Theory predictions for top-pair production at collider experiments

Mathieu PELLEN

University of Freiburg

Theory Seminar, University of Vienna Vienna, Austria

 27^{th} of June 2023

Outline:

\rightarrow Predictions for top-pair production! ...

 $\rightarrow \ldots$ and why you want to compute them

• *lepton+jets channel* (e⁺e⁻ and LHC)

• Recent results on top associated production

 \rightarrow Illustration of Giordano Bruno's philosophical ideas $_{\rm (XVI^{th}century)}$

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

<u>LHC</u>: Great tool to probe fundamental interactions at high energies \rightarrow Cross talk between **experiment** and **theory**

• Greatest achievement of the LHC so far: Discovery of the Higgs boson

 \rightarrow Great interest in measuring properties of the Higgs boson ...

... but there are also other interesting things

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

Why is the top quark interesting?

• It is the heaviest particles of the Standard Model!

- Decay before hadronisationPossible window to new physics

→ Cross-sections measurements machine!

Theory predictions for top-pair production at collider experiments

ightarrow higher-order corrections in $lpha_{
m s}$ and lpha

ightarrow higher-order corrections in $lpha_{
m s}$ and lpha

... and more legs!

 \rightarrow Why do you want to do a high-multiplicity computation?

 \rightarrow higher-order corrections in α_{s} and α

... and more legs!

 \rightarrow Why do you want to do a high-multiplicity computation?

🗆 because l can

- because I have nothing else to do
- because nobody did it before
- because it is relevant

ightarrow higher-order corrections in $lpha_{
m s}$ and lpha

... and more legs!

ightarrow Why do you want to do a high-multiplicity computation?

🗆 because l can

- because I have nothing else to do
- because nobody did it before
- because it is relevant

\rightarrow inclusion of **off-shell effects**

State of the art top-antitop production (@ lepton colliders)

- NLO QCD [Guo, Ma, Zhang, Wang; 0802.4124], [Liebler, Moortgat-Pick, Papanastasiou; 1511.02350]
 → With off-shell effects [Chokoufé Nejad et al.; 1609.03390]
- <u>NLO EW</u> [Fujimoto, Shimizu; Mod. Phys. Lett. A 3 (1988) 581], [Beenakker, van der Marck, Hollik; Nucl. Phys. B 365 (1991) 24–78], [Fleischer, Leike, Riemann, Werthenbach; hep-ph/0302259]
 - \rightarrow With ISR resummation [Quach, Kurihara; 1706.07042], [Bertone, et al.; 2207.03265]
- NNLO QCD [Gao, Zhu; 1408.5150,1410.3165], [Chen, Dekkers, Heisler, Bernreuther, Si; 1610.07897], [Bernreuther, Chen, Lu, Si; 2301.12632] (differential)
- N3LO QCD [Hoang, Mateu, Zebarjad; 0807.4173], [Kiyo, Maier, Maierhöfer, Marquard, 0907.2120] (inclusive)
- non-relativistic QCD and resummation [Hoang, Reisser, Ruiz-Femenia; 1002.3223], [Hoang, Stahlhofen;

1309.6323], [Beneke, et al.; 1506.06864], [Beneke, Maier, Rauh, Ruiz-Femenia; 1711.10429], [Bach, et al.; 1712.02220]

State of the art top-antitop production (@ LHC)

- <u>NLO QCD</u> [Frixione et al.; hep-ph/9503213], [Bernreuther et al.; hep-ph/0403035], [Melnikov, Schulze; 0907.3090], [Campbell et al.; 1204.1513, 1608.03356], ...
 - \rightarrow With off-shell effects [Denner et al.; 1012.3975, 1207.5018], [Bevilacqua et al.; 1012.4230], [Frederix; 1311.4893],

[Cascioli et al.; 1312.0546]

- \rightarrow With off-shell effects for leptons+jets [Denner, MP; 1711.10359]
- <u>NLO EW</u> [Bernreuther et al.; hep-ph/0610335, 0804.1237, 0808.1142], [Kühn et al.; hep-ph/0508092, hep-ph/0610335], [Hollik, Kollar; 0708.1697], [Pagani et al.; 1606.01915]

 \rightarrow With off-shell effects [Denner, MP; 1607.05571]

