx
¥

flat sampling: importance sampling:
inefficient. find g close to f
I= (f(%)>x~uniform = <]L5f)>
8 (EE) x~g(x)

ause (HEPHY Vienna) Normalizing Flows at the LHC
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I: Phase Space integration uses Importance Sampling.

/\ 1= Jof(@) dF "/\
V¥

flat sampling: importance sampling: multichannel: one
inefficient. find g close to f map per channel
I'={f(%))x~uni X
(f(x»x uniform = <]Lf)> 2<1x1(x)f( ) >
g(x) x~g(x) ( ) x~gi(x

Claudius Krause (HEPHY Vie Normalizing Flows at the LHC
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I: Phase Space integration uses Importance Sampling.

/\ 1= Jof(@) dF "/\
V¥

A1l a 1] |
We therefore have to find a g( )
that approximates the shape of f(¥).

= Once found, we can use it for event generation,
i.e. sampling p;, ¥;, and ¢; according to do(p;, ¥;, ;)

We need both samples x and their probability g(x). mel: one
= We use a bipartite, coupling-layer-based flow. channel

1= <%>x~g<x> 1= (g >x~g

I= (f(f)>x~uniform

Claudius Krause (HEPHY Vies Normalizing Flows at the LHC
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I: MadNIS — Neural Importance Sampling
f(%)
= o (x
T

7 8i(%)

b 2
‘ Construct channels and mapping ’

using physics knowledge.

A 4 A
Normalizing Flow to Fully connected network
refine channel mapping. to refine channel weights.
4 v
[ Optimize simultaneously with variance as loss. J

A. Butter, T. Heimel, J. Isaacson, CK, E. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172, SciPost]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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I: MadNIS — Neural Importance Sampling
:( Ch 1 weight ai(x) L LLLLLLLLH
:( Target fi(x) ]—
M) ‘
— Gxlg) ( -
PS point p— e Density g(x|@) |g==

Evaluation

x . _al:l)’? g Samp le y | e Backpropagation
GOl
—

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172, SciPost]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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I: MadNIS re-uses expensive matrix elements

] A
g 1.0 fixed number of weight updates =1 fixed training time
£ g
=t
g‘? % —tp=1lus
E 0.8 %101‘ te=40us ——t;=10pus
) X
j=] —ty=1ps g touse = 30 us — t; =100us
0.6 ——f;=10us z — =1ms
3 f g
20 — t; =100 us g
] —t;=1ms g
S f _;::
[

=
° ]
: E

0.4
t@ =40us
toufr = 30 s
0.2 10°1
1 2 3 4 5 6 1 2 3 4 5 6
reduction in training statistics Rg reduction in training statistics Rg

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172, SciPost]

Claudius Krause (HEPHY Normali
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I: MadNIS — Results for Drell-Yan + Z’

/ T 1073
N
Learned £ 106
. . . =
distribution S
matches truth.
107°
1
3
0
8 — 1.251
o |l J—
g g 1.00 o
=% 0.751
- - i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]
Me+e— [GeV]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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I: MadNIS — Results for Drell-Yan + Z’

/

T 1073
N

Learned £ 106
. . . =
distribution S

matches truth.

107°

1
3

0

8 — 1.251
o |l

£ o 1.00

=075

200 400 600
Me+e— [GeV]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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Peaks are learned
by different
channels.

Heimel, CK et al.
[2212.06172, SciPost]
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I: MadNIS — Results for Drell-Yan + Z’

/

T 1073
N
Learned g 106 Peaks are learned
distribution S by different
matches truth. . channels.
10~
1
s \
0 Channel weights
g 1.25 are learned by
g ' 1.00 the network
=& 0,75
2(')0 4(')0 660 Heimel, CK et al.

[2212.06172, SciPost]

Me+e— [GeV]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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I: MadNIS — Results for Drell-Yan + Z’

/ g 1073
N
Learned g 106 Peaks are learned
distribution S by different
channels.

matches truth.

