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Introduction

I αs is a fundamental SM parameter

I αs enters every precision study in particle physics

PDG 2021 world average

αs(MZ ) = 0.1179± 0.0009

Thrust [Abbate, Fickinger, Hoang, Mateu, Stewart 10]

αs(MZ ) = 0.1135± 0.0011

C-parameter [Hoang, Kolodrubetz, Mateu, Stewart 15]

αs(MZ ) = 0.1123± 0.0015

⇒ “3σ anomaly“

30 9. Quantum Chromodynamics

αs(M2

τ ) = 0.312 ± 0.015.
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Figure 9.2: Summary of determinations of αs(M2

Z
) from the seven sub-fields discussed in the

text. The yellow (light shaded) bands and dotted lines indicate the pre-average values of each
sub-field. The dashed line and blue (dark shaded) band represent the final world average value of
αs(M2

Z
). The “*” symbol within the “hadron colliders” sub-field indicates a determination including

a simultaneous fit of PDFs.
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New developments

Recent studies focused on non-perturbative effects from 3-jet configurations

I C-parameter in the symmetric 3-jet limit [Luisoni, Monni, Salam 20]

I general renormalon analysis [Caola, Ferrario Ravasio, Limatola, Melnikov, Nason 21; + Ozcelik 22]
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I . renormalon-type (massive gluon) computation starting from qq̄γ final state

I . reconstructs QCD result as a sum over colour dipoles

I ⇒ first (model-dependent) estimate of 3-jet power corrections
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New developments

Novel 3-jet power corrections have been implemented in αs fit [Nason, Zanderighi 23]αs fit with 3-jet hadronisation

! Fit does not include resummation

• would lead to smaller αs

• Strictly speaking, hadronisation 

computation does not apply to 3-

jet resolution y3

• additional model assumptions

• Find few per-cent differences 

among hadron mass schemes

• Fit with other observables? BW,

MH,MD ?
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I fit to ALPEH data with Q = MZ only

I fit does not include resummation

I universality of non-perturbative corrections unclear (in particular for y3)

⇒ conclusions are premature
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Our approach

Focus on 2-jet predictions that are theoretically well established

I SCET-based αs extractions were performed by a single group

I
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = maxt̂

∑
i |t̂ · ~pi|∑
i |~pi|

, (1)

where the sum i is over all final-state hadrons with mo-
menta ~pi. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ . 1/3 , (2)

far-tail region: 1/3 . τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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We present a global fit for αs(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207 GeV. The experimental data is compared to a
N3LL′ + O(α3

s) + Ω1 theoretical prediction (up to the missing four-loop cusp anomalous dimen-
sion), which includes power corrections coming from a field theoretical nonperturbative soft func-
tion. The dominant hadronic parameter is its first moment Ω1, which is defined in a scheme which
eliminates the O(ΛQCD) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for αs(mZ) and Ω1 is sufficient. We find
αs(mZ) = 0.1123 ± 0.0015 and Ω1 = 0.421 ± 0.063 GeV with χ2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for Ω1 between thrust and C-parameter within
1-σ.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e+ e− colliders
such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e+e− event shape variables quantify how well the event
resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling αs. For more inclusive
hadronic cross sections (like e+e− → hadrons) the αs
dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the αs dependence is a leading-order effect. For this rea-
son, the study of event shapes for determining αs has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(α3

s) [3–12].
Several previous high-precision studies which deter-

mine αs(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

τ = 1− T = min
~n

(
1−

∑
i |~n · ~pi|∑
j |~pj |

)
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0 ≤ τ ≤ 1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

∑
i,j |~pi||~pj | sin

2 θij

(
∑
i |~pi|)

2 , (2)

where θij gives the angle between particles i and j. It
is straightforward to show that 0 ≤ C ≤ 1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL′

accuracy, including fixed-order terms up to O(α3
s) and

hadronization effects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear Effective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for αs(mZ) and Ω1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the τ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.

