

Top quark pair production and decay with jet activity at the LHC

Giuseppe Bevilacqua

NCSR "Demokritos"

Theory Seminar

Vienna November 7, 2023

Work in collaboration with H.Y.Bi, B.Hartanto, M.Kraus, M. Lupattelli, D. Stremmer and M. Worek

Based on: JHEP 08 (2021) 008 Phys.Rev.D 107 (2023) 11, 014028 Phys.Rev.D 107 (2023) 11, 114027

Fundamentals of top quark physics

Why is top quark physics interesting?

The top quark is the heaviest particle of the Standard Model

- \hookrightarrow Substantial Yukawa coupling: sensitive to EWSB mechanism
 - Top mass is a free parameter: need precise measurements
- Extremely short-lived $\sim 5 \cdot 10^{-25} \, s \ll \Lambda_{OCD}^{-1}$
 - \hookrightarrow Decays before bound states can be formed
 - BR $(t \rightarrow Wb) \approx 100\%$: unique experimental signature
 - Direct handle of top quark properties from decay products

Theory Seminar

$t\bar{t}$ production at the LHC

- Dominant mode of top quark production at the LHC
- Can be selected with high purity (dilepton, but also ℓ +jets)
- $\mathcal{O}(100 \text{ M}) t\bar{t}$ events in Run 2
- "Standard candle" for precisions tests of SM

Inclusive tf cross section [pb] Tevatron combined 1.96 TeV (L \leq 8.8 fb⁻¹ **ATLAS+CMS Preliminary** ATLAS combined dilepton, $I+jets^* 5.02 \text{ TeV} (L = 257 \text{ pb}^{-1})$ 7 TeV LHC*top*WG June 2023 CMS combined $e\mu$, I+jets 5.02 TeV (L = 27.4-302 pb⁻¹) ▼ LHC combined $e\mu$ 7 TeV (L = 5 fb⁻¹) LHC*top* WG PDF+alphas uncert. Scale uncert. Mass uncert. up / down Central value ▼ LHC combined $e\mu$ 8 TeV (L = 20 fb⁻¹) LHC*top* WG ATLAS eµ 13 TeV (L = 140 fb⁻¹) 10³ 179.6 +4.8 - 6.2± 6.1 -5.26 + 5.44CMS eµ 13 TeV (L = 35.9 fb^{-1}) ATLAS I+jets 13 TeV (L = 139 fb⁻¹) 8 TeV CMS I+jets 13 TeV (L = 137 fb^{-1}) ATLAS eµ* 13.6 TeV (L = 11 fb⁻¹) Scale uncert. PDF+alpha_s uncert. Mass uncert. up / down Central value CMS dilepton, I+jets 13.6 TeV (L = 1.2 fb^{-1} 1000 256.0 +6.7 - 8.9± 8.0 -7.33 +7.58 * Preliminary 10² 13 TeV 900 PDF+alpha_S uncert. Mass uncert. up / down Central value Scale uncert. 800 13.6 833.9 NNLO+NNLL, PDF4LHC21 (pp) +20.5 -30.0 ± 21.0 -22.5 + 23.2NNLO+NNLL, NNPDF3.0 (pp) 13.6 TeV Czakon, Fiedler, Mitov, PRL 110 (2013) 252004 10 PDF+alphas uncert. Mass uncert. up / down $m_{top} = 172.5 \text{ GeV}, \alpha_s(M_2) = 0.118 \pm 0.001$ Central value Scale uncert. 12 2 8 10 4 6 14 923.6 +22.6 - 33.4± 22.8 -24.6 + 25.4√s [TeV]

[LHCPhysics/TtbarNNLO]

G. Bevilacqua

Theory Seminar

Top quark production cross sections

CMS Preliminary Aug 2023 Production Cross Section, σ [pb] 5.02 TeV CMS measurement ($L \le 302 \text{ pb}^{-1}$) 10³ 7 TeV CMS measurement ($L \le 5.0 \text{ fb}^{-1}$) Φ Φ 8 TeV CMS measurement (L \leq 19.6 fb⁻¹) Φ 13 TeV CMS measurement ($L \le 138 \text{ fb}^{-1}$) 13.6 TeV CMS measurement ($L \le 1$ fb⁻¹) Φ 10² =n jet(s) Theory prediction CMS 95%CL limits at 7, 8 and 13 TeV 11. 11. 10 Φ 1 φ Ψ • ₫ ₫ 0⁻¹ 4 Φ 10⁻² 10⁻³ 2c 2b tW tZq ttΖ ttW tWZ tttt tH 2j 3j 4j ttγ ttH tt 0j 1j tγ t_{t-ch} t_{s-ch}