— |

Re-uses samples

—
9
el

(=Y

N

Channel weights
are learned by

L)

0.
1.257

to make o~
training faster. % ”@) 1.00 the network
=5 0.75
- - i Heimel, CK et al.
200 400 600 [2212.06172, SciPost]

Me+e— [GeV]

Normalizing Flows at the LHC
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I: The MadNIS reloaded — more processes
gg — Whdi... (@13 TeV) gg — tig... (@13 TeV)
1.50 ¢ ¢ 60 1.25 L] L]
125 K 100 o=
5 7 40w 5 -
o & < . g
T 100 > P07 N
-2 'l 2 & - ° 20 g
= - £ 050 i
0751 o . v o o
0 0
- =) *
Eursy ¢ ¢ ’ g9
£0 Q7.5 °
g5 50 4=
as . . &+ 5.0 L
E = 2.51 ° E = . ° L
W+2j W+3j W+4j tt+1j tt+2j tt+3j

o VEGAS initialization
@ channel dropping

o stratified training
o buffered training

Claudius K

T. Heimel, N. Huetsch, E. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2311.01548]
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Improving HEP Simulation and Analyses with INNs
1. Phase Space Sampling ’ { End-to-End Simulation 1 [ 2. Detector Simulation J
N e J <~
~
Hadronization Detecfors

-~
T ~_

Inference ‘ ‘ 3. Bump-Hunt Searches J t Unfolding

Lattice QCD }

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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HIGH ENERGY PHYSICS.

realism

GEANT4

A SIMULATION TOOLKIT -

DELPHES

fast simulation

speed

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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II: Detector simulation is computationally expensive.

W
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HIGH ENERGY PHYSICS.

realism
?
G EAN T4 » Deep GZnerative s
A TO! J ? «— —
SIMULATION OLKIT Models
1
?
DELPHES
fast simulation
speed

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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IT: CALOFLOW uses the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

They form three instrumented layers of dimension
3x96,12x 12, and 12 x 6

Geantd, Pb Absorber, IAr Gap, 10 GeV e

n direction [mm]

Local Energy Deposit [MeV]

" Generative Adversarial Network:
A generator and a critic play a game
against each other.

‘
Depth from Calori- ohmm) . n -

CaloGAN:"Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Normalizing t the LHC
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IT: CALOFLOW uses the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x96,12 x 12, and 12 x 6
Geantd, Pb Absorber, IAr Gap, 10 GeV e
% 25 §
i 20 g
R 15 §
10
0 S
-15( . ) N e s
20 - S o
1 | | 1 | | I o kz
-100 -50 0 50 100 150 200
Depth from Calorimeter Center [mm] n

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius £ Normalizing Flows at the LHC



. ‘“\M\I
QAW e I B HEPHY

HIGH ENERGY PHYSICS.

IT: CALOFLOW uses the same calorimeter geometry as CALOGAN

@ The GEANT4 configuration of CALOGAN is available at
https:/ /github.com/hep-Ibdl/CaloGAN

@ We produce our own dataset: available at [DOL 10.5281/zenodo.5904188]

@ Showers of e™,, and 7w+ (100k each)

o All are centered and perpendicular

@ Ejnc uniform in [1,100] GeV and given in addition to the energy deposits per voxel:

Z mM‘
0 20 3

ncelll

o
Energy (MeV)

Energy (MeV)

 Cell ID
Energy (MeV)

$ Cell ID
CE8vovouvswnro

3
nCell D

7567809
n Cell 1D

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Normalizing Flows at the LHC
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II: CALOFLOW uses a 2-step approach to learn p(Z|Einc).

Flow I learns P1 (Eo, Elr E2 |Einc)
= is a Masked Autoregressive Flow, optimized using the log-likelihood.