Since both τ and C vanish in the dijet limit, it is worth-
while to contrast them in order to anticipate differences
that will appear in the analysis. Differences between C
and τ include the following:
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I Scrutinise implementation of non-perturbative effects

• Resummation at N3LL

• Multijet boundary condition

• Power correction, in a scheme free 

of the O( QCD) renormalon

• QED & bottom mass corrections

Main Focus:

I renormalon schemes

I perturbative scale choices

[talk by V. Mateu@αs workshop 2011]

⇒ we do not aim at a competetive αs extraction in this work!
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = maxt̂

∑
i |t̂ · ~pi|∑
i |~pi|

, (1)

where the sum i is over all final-state hadrons with mo-
menta ~pi. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ . 1/3 , (2)

far-tail region: 1/3 . τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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in the C-parameter spectrum, and in this region a fit for αs(mZ) and Ω1 is sufficient. We find
αs(mZ) = 0.1123 ± 0.0015 and Ω1 = 0.421 ± 0.063 GeV with χ2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for Ω1 between thrust and C-parameter within
1-σ.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e+ e− colliders
such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e+e− event shape variables quantify how well the event
resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling αs. For more inclusive
hadronic cross sections (like e+e− → hadrons) the αs
dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the αs dependence is a leading-order effect. For this rea-
son, the study of event shapes for determining αs has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(α3

s) [3–12].
Several previous high-precision studies which deter-

mine αs(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

τ = 1− T = min
~n

(
1−

∑
i |~n · ~pi|∑
j |~pj |

)
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0 ≤ τ ≤ 1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

∑
i,j |~pi||~pj | sin

2 θij

(
∑
i |~pi|)

2 , (2)

where θij gives the angle between particles i and j. It
is straightforward to show that 0 ≤ C ≤ 1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL′

accuracy, including fixed-order terms up to O(α3
s) and

hadronization effects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear Effective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for αs(mZ) and Ω1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the τ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.

Since both τ and C vanish in the dijet limit, it is worth-
while to contrast them in order to anticipate differences
that will appear in the analysis. Differences between C
and τ include the following:
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I Scrutinise implementation of non-perturbative effects

• Resummation at N3LL

• Multijet boundary condition

• Power correction, in a scheme free 

of the O( QCD) renormalon

• QED & bottom mass corrections

Main Focus:

I renormalon schemes

I perturbative scale choices

[talk by V. Mateu@αs workshop 2011]

⇒ we do not aim at a competetive αs extraction in this work!
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Thrust

Event shapes assign a number to the geometric distribution of hadrons

I T =
1
Q

max
~n

(∑
i

∣∣~pi · ~n
∣∣) ≡ 1− τ

τ ≈ 0 τ ≈ 0.5

Standard exercise to calculate O(αs) distribution

1

σB

dσ

dτ
= δ(τ) +

αsCF

2π

{(π2

3
− 1
)
δ(τ)−

3(1− 3τ)(1 + τ)

τ+
−

2(2− 3τ + 3τ2)

(1− τ)

([
ln τ

τ

]
+
−

ln(1− 2τ)

τ

)}

= δ(τ) +
αsCF

2π

{(π2

3
− 1
)
δ(τ)−

3

τ+
− 4
[

ln τ

τ

]
+

+ non-singular terms

}
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Overall structure

Thrust distribution

1
σB

dσ
dτ

= δ(τ) +
αsCF

2π

{(π2

3
− 1
)
δ(τ)−

3
τ+
− 4
[

ln τ

τ

]
+

+ non-singular

}
+O(α2

s)

• Peak region: strongly affected by hadronisation

• Tail region: used in fit for αs, resummation + matching + fitted 

hadronisation

• Far-tail region: strongly affected by higher-order QCD

8
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Τ

d
Σ

d
Τ

peak region

I very sensitive to non-perturbative effects

tail region

I resummation of singular corrections

far-tail region

I fixed-order QCD, but few events

R E V I S I T I N G S T R O N G - C O U P L I N G D E T E R M I N AT I O N S F R O M E V E N T S H A P E S G U I D O B E L L

PA R T I C L E P H Y S I C S S E M I N A R – V I E N N A J A N UA RY 2 0 2 4



Singular contribution

For τ → 0 all emissions are collinear or soft

1
σB

dσ
dτ
' H(Q, µ)

∫
dτn dτn̄ dτs J(

√
τnQ, µ) J(

√
τn̄Q, µ) S(τsQ, µ) δ(τ − τn − τn̄ − τs)

H(Q, µ): square of on-shell vector form factor

I known to 4-loop [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22]