[CMSPublic/PhysicsResultsCombined]

Inclusive $t\bar{t}$ sample

Top quark production cross sections

[CMSPublic/PhysicsResultsCombined] CMS Preliminary Aug 2023 Production Cross Section, σ [pb] 5.02 TeV CMS measurement ($L \le 302 \text{ pb}^{-1}$) 10³ 7 TeV CMS measurement ($L \le 5.0 \text{ fb}^{-1}$) Φ 8 TeV CMS measurement (L \leq 19.6 fb⁻¹) 13 TeV CMS measurement ($L \le 138 \text{ fb}^{-1}$) Φ 13.6 TeV CMS measurement ($L \le 1$ fb⁻¹) Φ 10² =n iet(s Theory prediction CMS 95%CL limits at 7, 8 and 13 TeV 11. 11. 10 1 ф φ ₫ ₫ ₫ 0⁻¹ 2 Φ **10⁻²** 10⁻³ tW tZq ttΖ ttW tWZ tttt ttγ ttH tΗ tt 0j 2j 3j 2c 2b tγ 1j 4j t_{t-ch} t_{s-ch}

Hadronic jet activity in $t\bar{t}$ events

Top quark production cross sections

[CMSPublic/PhysicsResultsCombined]

$t\bar{t}$ +jets as a signal

• A significant fraction of the inclusive $t\bar{t}$ sample is accompanied by additional hard jet(s) arising from QCD radiation

- Genuine multiscale process with characteristic scales typically separated by one order of magnitude \rightarrow test of perturbative QCD
- Several $t\overline{t}$ observables are sensitive to extra-jet radiation
- $t\bar{t} + 1$ jet provides one method to extract top quark mass at the LHC

Alioli, Fuster, Irles, Moch and Uwer '13 Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, Moch, Uwer and Voss '22

$t\bar{t}$ +jets as a background

• Background to $t\bar{t}H(H \rightarrow b\bar{b})$ production (and to many BSM searches)

• $pp \rightarrow t\bar{t}H$: direct sensitivity to top Yukawa coupling • $H \rightarrow b\bar{b}$: largest BR (~ 58 %) • $t\bar{t}H(H \rightarrow b\bar{b})$ is a tiny signal in a huge background

$t\bar{t}$ differential measurements (I)

- Reconstruction of $t\bar{t}$ kinematics in ℓ +jets channel
- $t\bar{t}$ kinematics measured for different additional jet multiplicities: $N_{j,add}$
- Some observables sensitive to extra-jet radiation, e.g. $p_T(t\bar{t})$:

$t\bar{t}$ differential measurements (II)

- Dilepton channel (e^+e^- , $\mu^+\mu^-$, $e^\pm\mu^\pm$)
- At least two jets in the final state; at least one of them b-tagged
- Triple-differential measurements \rightarrow simultaneous extraction of α_s , m_t , PDFs

[CMS, <u>EPJ C80 (2020) 658</u>]

Measurements of $t\bar{t}b\bar{b}$ production

- ℓ +jets channel
- Inclusive and differential measurements \rightarrow 4 fiducial regions: 5j3b, 6j4b, $6j3b3\ell$, $7j4b3\ell$
- Inclusive σ higher than theory predictions (consistent with previous measurements)

[CMS-PAS-TOP-22-009]

• ME calculations for fully decayed final states are often challenging

• ME calculations for fully decayed final states are often challenging \rightarrow use NWA

• ME calculations for fully decayed final states are often challenging \rightarrow use NWA

$$\Gamma_t/m_t \to 0 \quad \Rightarrow \quad \left| \begin{array}{c} \frac{1}{(p_t^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} \stackrel{\Gamma_t \to 0}{\sim} \frac{\pi}{m_t \Gamma_t} \,\delta(p_t^2 - m^2) + \mathcal{O}(\frac{\Gamma_t}{m_t}) \right.$$

• Off-shell effects are suppressed by powers of $\Gamma_t/m_t = O(1\%)$ for sufficiently inclusive observables [Fadin, Khoze and Martin, Phys.Lett.B 320 (1994) 141-144]

Note: in general, this is not true at differential level

 $pp \rightarrow t\bar{t}\gamma$ (dilepton)

GB, Hartanto, Kraus, Weber and Worek, JHEP 03 (2020) 154


```
pp \rightarrow t\bar{t}W^{\pm} (dilepton)
```


• Off-shell effects can reach O(50%)and more differentially!