Flow II learns pz(% |Eo, E1, E2, Einc) of normalized showers
@ in CALOFLOW v1 (2106.05285 — called “teacher”):

@ Masked Autoregressive Flow trained with log-likelihood
= Slow in sampling (=~ 500 slower than CALOGAN)

@ in CALOFLOW v2 (2110.11377 — called “student”):

o Inverse Autoregressive Flow trained with Probability Density Distillation
from teacher (log-likelihood prohibitive), i.e. matching IAF parameters to
frozen MAF van den Oord et al.[1711.10433]

= Fast in sampling (~ 500x faster than CALOFLOW v1)

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC January 9, 2024 18/ 40
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II: A Classifier provides the “ultimate metric”
According to the Neyman-Pearson Lemma we have:
@ The likelihood ratio is the most powerful test statistic to distinguish the two
samples.
o A powerful classifier trained to distinguish the samples should therefore learn

(something monotonically related to) thlS.

o If this classifier is confused, we conclude = pGpanta(*) = Pgenerated (¥)
@ Even if not, the classifier extracts a lot of useful information. R. Das, CK, et al. [2305.16774]

= This captures the full phase space incl. correlations.

? But Why Wasn’t this used before? DCTRGAN: Diefenbacher et al.
[2009.03796, JINST]

= Previous deep generative models were separable to almost 100%!

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC January 9, 2024 19/ 40
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Ysics.
——

II: CALOFLOW passes the “ultimate metric” test.

According to the Neyman-Pearson Lemma we have: pGeanta(X) = Pgenerated (¥) if a
classifier cannot distinguish data from generated samples.

GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)
AUC CALOGAN CALOFLOW v1 CALOFLOW v2

.| low-level 1.000(0) 0.870(2) 0.824(4)
‘ high-level 1.000(0) 0.795(1) 0.762(3)
low-level 1.000(0) 0.796(2) 0.760(3)

i high-level 1.000(0) 0.727(2) 0.739(2)
4 | low-level 1.000(0) 0.755(3) 0.807(1)
" high-level 1.000(0) 0.888(1) 0.893(2)

AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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IT: Sampling Speed: The Student beats the Teacher!
CALOFLOW* CALOGAN* | GEaNT4®
teacher | student
| training [ 22+82 min | +480 min | 210 min | Omin |
generation time | 5, [\ | (08 ms 0.07ms | 1772 ms
per shower
*: on our TITAN V GPU, *: on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

107
100] — GEANT 4
—— CaloFlow vl 10°
10°§ —— CaloFlow v2 o
18] — CaloGAN
. 10'
=07 =
] 10° £
=108 -
10?
10°
10"
10*
10°
10° - - - v v -
10° 10 10° 100 107 108 100 100

Generated Showers

Claudius £ Normalizing Flows at the LHC
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II: CALOFLOW: Comparing Shower Averages:
CALOFLOW CALOFLOW
teacher student GEANT4
z 2 z £
E 100 E’ " o . o
8 & -
B : <

$cell D

Energy (Mev)

0
1
2
3
a
5
6
7
8
9
0
1

012345678091011
1 Cell D

Layer 2

2 3
1 Cell ID

Energy (Mev)

IEEEES TS EEE
Cell D

Layer 2

Energy (Mev)

Ly
1\“
er.

HEPHY

INSTITUTE OF
HIGH ENERGY PHYSICS.

CALOGAN

Layer 0

0110203049 50 €070 80 90
el ID

Layer 1

012345678091011
nCell D

Layer 2

2 3
7 Cell ID

Energy (Mev)

Energy (Mev)

Energy (Mev)
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II: CALOFLOW: histograms: e™*.

107!

102

1072

107

10°°

10% 0 25 50 75 100 125
Erot (GeV)

!\
EolEror Eafior

et GEANT =1 e™* CaloFlow teacher

~--3 e* CaloGAN 1 e™* CaloFlow student

‘malizing Fl
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II: CALOFLOW: histograms: e™*.

7 7
6 6
5 5
4 4
3 3
2 2
1 1
A
o5 1.0 15 2.0 00 o 0.4 0 08
Shower Depth sy Shower Depth Width os,
3.0
5
25
4
2.0
3 i
15{ &
2 10
1 0.5
025 050 075 10 025 050 075 o

.00 0.25 0.50 0.75

Sparsity in Layer 0

e’ GEANT

©--3 e* CaloGAN

Sparsity in Layer 1

Sparsity in Layer 2

=71 e™ CaloFlow teacher
1 e* CaloFlow student

A
N
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HIGH ENERGY PHYSICS.