• NNLO QCD [Czakon et al.; 1303.6254, 1601.05375, 1606.03350],[Abelof et al.; 1506.04037]

 \rightarrow Combined with NLO EW [Czakon et al.; 1705.04105]

- \rightarrow With decays [Gao, Papanastasiou; 1705.08903], [Behring et al.; 1901.05407]
- NLO QCD matched to PS [Frixione et al.; hep-ph/0305252, 0707.3088], [Höche et al.;1402.6293], [Garzelli et al.;

1405.5859], [Campbell et al.; 1412.1828]

 \rightarrow With off-shell effects [Ježo et al.; 1607.04538]

• Invariants off their mass shells $\rightarrow e.g. \ M_{\ell\nu b} \neq m_{
m top}$

- Invariants off their mass shells $\rightarrow e.g. \ M_{\ell\nu b} \neq m_{
 m top}$
- Non-resonant contributions

VS.

- Invariants off their mass shells $\rightarrow e.g. \ M_{\ell\nu b} \neq m_{
 m top}$

• Description of the final state $\rightarrow e.g.$ pp \rightarrow t \bar{t} vs. pp $\rightarrow \nu_{\mu}\mu^{-}\bar{\nu}_{e}e^{+}b\bar{b}$

 \rightarrow All these effects are very much connected

- Final states dominated by a production process
- Example: measured final state $e^+\nu_e\mu^-\bar{\nu}_\mu b\bar{b}$ dominated by $pp \rightarrow t^*\bar{t}^* \rightarrow (W^* \rightarrow \nu_\mu\mu^-) (W^* \rightarrow e^+\nu_e) b\bar{b}$

Off-shell region receives large non-resonant contributions

 \rightarrow During run II/III, the tail of the distributions will be probed \rightarrow New physics contributions?

State of the art: high-multiplicity processes

 $\bullet \ 2 \to 6 \ processes$

off-shell top quarks, tri-boson, vector-boson scattering ...

- .. but only few publicly available with non-trivial resonance structure:
- \rightarrow NLO QCD to off-shell tt [Ježo et al.; 1607.04538] (LHC) with $\rm POWHEG$...
- ...and [Chokoufé Nejad et al.; 1609.03390] (e^+e^-) with $\rm WHIZARD$
- \rightarrow QCD QCD to off-shell tt $_{\rm [Frederix;\ 1311.4893]}$ with $\rm MadGraph5_AMC@NLO$
- \rightarrow NLO EW to VBS same-sign W [Chiesa, Denner, Lang, MP; 1906.01863] with PoWHEG
- \rightarrow NLO EW to WWW [Schönherr; 1806.00307] with $\rm SHERPA$

State of the art: high-multiplicity processes

 $\bullet \ 2 \to 6 \ processes$

off-shell top quarks, tri-boson, vector-boson scattering ...

- .. but only few publicly available with non-trivial resonance structure:
- \rightarrow NLO QCD to off-shell tt [Ježo et al.; 1607.04538] (LHC) with $\rm POWHEG$...
- ...and [Chokoufé Nejad et al.; 1609.03390] (e^+e^-) with $\rm WHIZARD$
- \rightarrow QCD QCD to off-shell tt $_{\rm [Frederix;\,1311.4893]}$ with $\rm MadGraph5_AMC@NLO$
- \rightarrow NLO EW to VBS same-sign W [Chiesa, Denner, Lang, MP; 1906.01863] with PoWHEG
- \rightarrow NLO EW to WWW [Schönherr; 1806.00307] with $\rm SHERPA$
- $2 \rightarrow 7$ processes
 - ightarrow NLO QCD to $tar{t}H$ [Denner, Feger; 1506.07448]
 - ightarrow NLO QCD to $tar{t}j$ [Bevilacqua et al.; 1509.09242, 1609.01659]
 - ightarrow NLO EW to $tar{t}H$ [Denner, Lang, MP, Uccirati; 1612.07138]
 - \rightarrow NLO QCD to Wbbjjj [Anger et al.; 1712.05721]
 - ightarrow NLO QCD to $tar{t}\gamma$ [Bevilacqua et al.; 1803.09916]