G. Bevilacqua

• ME calculations for fully decayed final states are often challenging \rightarrow use NWA

• The number of resonant structures entering the $t\bar{t} + n$ jets cross section in NWA increases rapidly with n

• ME calculations for fully decayed final states are often challenging \rightarrow use NWA

• The number of resonant structures entering the $t\overline{t} + n$ jets cross section in NWA increases rapidly with n

QCD corrections to both *Production* and *Decay* ME's should be considered for accurate estimates of full NLO cross section

• ME calculations for fully decayed final states are often challenging \rightarrow use NWA

• The number of resonant structures entering the $t\overline{t} + n$ jets cross section in NWA increases rapidly with n

QCD corrections to both *Production* and *Decay* ME's should be considered for accurate estimates of full NLO cross section

We'll focus on the case of $t\bar{t} + 2jets$

tījj: theory status

Stable top quarks

- $pp \rightarrow t\bar{t} + 2 \text{ jets}$
 - \hookrightarrow NLO QCD: fixed-order
- $pp \rightarrow t\bar{t} + 0, 1, 2, 3$ jets
 - \hookrightarrow NLO QCD: NLO vs MiNLO

[GB, Czakon, Papadopoulos and Worek '10,'11]

[Höche, Maierhöfer, Moretti, Pozzorini and Siegert '17]

Exclusive final states

 $pp \rightarrow t\bar{t} + 0, 1, 2$ jets

[Höche, Krauss, Maierhöfer, Pozzorini, Schönherr and Siegert '15]

↔ NLO QCD: MEPS@NLO multi-jet merging

$$p p \rightarrow t\bar{t} + 0, 1, 2, 3, 4 \text{ jets}$$

[Gütschow, Lindert and Schönherr '18]

 \rightarrow NLO QCD+EW ($n \le 1$ jet) & LO QCD+EW (n > 1): MEPS@NLO multi-jet merging

ttbb: theory status

Fixed order						
• $pp \rightarrow t\bar{t}b\bar{b} \rightarrow stable tops$	[Bredenstein, Denner, Dittmaier and Pozzorini '09] [GB, Czakon, Papadopoulos, Pittau and Worek '09]					
• $pp \rightarrow t\bar{t}b\bar{b}j \rightarrow stable tops$	[Buccioni, Kallweit, Pozzorini and Zoller '19]					
• $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$ \hookrightarrow Full off-shell	[Denner, Lang and Pellen '21] [GB, Bi, Hartanto, Kraus, Lupattelli and Worek ''21]					

Matched to PS

 $pp \rightarrow t\bar{t}b\bar{b}$ •

•

•

- ↔ POWHEG matching
- $pp \rightarrow t\bar{t}b\bar{b}$
 - ↔ MC@NLO matching

[Garzelli, Kardos and Trocsanyi '14] 5FS [GB, Garzelli and Kardos '17] 4FS [Jezo, Lindert, Moretti and Pozzorini '18] 4FS

[Cascioli, Maierhöfer, Moretti, Pozzorini and Siegert '14] 4FS

Theory Seminar

ttjj: state-of-the-art in a nutshell

State-of-the-art of tījj MC simulations: NLO+PS (merging multijet samples)

ttjj: state-of-the-art in a nutshell

• State-of-the-art of *tījj* MC simulations: NLO+PS (merging multijet samples)

• Top quarks produced on-shell and decayed at LO with spin correlations

tīji: state-of-the-art in a nutshell

• State-of-the-art of *tījj* MC simulations: NLO+PS (merging multijet samples)

• Top quarks produced on-shell and decayed at LO with spin correlations

Parton Shower evolution (ISR/FSR) accounts for additional jet activity

tīji: state-of-the-art in a nutshell

Some interesting questions

- I. To what extent do QCD corrections to decays impact fiducial cross sections? \rightarrow normalisation
- II. Which phase space regions are more sensitive to radiation off decays?