II: What else can we do with the likelihood?

Anomaly Detection. ‘

0 10 20 30 40 50 60 70 80 90

CK, Nachman, Pang, Shlh Zhu [2312.11618]

H
2
Energy (MeV)

@ Find anomalous showers,
e.g. coming from multiple photons.

1

¢ Cell ID

@ Works “broader” than dedicated classifiers.

Inference.

o Find which E;,. maximizes p(shower|E;;).

@ Is prior independent. Du, CK, Nachman, Pang, Shih [in prep.]

Claudius Krause (HEPHY Vienna)
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II: Going the next step: towards deployment in FastSimulation.

[Have a rapidly evolving field: need a survey of current approaches on a common dataset! J

= Fast Calorimeter Challenge 2022 https://calochallenge.github.io/homepage/

Michele Faucci Giannelli, Gregor Kasieczka, CK, Ben Nachman,
Dalila Salamani, David Shih, and Anna Zaborowska

o Dataset 1:  AtlFast3 trainig data (: 368, 7r: 533 voxels)

[2109.02551, Comput.Softw.Big Sci.] CALOFLOW works: CK/Pang/Shih [2210.14245]
@ Dataset 2: simulated detector (e7: 6480 voxels) = need new ideas!
@ Dataset 3: simulated detector (e~: 40500 voxels) = need new ideas!

Submissions were presented at a workshop in Rome and at ML4Jets-22 / ML4Jets-23.

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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II: Larger datasets require new ideas — L2LFlows.

L2LFlows: Learn shower shapes one at a time, leveraging how the shower develops.

Q learns p1(E1, Ep, Es, ..., E45/Einc) — how energy is distributed among layers.
Q learns p;(Z:|E;, Einc, Ei—t, Zik) — how the shower in the layer i looks like.
106 { 1400 —— GEANT4
1200 —— BIB-AE
% 10° g 20 Gev —— L2LFlows
X 2 1000
S 104 2
5 — ;FE:E? % 800 50 GeV
g 10° —— L2LFlows g 600 80 GeV
Qo
£ € 400
= 2
10! 200
10° 0
1074 1073 1072 107! 10° 200 400 600 800 1000
Voxel energy [GeV] Non-zero voxels per shower
[Classiﬁer AUCs: L2LFlows:  0.8518(42) BIB-AE: 0.9947(25))

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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II: Larger datasets require new ideas — iCALOFLOW.

iCALOFLOW: Split learning p(Z |Einc) into 3 steps, leveraging the detector geometry.
@ learns p1(E1, Ep, E3, ..., E45/Einc) — how energy is distributed among layers.

@ learns py(Zy|Eq, Einc) — how the shower in the first layer looks like.

© learns p3(Zn|Zy—1,m, En, En-1, Einc)
— how the shower in layer n looks like, given layer n — 1

10*

Flow 1: pl(Et‘Einc)I: T T T T 1
e —-—- b By Eti-1) E; Eis
z Pt tot t
10‘ Ej i @ @ o @) @ o @
i
10° i
Pl Vo |
Tya Tou Fi-t)a Tia Tisa

Flow 2: pa(Z1a|Bine, By)

Flow 3: p3(Zia| Bine, i, Ei-1,Z(i-1ya:1)

M. Buckley, CK, I. Pang, D. Shih [2305.11934]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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Layer 1

Layer 10

Layer 20

:iICALOFLOW: shows promising results.

W
~W\2
i€ HEPHY

INSTITUTE OF
HIGH ENERGY PHYSICS.