J(
√
τnQ, µ): inclusive quark jet function

I known to 3-loop [Brüser, Liu, Stahlhofen 18; Banerjee, Dhania, Ravindran 18]

S(τsQ, µ): thrust soft function

I known to 2-loop [Kelley, Schwartz, Schabinger, Zhu 11; Gehrmann, Luisoni, Monni 11]

I 3-loop computation on-going [Baranowski, Delto, Melnikov, Wang 22; + Pikelner 24;
Chen, Feng, Jia, Liu 22]
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Resummation

Resum singular corrections to all orders using RG techniques

I d
d lnµ

H(Q, µ) =

[
2Γcusp(αs) ln

Q2

µ2
+ γH (αs)

]
H(Q, µ)

⇒ H(Q, µ) = H(Q, µH ) UH (µH , µ)

µH

µJ

µS

All ingredients for N3LL′ resummation are known, except for 3-loop soft constant

I c3
S̃

=

 −19988± 5440 EERAD3

691± 1000 Padé

⇒ EERAD3 is our default choice, but we also study the impact of switching to Padé
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Non-singular contribution

Thrust distribution is known to O(α3
s) [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 07;

Weinzierl 09]

I
+ +

⇒ implemented in public EERAD3 generator [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 14]

Combine singular and non-singular contributions

I σ
PT
c (τ) =

σc,sing(τ ;µH , µJ , µS )

σ0
+
αs(µns)

2π
r1
c (τ) +

(
αs(µns)

2π

)2
{

r2
c (τ) + β0 r1

c (τ) ln
µns

Q

}

+

(
αs(µns)

2π

)3
{

r3
c (τ) + 2β0 r2

c (τ) ln
µns

Q
+ r1

c (τ)

(
β1

2
ln
µns

Q
+ β

2
0 ln2 µns

Q

)}

⇒ need to determine remainder functions r i
c(τ)
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Remainder functions

Compare our extraction with 2010 analysis from Abbate et al
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I high-statistics runs reveal that EERAD3 is unstable for small τ values

⇒ use N3LL′ + O(α2
s) predictions for the αs fits
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Profile functions

Perturbative prediction depends on four dynamical scales: µH , µJ , µS , µns

⇒ use scale variation to estimate higher-order corrections in all sectors of the calculation
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I 2018 scales were designed to describe angularity distributions [GB, Hornig, Lee, Talbert 18]

I 2018 scales are more conservative than the 2010 scales used by Abbate et al

I 2018 scales are similar to the 2015 scales used by Hoang et al

I variations of µns try to account for missing logs in O(τ) suppressed terms
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Non-perturbative effects

Dijet factorisation theorem relies on SCET-1 scale hierachy µH � µJ � µS

Peak region: µS ∼ ΛQCD

I fully non-perturbative shape function

⇒ theoretical prediction becomes very model dependent

Tail region: µS � ΛQCD

I OPE of soft function

I S(k) =
1

Nc
Tr
〈
Ω
∣∣S†n̄ Sn δ

(
k −

∫
dη e−|η| ET (η)

)
S†n Sn̄

∣∣Ω〉 = δ(k)− 2Ω1 δ
′(k) + . . .

⇒ translates into a shift of the perturbative distribution [Lee, Sterman 06]

I dσ
dτ

(τ)
NP−→

dσ
dτ

(
τ −

2Ω1

Q

)
Ω1 =

1
Nc

Tr
〈
Ω
∣∣S†n̄ Sn ET (0) S†n Sn̄

∣∣Ω〉
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Gapped shape function

Specific implementation of non-perturbative effects [Korchemsky, Sterman 99; Hoang, Stewart 07]

I S(k , µS) =

∫
dk ′ SPT (k − k ′, µS) fmod(k ′ − 2∆)︸ ︷︷ ︸ ︸ ︷︷ ︸

perturbative soft function shape-function model

I gap parameter ∆ models minimal soft momentum of hadronic final state

⇒ convolution with perturbative cross section yields shift

I 2Ω1 = 2∆ +

∫
dk k fmod(k)

SPT and ∆ suffer from renormalon ambiguities in the MS scheme [Hoang, Stewart 07]