 \rightarrow shapes

III. What's the impact of full off-shell effects?

 \rightarrow shapes, normalisation

Outline

- NLO QCD analysis of $pp \rightarrow t\bar{t}jj$ (dilepton) NWA
 - Anatomy of resonant contributions at NLO QCD
 - Effects of hard radiation off top quark decays

- NLO QCD analysis of $pp \rightarrow t\bar{t}b\bar{b}$ (dilepton) full off-shell
 - Impact of genuine off-shell effects
 - Categorization of prompt b-jets

Results obtained with the HELAC-NLO framework

[GB, Czakon, Garzelli, van Hameren, Kardos, Papadopoulos, Pittau and Worek '13]

Computational framework

G. Bevilacqua '19

G. Bevilacqua

Theory Seminar

I. A study of jet activity in $t\bar{t}jj$ at the LHC

Resonant contributions to $t\bar{t}jj$ in NWA: LO

Resonant contributions to *tījj* in NWA: **NLO**

Integrated fiducial cross sections

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

Modelling	$\sigma^{ m LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$rac{\sigma_i^{ m LO}}{\sigma_{ m NW}^{ m LO}}$	$rac{\sigma_i^{ m NLO}}{\sigma_{ m NWA}^{ m NLO}}$
NWA _{full}	$868.8(2)^{+60\%}_{-35\%}$	$1225(1)^{+1\%}_{-14\%}$	1.00) 1.00
Prod	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	7 1.19
Mix	25.465(5)	-236(1)	0.02	29 -0.19
Decay	0.2099(1)	0.1840(8)	0.00	002 0.0002
$NWA_{full,exp}$	_	$1173(1)^{+7\%}_{-16\%}$	_	0.96
NWA_{LOdec}		$1222(1)^{+12\%}_{-19\%}$	_	0.998
$\mu_0 = H_T/2$	NNPDF3.1 PDF			$\Delta R(jb) > 0.8$

Fiducial cuts:

$$p_{T,\ell} > 20 \text{ GeV},$$

$$p_{T,b} > 30 \text{ GeV},$$

$$p_{T,j} > 40 \text{ GeV},$$

$$\Delta R_{bl} > 0.4,$$

$$\Delta R_{\ell\ell} > 0.4,$$

$$|y_{\ell}| < 2.4,$$

$$|y_{b}| < 2.4,$$

$$|y_{j}| < 2.4,$$

$$\Delta R_{jl} > 0.4,$$

$$\Delta R_{jl} > 0.4,$$

$$\Delta R_{bb} > 0.4,$$

$$\Delta R_{bb} > 0.4,$$

- Moderate QCD corrections: +41 %
- NLO uncertainties Scale: O(15%) PDF: O(2% 3%)

G. Bevilacqua

Integrated fiducial cross sections

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

Modelling	$\sigma^{\rm LO}$ [fb]	$\sigma^{ m NLO}$ [fb]	$rac{\sigma_i^{ m LO}}{\sigma_{ m NUV}^{ m LO}}$	$\frac{\sigma_i^{\text{NLO}}}{\sigma_{\text{NLO}}^{\text{NLO}}}$
				A NWA full
$\mathrm{NWA}_{\mathrm{full}}$	$868.8(2)^{+60\%}_{-35\%}$	$1225(1)^{+1\%}_{-14\%}$	1.00	1.00
Prod	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19
Mix	25.465(5)	-236(1)	0.02	9 -0.19
Decay	0.2099(1)	0.1840(8)	0.00	02 0.0002
NWA _{full,ex}	р —	$1173(1)^{+7\%}_{-16\%}$	_	0.96
NWA_{LOdec}	. —	$1222(1)^{+12\%}_{-19\%}$	_	0.998
$\mu_0 = H_T/2$	NNPDF3.1 PDF		[$\Delta R(jb) > 0.8$

$$p_{T, \ell} > 20 \text{ GeV},$$

$$p_{T, b} > 30 \text{ GeV},$$

$$p_{T, j} > 40 \text{ GeV},$$

$$\Delta R_{bl} > 0.4,$$

$$\Delta R_{\ell\ell} > 0.4,$$

$$|y_{\ell}| < 2.4,$$

$$|y_{b}| < 2.4,$$

$$|y_{j}| < 2.4,$$

$$\Delta R_{jl} > 0.4,$$

$$\Delta R_{jl} > 0.4,$$

$$\Delta R_{bb} > 0.4,$$

$$\Delta R_{bb} > 0.4,$$

- At LO: Prod is dominant, Mix and Decay are negligible (and all positive)
- At NLO: non-negligible and *negative* contribution from Mix: -19%