Layer 45

— I — I — I — I
— T — T — T — T
—— Student —— Student —— Student —— Student
. . . —
075 T ToT 075> T 0T 1075 To" 10" 1075 o1 o7

Ty, (MeV)

Tipa (MeV)

Layer 10

Topa (MeV)

Layer 20

Lisa (MeV)

Layer 45

l”“ —— Dataset 3 —— Dataset 3
— T —— Teacher
—— Student —— Student

S 107
0"
o 5 " "
1075 Tor 107 1075 Tor 107 1075 Tor 10" 1075~ 10 10
Ty, (MeV) Tiga (MeV) Tooa (MeV) Lisq (MeV)

0.797(5)
0.911(3)

0.798(3)
0.941(1)

dataset 2, low:
dataset 3, low:

dataset 2, high:

Classifier AUCs: dataset 3, high:

Normalizing Flows at the LHC
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IT: The Fast Calorimeter Simulation Challenge 2022.

Final write-up is currently being prepared. It compares:
@ high-level features (observables)

@ low-level features (voxels) via classifiers
o time and memory usage

o ...
Number of contributions
16 - VAE Timing vs log posterior, dataset 2, Emin = 0.015 MeV CaloDiffusion
*
1 = GAN . * * “—% conv. L2LFlows
- Flow -3 . |
12 = Diffusion Fx “ +*— MDMA
= other 5 —+— CaloVQ
10 5 * —*— CaloScore
N 57 +-- CaloScore distilled
g,e +- CaloScore single-shot
6 k) Jetter" —*— SuperCalo
4 -7 ~—#— DeepTree
—*— CaloVAE+INN
2 - % o .
--*--_iCaloFlow student
100 100 10% 10°
0 i —~— CaloPointFlow
ds1 photons  ds1. pions ds2 ds3 time per shower [ms]

CaloINN

see C.Krause at ML4Jets 2023

Claudius Krause 2) Normalizing Flows at the LHC
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Improving HEP Simulation and Analyses with INNs
1. Phase Space Sampling ’ ( End-to-End Simulation 1 ‘ 2. Detector Simulation

.

4

\rwﬂ rd

l

-~

~~

=

Hadronization

bedfors

< ([
/’

~

-—
Inference

T

l [ 3. Bump-Hunt Searches J L

N
Unfolding

Lattice QCD

Claudius Krause (HEPHY Vienna)
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III: How to look for New Physics at the LHC with few assumptions

L\
WL

Assumptions in Bump Hunts:

@ signal is localized in m 7 B
@ background in m is smooth g X - m‘ ;I:‘
o J additional discriminating features x ‘ ’ '

au.

Select events with

Pdata - psignal

Pbackground Pbackground HWWW

@ Scan Signal Region (SR) across m SB SR S8 m

=

Paata(x|m € SB)
= pg(x|m € SB)

Pdata(z|m € SB)
= puglalm € SB)

© Perform background fit and obtain
p-value for bump.

Pdata(w[m € SR)

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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HIGH ENERGY PHYSICS.

III: The LHC-Olympics looked at di-jet Resonances.
LHC Olympics R&D dataset: w = Gackground
10¢ Signal Region (SR)
e 1,000,000 QCD dijet events w Soenanes (59
@ 1,000 signal events W' — X(— qq)Y(—) qq) -
e myy = 3.5TeV, *

my = 500GeV, my = 100GeV

mijj [Tev]

= Background
Sgnal

@ In SR, 3.3TeV < myp < 3.7TeV:

> 121,352 bg events
> 772 sg events

e S/VB=22

LHCO: G. Kasieczka et al. [2101.08320]

Claudius Krause (HEPHY Vienna) Normalizing Flov
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ITI: We can get the likelihood ratio using ML: Cla851f1ers.

According to the Neyman-Pearson Lemma we have:

@ The likelihood ratio is the most powerful test statistic to distinguish two samples.

o A powerful classifier trained to distinguish the samples should therefore learn

(something monotonically related to) thls.

ePPAO | | @O®G® @ Classification without Labels (CWoLa) learns from
OeR® | GOO®G®G mixed samples.

® . P .
00000 | | e006® @ An optimal classifier is also optimal for
GGG | 6CGG® distinguishing S from B.

Ysics.