- $2 \rightarrow 8 \text{ processes}$
 - ightarrow NLO QCD to $tar{t}(Z
 ightarrow
 uar{
 u})$ [Bevilacqua et al.; 1907.09359]
 - \rightarrow NLO QCD to $t\bar{t}W$ [Bevilacqua et al.; 2005.09427], [Denner; Pelliccioli; 2007.12089]
 - ightarrow NLO QCD to $t\bar{t}b\bar{b}$ [Denner, Lang, MP; 2008.00918], [Bevilacqua et al.; 2105.08404, 2202.11186] \star
 - ightarrow NLO EW to $tar{t}W$ [Denner, Pelliccioli; 2102.03246] \star
 - ightarrow NLO QCD to $tar{t}(Z
 ightarrow\ell^+\ell^-)$ [Bevilacqua et al.; 2203.15688]
 - ightarrow NLO EW to $tar{t}Z$ [Denner, Lombardi, Pelliccioli; 2306.13535]

- $\bullet \ 2 \to 8 \ processes$
 - ightarrow NLO QCD to $tar{t}(Z
 ightarrow
 uar{
 u})$ [Bevilacqua et al.; 1907.09359]
 - ightarrow NLO QCD to $t\bar{t}W$ [Bevilacqua et al.; 2005.09427], [Denner; Pelliccioli; 2007.12089]
 - ightarrow NLO QCD to $t\bar{t}bb$ [Denner, Lang, MP; 2008.00918], [Bevilacqua et al.; 2105.08404, 2202.11186] \star
 - ightarrow NLO EW to $tar{t}W$ [Denner, Pelliccioli; 2102.03246] \star
 - ightarrow NLO QCD to $tar{t}(Z
 ightarrow\ell^+\ell^-)$ [Bevilacqua et al.; 2203.15688]
 - ightarrow NLO EW to $t\bar{t}Z$ [Denner, Lombardi, Pelliccioli; 2306.13535]
- 2 \rightarrow 9 processes \rightarrow NLO QCD to $t\bar{t}Wj$ [Bi, Kraus, Reinartz, Worek; 2305.03802] *

a) NLO QCD/EW to pp $ightarrow { m e}^+ u_{ m e} \mu^- ar{ u}_\mu { m b} ar{ m b}$

NLO QCD

NLO EW

\rightarrow Radiative tail due to non-reconstructed jets/photons

b) NLO QCD to pp $ightarrow { m e}^+ u_{ m e} \mu^- ar{ u}_\mu { m b} ar{ m b}$

- \rightarrow Different treatments of resonances
- ightarrow Inclusion of non-resonant contributions and all NLO corrections

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

c) LO: pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

[Denner, MP; 1607.05571]

d) LO: pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b}$

e) (N)LO QCD to pp $ightarrow { m e}^+ u_{ m e} \mu^- ar{ u}_\mu { m b} ar{ m b}$

Tools for own calculations presented here

 \bullet Private Monte Carlo $\operatorname{MoCaNLO}$ @ NLO QCD + EW

[Denner, Feger, Lombardi, MP, Pelliccioli, Schmidt, Schwan]

- Tree-level and one-loop: RECOLA [Actis et al.; 1211.6316, 1605.01090]
- Complex-mass scheme [Denner et al.; hep-ph/9904472, hep-ph/0505042, hep-ph/0605312]
- PDF: LHAPDF [Buckley et al.; 1412.7420]

PART I

• lepton+jets channel (e^+e^- and LHC)

Motivations

- NLO QCD to off-shell $e^+e^-
 ightarrow \mu^- \bar{
 u}_\mu b \bar{b} j j$
- Allows precise determination of top-quark mass [Seidel, Simon, Tesar, Poss;1303.3758]
- Larger cross section due to W boson branching ratio
- Better reconstruction of top quarks (only one neutrino)
- Unexplored final state for tt production (on the theoretical side beyond LO)
 - [Amjad, et al.; 1307.8102.], [Fuster, et al.; 1411.2355], [Amjad, et al., 1505.06020], [Bernreuther, et al., 1710.06737]

Predictions for $\sqrt{s} = 365 \,\text{GeV}$ and $\sqrt{s} = 1.5 \,\text{TeV}$ for e^+e^- collision

→ Event selection for *resolved topology* [ATLAS; 1708.00727], [CMS; 1610.04191]]:

 $\begin{array}{ll} \mbox{light/b jets:} & \mbox{$p_{\rm T,j/b}>20\,{\rm GeV}$} \\ \mbox{missing energy:} & \mbox{$p_{\rm T,miss}>20\,{\rm GeV}$} \\ \mbox{angular acceptance:} & \mbox{$10^\circ<\theta<170^\circ$} \\ \mbox{distance:} & \mbox{$\Delta R_{\ell j},\Delta R_{\ell j_{\rm b}}>0.4$} \end{array}$

 $ightarrow k_{
m T}$ jet algorithm with R = 0.4ightarrow Additional cut to avoid Higgs resonance

 $m_{{
m jj}\mu^+
u_\mu}>130\,{
m GeV}$

letpon+jets vs. fully leptonic

[Denner, Pelliccioli, MP; 2302.04188]

[Chokoufé Nejad et al.; 1609.03390]

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

@ 365 GeV

[Denner, Pelliccioli, MP; 2302.04188]

 \rightarrow Extreme radiative tail

@ 1.5 TeV

[Denner, Pelliccioli, MP; 2302.04188]

 \rightarrow Large corrections due to opening phase space

@ 365 GeV vs. 1.5 TeV

[Denner, Pelliccioli, MP; 2302.04188]

 \rightarrow Stark contrast between both centre-of-mass energy

@ 365 GeV vs. 1.5 TeV

• NLO QCD to off-shell pp $ightarrow \mu^- ar{
u}_\mu {
m b}ar{
m b} jj$

- Measured experimentally [ATLAS; 1708.00727], [CMS; 1610.04191]
- Larger cross section due to W boson branching ratio
- Better reconstruction of top quarks (only one neutrino)
- Unexplored final state for tt production (on the theoretical side) [Anger, Febres Cordero, Ita, Sotnikov; 1712.05721]: Wbb + 2j but different orders: $\mathcal{O}\left(\alpha_{s}^{4}\alpha^{2}\right)$ vs. $\mathcal{O}\left(\alpha_{s}^{4}\alpha^{4}\right)$

• The LO is defined at order $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^2\right)$

• NLO QCD is defined at order $\mathcal{O}\left(\alpha_{\rm s}^3 \alpha^2\right)$

Predictions for $\sqrt{s} = 13 \, {\rm TeV}$ at the LHC

 \rightarrow Event selection for *resolved topology* [ATLAS; 1708.00727], [CMS; 1610.04191]]:

 \rightarrow anti- $k_{\rm T}$ jet algorithm [Cacciari, Salam, Soyez; 0802.1189] with R = 0.4 \rightarrow Additional cut to ensure stable definition of fiducial volume at both LO/NLO

 $60\,{
m GeV} < m_{
m jj} < 100\,{
m GeV}$

• Full computation for pp $\rightarrow \mu^- \bar{\nu}_\mu b \bar{b} j j$:

 \rightarrow 32 partonic channels

• 6 partonic channels with two resonant top quarks

 $\begin{array}{ll} \mathrm{gg} \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_i \bar{q}_j, & q_i q_j \in \{\mathrm{ud}, \mathrm{cs}\}, \\ q_i \bar{q}_i / \bar{q}_i q_i \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_i \bar{q}_j, & q_i q_j \in \{\mathrm{ud}, \mathrm{cs}\}, \\ q_i \bar{q}_i / \bar{q}_i q_i \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_j \bar{q}_k, & q_i q_j q_k \in \{\mathrm{ucs}, \mathrm{cud}\}, \\ q_i \bar{q}_i / \bar{q}_i q_i \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_j \bar{q}_i, & q_i q_j \in \{\mathrm{du}, \mathrm{sc}\}, \\ q_i \bar{q}_i / \bar{q}_i q_i \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_j \bar{q}_k, & q_i q_j q_k \in \{\mathrm{dcs}, \mathrm{sud}\}, \\ \mathrm{b} \bar{\mathrm{b}} / \bar{\mathrm{b}} \mathrm{b} \to \mu^- \bar{\nu}_\mu \mathrm{b} \bar{\mathrm{b}} q_i \bar{q}_j, & q_i q_j \in \{\mathrm{du}, \mathrm{cs}\}. \end{array}$

ightarrow 98% without $m_{\rm jj}$ cut ightarrow 99.72% without $m_{\rm jj}$ cut

Computation done on partonic channels with resonant top quarks

 \rightarrow Large corrections toward high transverse momenta (due to real corrections)