Theory Seminar

Integrated fiducial cross sections

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

Modelling	$\sigma^{ m LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$rac{\sigma_i^{ m LO}}{\sigma_{ m NWA}^{ m LO}}$	$rac{\sigma_i^{ m NLO}}{\sigma_{ m NWA}^{ m NLO}}$
NWA _{full}	$868.8(2)^{+60\%}_{-35\%}$	$1225(1)^{+1\%}_{-14\%}$	1.00	1.00
Prod	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19
Mix	25.465(5)	-236(1)	0.029	-0.19
Decay	0.2099(1)	0.1840(8)	0.0002	0.0002
$\mathrm{NWA}_{\mathrm{full},\mathrm{exp}}$	_	$1173(1)^{+7\%}_{-16\%}$	_	0.96
NWA _{LOdec}		$1222(1)^{+12\%}_{-19\%}$	—	0.998
$\mu_0 = H_T/2$	NNPDF3.1 PDF		ΔK	R(jb) > 0.8

 $p_{T,\ell} > 20 \text{ GeV},$ $p_{T,b} > 30 \,\,\mathrm{GeV}\,,$ $p_{T,j} > 40 \text{ GeV},$ $\Delta R_{bl} > 0.4 \,,$ $\Delta R_{\ell\ell} > 0.4 \,,$ $\Delta R_{jj} > 0.4 \,,$ $|y_{\ell}| < 2.4,$ $|y_b| < 2.4,$ $|y_j| < 2.4,$ $\Delta R_{jl} > 0.4,$ $\Delta R_{bb} > 0.4,$ $\Delta R_{jb} > 0.8$ (0.4)

Fiducial cuts:

+ NWA_{full} vs NWA_{LOdec} : permille level difference

How stable are these conclusions under different kinematical cuts ?

G. Bevilacqua

Theory Seminar

tījj: fiducial cross sections

	$\Delta R(j)$	<i>b</i>) > 0.8	[GB, Lupattell	i, Stremmer and V	Vorek, <u>Phys. Rev</u>	<u>/. D (107</u>	<u>") 2023, 114027</u>]
Modelling	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]	$rac{\sigma_i^{ m LO}}{\sigma_{ m NWA}^{ m LO}}$	$rac{\sigma_i^{ m NLO}}{\sigma_{ m NWA}^{ m NLO}}$	"		W^+	
NWA_{full}	$868.8(2)^{+60\%}_{-35\%}$	$1225(1)^{+1\%}_{-14\%}$	1.00	1.00	mo		su Su	ppressing
Prod	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19				
Mix	25.465(5)	-236(1)	0.029	-0.19	17		h	
Decay	0.2099(1)	0.1840(8)	0.000	2 0.0002		"less t	W^+	suppressing"
NWA_{LOdec}	_	$1222(1)^{+12\%}_{-19\%}$	_	0.998			₹j	o
					$\Delta R(jb)$	o) > 0.4		
			_	Modelling	$\sigma^{ m LO}$ [fb]	$\sigma^{ m NLO}$ [fb]	$rac{\sigma_i^{ m LO}}{\sigma_{ m NWA}^{ m LO}}$	$rac{\sigma_i^{ m NLO}}{\sigma_{ m NWA}^{ m NLO}}$
Due d Mix in		a when iot	-	$\mathrm{NWA}_{\mathrm{full}}$	$1074.5(3)^{+60\%}_{-35\%}$	$1460(1)^{+1\%}_{-13\%}$	1.00	1.00
radiation c	off top quark	s is less		Prod	$983.1(3)^{+60\%}_{-35\%}$	$1662(1)^{+11\%}_{-18\%}$	0.91	1.14
suppressed				Mix	89.42(3)	-205(1)	0.083	-0.14
	ΝΙΧΖΑ	5 01		Decay	1.909(1)	2.436(6)	0.002	0.002
for $\Delta R(jl)$	-1 VA_{LOde}	$_{\rm ec}$ ~ $^{\rm J}$ $^{\rm /o}$	-	$\mathrm{NWA}_{\mathrm{LOdec}}$	_	$1390(2)^{+11\%}_{-18\%}$	- (0.95

G. Bevilacqua

.