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC




. Ly
OAW o | = HEPHY

III: Simulation-based approaches are model—dependent.

Simulation-based approaches:

o fully supervised:
train classifier on simulated signal and background
» depends on quality of simulation
> high signal model dependence
» provides upper limit on all approaches

@ idealized anomaly detector:
train classifier on data and simulated background
> depends on quality of simulation
> still background model dependent
» provides upper limit on data-driven anomaly detection

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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III: Data-driven approaches are background model—independent.

Anomaly Detection with Density Estimation (ANODE):

= Background
Signal

@ train “outer” density estimator g 9nal Reglon (5R)

pdata(x|m]] € SB)

Sidebands (SB)

@ train “inner” density estimator
pdata(x|m]] € SR)

@ compute

Pinner (x| m[])
Pouter (X]117) my) for mjy € SR

@ robust against correlations, but harder learning task.
B. Nachman, D. Shih, [2001.04990, PRD]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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III: Data-driven approaches are background model-independent.
Classification without Labels (CWoLa) Hunting:

‘um,vé
7/40\\3 HEPHY

INSTITUTE OF
HIGH ENERGY PHYSICS.

. Background
Signal
Signal Region (SR)

@ assume
Pbg, sr(x) = Pdata, SB (x)

Sidebands (SB)

@ train classifier between
data (SR) and data (SB)

@ not robust against correlations

E.M. Metodiev, B. Nachman, J. Thaler, [1708.02949 JHEP]
J.H. Collins, K. Howe, B. Nachman, [1805.02664 PRL, 1902.02634 PRD]

“Coala Hunting” via midjourney.com =

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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III: Data-driven approaches are background model-independent.
Classifying Anomalies THrough Outer Density Estimation (CATHODE):

= Background
. . . Signal
@ train “outer” density estimator

pdata(xlmﬂ € SB)

Signal Region (SR)

Sidebands (SB)

@ sample “artificial” events from
pouter(x|m]] c SR)

@ can also oversample
@ train a classifier on these samples vs data

= combines the best of CWoLa-Hunting and ANODE!
A. Hallin, J. Isaacson, G. Kasieczka, CK, B. Nachman, T. Quadfasel, M. Schlaffer, D. Shih, M. Sommerhalder
[2109.00546, PRD]

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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HIGH ENERGY PHYSICS.

III: CATHODE outperforms other anomaly detectors.

Results:

o CATHODE approaches
idealized AD

@ outperforms ANODE
(only 1 density estimator)

@ outperforms CWoLa
(robust against correlations)

@ benefits from oversampling
A. Hallin, CK et al. [2109.00546, PRD]

Significance Improvement Characteristic = TPR/+/FPR

20.0

17.54

=R
N,
n o

Significance Improvement
=
o
o

N
n
s

&
=)

S
n
L

o
=)
L

—— Supervised
—— Idealized AD
—— CATHODE
CWola
—— ANODE
----- random

0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)

= These strategies are now being explored in
ATLAS and CMS. ATLAS [2005.02983, PRL]

Claudius Krause (HEPHY Vienna)

Normalizing Flows at the LHC




OAW s | }),I\g HEPHY

rrrrrrrrr
HIGH ENERGY PHYSICS.

Improving HEP Simulation and Analyses
with Invertible Neural Networks

@ We expect 20x more LHC data in the future.

@ Understanding everything based on 1st principles suffers from computational
bottlenecks that can be tackled with ML, and especially Normalizing Flows.

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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HIGH ENERGY PHYSICS.

Improving HEP Simulation and Analyses
with Invertible Neural Networks

@ We expect 20x more LHC data in the future.

@ Understanding everything based on 1st principles suffers from computational
bottlenecks that can be tackled with ML, and especially Normalizing Flows.

[ 1. Phase Space Sampling J [ 2. Detector Simulation J
AN V4
o /
V4

<€

=8 5O
//'

[ 3. Bump-Hunt Searches J

=https://iml-wg.github.io/HEPML-LivingReview/

Claudius Krause (HEPHY Vienna) Normalizing Flows at the LHC
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