⇒ switch to a renormalon-free scheme

R E V I S I T I N G S T R O N G - C O U P L I N G D E T E R M I N AT I O N S F R O M E V E N T S H A P E S G U I D O B E L L

PA R T I C L E P H Y S I C S S E M I N A R – V I E N N A J A N UA RY 2 0 2 4



Gapped shape function

Specific implementation of non-perturbative effects [Korchemsky, Sterman 99; Hoang, Stewart 07]

I S(k , µS) =

∫
dk ′ SPT (k − k ′, µS) fmod(k ′ − 2∆)︸ ︷︷ ︸ ︸ ︷︷ ︸

perturbative soft function shape-function model

I gap parameter ∆ models minimal soft momentum of hadronic final state

⇒ convolution with perturbative cross section yields shift

I 2Ω1 = 2∆ +

∫
dk k fmod(k)

SPT and ∆ suffer from renormalon ambiguities in the MS scheme [Hoang, Stewart 07]

⇒ switch to a renormalon-free scheme

R E V I S I T I N G S T R O N G - C O U P L I N G D E T E R M I N AT I O N S F R O M E V E N T S H A P E S G U I D O B E L L

PA R T I C L E P H Y S I C S S E M I N A R – V I E N N A J A N UA RY 2 0 2 4



Renormalon subtraction

Redefine gap parameter

I ∆ = ∆(µδ, µR) + δ(µδ, µR)︸ ︷︷ ︸ ︸ ︷︷ ︸
renormalon free cancels renormalon ambiguity of SPT

Class of schemes that is free of leading soft renormalon [Bachu, Hoang, Mateu, Pathak, Stewart 20]

I dn

d(ln ν)n
ln
[
S̃PT (ν, µδ) e−2νδ(µδ,µR )

]
ν=ξ/µR

= 0

I derivative rank n ≥ 0

I reference scale µδ

I subtraction scale µR

I overall normalisation ξ = O(1)

⇒ different choices of {n, ξ, µδ, µR} define different renormalon subtraction schemes
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R-gap scheme

Used in 2010 and 2015 analyses

I R Scheme: {n, ξ, µδ, µR} = {1, e−γE , µS ,R}

I additional profile for subtraction scale µR

I µR(τ) = R(τ) ≡
{

R0 + µ1τ + µ2τ
2 τ ≤ t1 (peak region)

µS(τ) τ ≥ t1 (tail and far-tail)

Dependence on µδ and µR is controlled by RGE

I d
d lnµδ

∆(µδ, µR) = −
d

d lnµδ
δ(µδ, µR) ≡ γ∆ [αs(µδ)]

I d
dµR

∆(µR , µR) = −
d

dµR
δ(µR , µR) ≡ −γR [αs(µR)] “R evolution“

[Hoang, Jain, Scimemi, Stewart 08]
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R-gap scheme

Effective shift of perturbative distribution

I ζeff(τ) ≡
∫

dk k e−2δ(µδ,µR ) d
dk fmod

(
k − 2∆(µδ, µR)

)
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R evolution induces a larger shift

for larger values of τ

⇒ can one find a scheme in which the growth of the shift is mitigated?
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R∗ scheme

We propose a closely related scheme

I R? Scheme: {n, ξ, µδ, µR} = {1, e−γE ,R?,R?}

I R Scheme: {n, ξ, µδ, µR} = {1, e−γE , µS ,R}

I modified profile for subtraction scale µR

I µR(τ) = R∗(τ) ≡
{

R0 + µ1τ + µ2τ
2 τ ≤ t1 (peak region)

Rmax τ ≥ t1 (tail and far-tail)

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

τ

G
eV

2018 Profiles (64 Variations )

μHμJ

μS R*

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

τ

G
eV

2010 Profiles (64 Variations )

μHμJ

μS R*

I no logarithms in µδ
µR

I subtractions must be reexpanded in αs(µS)

⇒ logarithms in µS
µδ

only arise at O(α3
s)
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Effective shift of perturbative distribution

I ζeff(τ) ≡
∫
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I effective shift flattened as desired

I corresponds to . 10% modification

I of dominant power correction

⇒ the scheme is not necessarily preferred, but it allows us to verify if

I the predictions are stable under a variation of the renormalon scheme
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Differential distributions

We compare two renormalon schemes (R,R∗) for two profile scale choices (2018,2010)
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Extraction method