tījj: differential cross sections

2

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

• Sensitivity to different $\Delta R(jb)$ cuts enhanced around the bulk

Theory Seminar

tījj: differential cross sections

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

 Shape distortions up to 15% - 20 % in both dimensionful and dimensionless observables

G. Bevilacqua

Lessons from $t\bar{t} + 1$ jet

[Melnikov, Scharf and Schulze, Phys.Rev.D 85 (2012) 054002]

$$pp \to t\bar{t}j \to b\bar{b}\,\ell\nu_\ell\,jjj$$
 $\sqrt{s} = 7\,\text{TeV}$

G. Bevilacqua

Theory Seminar

II. $t\bar{t}b\bar{b}$: off-shell effects and prompt *b*-jet categorisation

Off-shell $t\bar{t}b\bar{b}$: theoretical uncertainties at NLO

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, JHEP 08 (2021) 008]

• $pp \rightarrow e^+ \nu_e \, \mu^- \bar{\nu}_\mu \, b \bar{b} b \bar{b}$ 13 TeV

G. Bevilacqua

Theory Seminar

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

• Full off-shell vs NWA

Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$	ſ	
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%		NWA _{LO}
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_		
$\mathrm{NWA}_{\mathrm{LOdec}}$	13.22(1)	$+3.77 (29\%) \\ -3.31 (25\%)$	+0.5%		
NWA _{prod}	13.01(1)	$+2.58 (20\%) \\ -2.89 (22\%)$	-1.1%		
$\mathrm{NWA}_{\mathrm{prod},\mathrm{exp}}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%		
$\mathrm{NWA}_{\mathrm{prod},\mathrm{LOdec}}$	13.11(1)	$+3.74 (29\%) \\ -3.28 (25\%)$	-0.4%		
	1			,	

 NWA cross sections based on different levels of accuracy in top decay modelling

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

• Full off-shell vs NWA

Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
NWA_{LOdec}	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$\rm NW\!A_{\rm prod,exp}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\rm NWA_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

- Off-shell vs NWA_{full} :
- \hookrightarrow Off-shell effects: +0.5 %

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

• Full off-shell vs NWA

Modelling	$\sigma^{ m NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
NWA_{LOdec}	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$\rm NW\!A_{\rm prod,exp}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\rm NWA_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

- NWA_{full} vs NWA_{prod} :
- \hookrightarrow Impact of $t \to Wbb\bar{b}$ decays: +1 %

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

• Full off-shell vs NWA

Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
NWA_{LOdec}	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$\rm NWA_{\rm prod,exp}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\rm NWA_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

• NWA_{prod} vs NWA_{prod,exp} : \hookrightarrow Impact of Γ_t^{NLO} expansion: +6%

 $\mathcal{O}(\alpha_s^2)$ effects (within NLO scale uncertainty)

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

• Full off-shell vs NWA

Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
NWA_{full}	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
NWA_{LOdec}	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$\rm NWA_{\rm prod,exp}$	12.25(1)	+2.87 (23%) -2.86 (23%)	-6.9%
$\rm NWA_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

- $NWA_{prod,exp}$ vs $NWA_{prod,LOdec}$:
- $\hookrightarrow \text{ Genuine QCD corrections to} \\ \text{top decays: } -7\%$

Accidental cancellations with $\mathcal{O}(\alpha_s^2)$ effects

$t\bar{t}b\bar{b}$: impact of off-shell effects at differential level

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

Off-shell effects amount to few permille for most observables used in SM analyses

 \hookrightarrow Examples:

$t\bar{t}b\bar{b}$: anatomy of full off-shell effects at differential level

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

Threshold observables (mainly used in BSM studies) are more sensitive:

٠

$t\bar{t}b\bar{b}$: prompt b-jet identification

- Labelling prompt *b*-jets in $t\bar{t}b\bar{b}$ is not free of ambiguities in a full calculation (due to combinatorial background and quantum interference)
- Kinematic-based prescription: determine prompt b-jets according to a minimum principle for Q:

$$\mathcal{Q} = |M(t) - m_t| \times |M(\bar{t}) - m_t| \times |M^{\text{prompt}}(bb)|$$

G. Bevilacqua

• We have examined some recent developments concerning matrix element description of $t\bar{t}b\bar{b}$ and $t\bar{t}jj$ @ NLO QCD

$t\bar{t}jj$ dilepton

- Jet radiation included in production and decays
- *"Mix"* contribution impacts NLO normalisation

$$\Delta R(jb) > 0.8 \rightarrow \sigma_{\rm NLO} = 1462 \,({\rm Prod}) + 236 \,({\rm Mix}) + 0.2 \,({\rm Dec}) = 1225 \,\,{\rm fb}$$

$$-19\% \,\,{\rm of} \,\,\sigma_{\rm NLO}$$

$$\Delta R(jb) > 0.4 \rightarrow \sigma_{\rm NLO} = 1662 \,({\rm Prod}) - 205 \,({\rm Mix}) + 2.4 \,({\rm Dec}) = 1460 \,\,{\rm fb}$$

$$-14\% \,\,{\rm of} \,\,\sigma_{\rm NLO}$$

$t\bar{t}b\bar{b}$ dilepton

- Off-shell effects small for most distributions used in SM analyses: O(0.5%)
- Impact of QCD corrections to top quark decays: -7%
- Impact of $\mathcal{O}(\alpha_s^2)$ effects in $\sigma_{\text{NWA}}^{\text{NLO}}$ and $\sigma_{\text{off-shell}}^{\text{NLO}}$: 6% (within the scale uncertainties)

Backup slides

Technical aspects of off-shell $t\bar{t}b\bar{b}$ at NLO

Full off-shell calculations for multi-leg processes can be very challenging

One-loop correction type	Number of Feynman diagrams
Self-energy	93452
Vertex	88164
Box-type	49000
Pentagon-type	25876
Hexagon-type	11372
Heptagon-type	3328
Octagon-type	336
Total number [gg	channel] 271528

Example: $gg \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,b\bar{b}$

Partonic Subprocess	Number of Feynman diagrams	Number of CS Dipoles	Number of NS Subtractions
$gg \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b} g$	41364	90	18
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} b\bar{b} g$	9576	50	10
$gq \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b} q$	9576	50	10
$g\bar{q} \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} b\bar{b} \bar{q}$	9576	50	10

tījj: differential cross sections

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

 $\Delta R_{j_1 j_2}$

• Sensitivity to $\Delta R(jb)$ cuts enhanced around $\Delta R(j_1j_2) = 3$

[GB, Lupattelli, Stremmer and Worek, Phys. Rev. D (107) 2023, 114027]

Fiducial cross section ratios

	$\Delta R(jb) > 0.8$						
	\mathcal{R}_n	$\mathcal{R}^{\mathrm{LO}}$	$\mathcal{R}^{ ext{NLO}}$	$\mathcal{R}_{ ext{exp}}^{ ext{NLO}}$			
	$\mathcal{R}_1 = \sigma_{t\bar{t}j}/\sigma_{t\bar{t}}$	$0.3686^{+12\%}_{-10\%}$	$0.3546^{+0\%}_{-5\%}$	$0.3522^{+0\%}_{-3\%}$			
	$\mathcal{R}_2 = \sigma_{t\bar{t}jj} / \sigma_{t\bar{t}j}$	$0.2539^{+11\%}_{-9\%}$	$0.2660^{+0\%}_{-5\%}$	$0.2675^{+0\%}_{-2\%}$			
	$\mathcal{R}_{ ext{exp}}^{ ext{NLC}}$	$P = \frac{\sigma_{t\bar{t}j(j)}^0}{\sigma_{t\bar{t}(j)}^0} \left(1 + \frac{\sigma_{t\bar{t}j(j)}}{\sigma_{t\bar{t}j(j)}^0}\right)$	$\left(\frac{\sigma_{t\bar{t}j(j)}^{1}}{\sigma_{t\bar{t}j(j)}^{0}} - \frac{\sigma_{t\bar{t}(j)}^{1}}{\sigma_{t\bar{t}(j)}^{0}}\right)$				
• NLO QC	D corrections:	$\mathscr{R}_1 \rightarrow -4 \%$	$\mathcal{R}_2 \to$	+4%			

• NLO uncertainties: Scale $\rightarrow O(5\%)$ PDF $\rightarrow O(0.5\%)$

$t\bar{t}b\bar{b}$ with dilepton signatures: full off-shell predictions

Integrated fiducial cross sections $\sqrt{s} = 13 \text{ TeV}$

Analysis cuts: $p_T(\ell) > 20 \text{ GeV}$, $p_T(b) > 25 \text{ GeV}$, $|y(\ell)| < 2.5$, |y(b)| < 2.5