We perform a χ2 analysis at the level of binned distributions

I χ2 ≡
∑
i,j

∆i V−1
ij ∆j ∆i ≡

1
σ

dσ
dτ

(τi )
∣∣∣exp
−

1
σ

dσ
dτ

(τi )
∣∣∣th

I theory bins from cumulative distribution according to midpoint prescription

I 1
σ

dσ
dτ

(τi )
∣∣∣th
MP
≡

1
σtot

σc
(
τ2, µa(τ)

)
− σc

(
τ1, µa(τ)

)
τ2 − τ1

τ =
τ1 + τ2

2

I correlation of systematic experimental uncertainties estimated via minimal overlap model

I Vij
∣∣
MOM =

(
estat

i
)2
δij + min

(
esys

i , esys
j

)2

I theoretical uncertainties estimated from a random scan of O(1000) profile parameters

I ⇒ parametrised by an error ellipse Ktheory =

(
σ2
α ραΩ σασΩ

ραΩ σασΩ σ2
Ω

)
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Experimental data

52 datasets with varying center-of-mass energies

I ALEPH 91.2, 133, 161, 172, 183, 189, 200, 206

I DELPHI 45, 66, 76, 91.2, 133, 161, 172, 183, 189, 192, 196, 200, 202, 205, 207

I JADE 35, 44

I L3 41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8, 188.6, 194.4, 200, 206.2

I OPAL 91, 133, 161, 172, 177, 183, 189, 197

I SLD 91.2

I TASSO 35, 44

Two fit windows

I default 6/Q ≤ τ ≤ 0.33 488 bins

I reduced 6/Q ≤ τ ≤ 0.225 371 bins

Two fit parameters

I αs ≡ αs(mZ )

I Ω1 ≡ Ω1(R∆,R∆) with R∆ = 1.5 GeV
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Results

R scheme with different profile scale choices
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2010 scales for different renormalon schemes
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I scheme change has a much

I larger impact for 2010 scales

I related to lower value of t1
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2018 scales for different renormalon schemes
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I note that Ω1 is a scheme-

I dependent quantity

I αs drifts mildly to larger

I values of αs

2010 scales for different renormalon schemes
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N3LL'+ (αs
2)

I note that Ω1 is a scheme-

I dependent quantity

I scheme change has a much

I larger impact for 2010 scales

I related to lower value of t1
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Fit quality

All schemes provide good fits to the data
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I R∗2010 slightly less preferred than the others

I spread of {αs,Ω1} values much larger than R2010 ellipse would suggest

⇒ sign of additional systematic theory uncertainties?
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Reduced fit window

Compare with fits that concentrate more on dijet events
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I only mild effect on the extracted {αs,Ω1} values

I universal trend towards lower χ2
dof values among all schemes

⇒ may reduce uncertainties from uncontrolled extrapolation into 3-jet region
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Comparison to prior analyses

Our setup is similar but not identical to the 2010 and 2015 analyses

I we use N3LL′ + O(α2
s) predictions instead of N3LL′ + O(α3

s)

I we use a very different numerical value for c3
S̃

I we do not account for bottom and hadron masses or QED effects

I we use a slightly different method for calculating binned distributions

I we use a slightly different fit method

⇒ all these points are unrelated to the main concern of our analysis

I (renormalon schemes and profile scale choices)

⇒ in fact our analysis represents the first independent confirmation of the prior analyses!
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Impact of c3
S̃

Compare extractions that use two different values of the 3-loop soft constant

I c3
S̃

=

 −19988± 5440 EERAD3

691± 1000 Padé
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I minor impact on αs

I noticeable downward shift for Ω1

⇒ brings our extraction into even better

I agreement with Abbate et al
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Conclusions

We revisited αs determinations based on global thrust data

I our analysis represents the first independent confirmation of the previous analyses

I we find that the extractions are very sensitive to scheme and scale choices

I ⇒ view this as a signal of systematic theory uncertainties

I fits that are based on dijet events show a better fit quality

I ⇒ propose to perform fits that are more focussed on this region

I further progress possible on perturbative side

I ⇒ O(α3
s) remainder function, 3-loop soft constant c3

S̃
, resummation of O(τ) corrections
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Backup slides
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