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, JHEP 08 (2021) 008]

$p_T(b)$	$\sigma^{\rm LO}$ [fb]	$\delta_{ m scale}$	$\sigma^{\rm NLO}$ [fb]	$\delta_{ m scale}$	$\delta_{ m PDF}$	$\mathcal{K} = \sigma^{\rm NLO} / \sigma^{\rm LO}$	[Denner, Lang, Pellen, <u>Phys.</u> <u>Rev. D 104 (2021), 056018]</u>
			$\mu_R = \mu_F =$	$\mu_0 = H_T/3$	[NNPDF 3	3.1]	$6.8 \qquad \qquad \overline{\sigma}^{\text{full}}(\Gamma_{\text{t}}) \qquad gg \to e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} b \overline{b} \\ \mu_0 = 173.34 \text{ GeV} $
25	6.813	$+4.338 (64\%) \\ -2.481 (36\%)$	13.22	+2.66 (20%) -2.95 (22%)	$+0.19 (1\%) \\ -0.19 (1\%)$	1.94	$6.7 = \overline{\sigma}^{\text{res tr}}(\Gamma_{\text{t}})$
30	4.809	$+3.062 (64\%) \\ -1.756 (37\%)$	9.09	$+1.66 (18\%) \\ -1.98 (22\%)$	$+0.16(2\%) \\ -0.16(2\%)$	1.89	
35	3.431	+2.191 (64%) -1.256 (37%)	6.37	+1.07 (17%) -1.36 (21%)	$+0.11(2\%) \\ -0.11(2\%)$	1.86	
40	2.464	$+1.582 (64\%) \\ -0.901 (37\%)$	4.51	$+0.72 (16\%) \\ -0.95 (21\%)$	$+0.09(2\%) \\ -0.09(2\%)$	1.83	6.5
							6.4

QCD corrections are large: O(80%)

6.3

1/4

1/2

 $\Gamma_t/\Gamma_{\text{\tiny t}}^{phys}$

- $d\sigma_{\rm NWA_{Prod}}^{\rm NLO}$ yields the same $\Gamma_t^{\rm NLO}$ factors that are present in the full off-shell calculation

• Most suitable setup to assess the impact of genuine off-shell effects

"Unexpanded" cross section in NWA:

• "Unexpanded" cross section in NWA:

 $\Gamma_t^{NLO} = \Gamma_0 + \Gamma_1$ $\mathcal{O}(\alpha_s^0) \quad \mathcal{O}(\alpha_s)$

+

 $d\sigma_{
m NWA}^{NLO}$

• "Unexpanded" cross section in NWA:

$$\Gamma_t^{NLO} = \Gamma_0 + \Gamma_1$$

$$\mathcal{O}(\alpha_s^2) = \sigma_{t\bar{t}b\bar{b},incl.}^{NLO} + \mathcal{O}(\alpha_s^2)$$

+

• Rigorous factorization at NLO spoiled by formally suppressed $\mathcal{O}(\alpha_s^2)$ terms.

 $d\sigma_{
m NWA}^{NLO}$

 $\frac{1}{\Gamma_0 + \Gamma_1} \sim \frac{1}{\Gamma_0} - \frac{\Gamma_1}{(\Gamma_0)^2}$ $+ \mathcal{O}(\alpha_s^2)$

• "Expanded" cross section in NWA:

$$\left| \frac{1}{\Gamma_0 + \Gamma_1} \sim \frac{1}{\Gamma_0} - \frac{\Gamma_1}{(\Gamma_0)^2} + \mathcal{O}(\alpha_s^2) \right|$$

• "Expanded" cross section in NWA:

$$\boxed{\frac{1}{\Gamma_0 + \Gamma_1} \sim \frac{1}{\Gamma_0} - \frac{\Gamma_1}{(\Gamma_0)^2} + \mathcal{O}(\alpha_s^2)}$$

- Rigorous expansion of Γ_t^{NLO} in NWA gets rid of "spurious" $\mathcal{O}(\alpha_s^2)$ contributions
- Note: the same procedure does not apply straightforwardly to the off-shell calculation

- The unusually large size of $\mathcal{O}(\alpha_s^2)$ effects, $\mathcal{O}(6\%)$, relates to the large size of QCD corrections to $t\bar{t}b\bar{b}$ production cross section
- These effects are well within the NLO scale uncertainties, $\mathcal{O}(20\%)$