 \rightarrow Clear effect of the cuts:

$$p_{{
m T},{
m j}_2,{
m max}}^2 \sim m_{
m jj,{
m max}}/\Delta R_{
m jj,{
m min}}^2 = (100)^2/(0.4)^2 = (250\,{
m GeV})^2$$

 \rightarrow Scale variation band increase for high transverse momenta (the NLO predictions become LO accurate)

 \rightarrow Different behaviour hadronic vs. leptonic top quark

- \rightarrow Different NLO behaviour between the hadronic and leptonic top quark
- \rightarrow Extreme NLO effect: inclusion of higher-order effects needed

PART II

• Recent results on top associated production

Yukawa coupling

 \rightarrow Couplings to Higgs and masses are proportional

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

NLO QCD to $t\bar{t}b\bar{b}$ [Denner, Lang, MP; 2008.00918]

[Denner, Feger, Scharf; 1412.5290]

NLO QCD to ttbb [Denner, Lang, MP; 2008.00918]

- 100% corrections
- Moderate off-shell effects

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

NLO QCD + EW to $t\bar{t}W$ [Denner; Pelliccioli; 2102.03246]

\rightarrow on-shell vs. off-shell

c1071	II. (4. II. (2.				$\mu_0^{(c)}$		$\mu_0^{(d)}$		$\mu_0^{(e)}$	
0[%]	$\mu = H_T/4$	$\mu = H_T/2$	$\mu = H_T$	perturbative order	σ (fb)	ratio	σ (fb)	ratio	σ (fb)	ratio
LO_2	-	_	_	$LO_{QCD} (\alpha_s^2 \alpha^6)$	$0.2218(1)^{+25.3\%}_{-18.8\%}$	1	$0.1948(1)^{+23.9\%}_{-18.1\%}$	1	$0.2414(1)^{+26.2\%}_{-19.3\%}$	1
102				LO_{EW} (α^8)	$0.002164(1)^{+3.7\%}_{-3.6\%}$	0.010	$0.002122(1)^{+3.7\%}_{-3.6\%}$	0.011	$0.002201(1)^{+3.7\%}_{-3.6\%}$	0.009
LO_3	0.8	0.9	1.1	$NLO_1 (\alpha_s^3 \alpha^6)$	0.0147(6)	0.066	0.0349(6)	0.179	0.0009(7)	0.004
NTO	R (R (R R)	FO 0 (0F F)	(12, 1) (12, 0)	$NLO_2 (\alpha_s^2 \alpha^7)$	-0.0122(3)	-0.055	-0.0106(3)	-0.054	-0.0134(4)	-0.056
NLO_1	34.8(7.0)	50.0(25.7)	63.4(42.0)	NLO ₃ $(\alpha_s \alpha^8)$	0.0293(1)	0.131	0.0263(1)	0.135	0.0320(1)	0.133
NLO_2	-4.4(-4.8)	-4.2(-4.6)	-4.0(-4.4)	$LO_{QCD}+NLO_1$	$0.2365(6)^{+2.9\%}_{-6.0\%}$	1.066	$0.2297(6)^{+5.5\%}_{-7.3\%}$	1.179	$0.2423(7)^{+3.5\%}_{-5.2\%}$	1.004
NLO.	11 0 (8 0)	19 9 (0 1)	125(0.3)	$LO_{QCD}+NLO_2$	$0.2094(3)^{+25.0\%}_{-18.7\%}$	0.945	$0.1840(3)^{+23.8\%}_{-17.9\%}$	0.946	$0.2277(4)^{+25.9\%}_{-19.2\%}$	0.944
NLO3	11.9 (0.9)	12.2 (9.1)	12.5 (3.5)	$LO_{EW}+NLO_3$	$0.03142(4)^{+22.2\%}_{-16.8\%}$	0.141	$0.02843(6)^{+20.5\%}_{-15.6\%}$	0.146	$0.03425(7)^{+22.8\%}_{-17.0\%}$	0.142
NLO_4	0.02(-0.02)	0.04(-0.02)	0.05(-0.01)	LO+NLO	$0.2554(7)^{+4.0\%}_{-6.5\%}$	1.151	$0.2473(7)^{+6.3\%}_{-7.6\%}$	1.270	$0.2628(9)^{+4.3\%}_{-5.9\%}$	1.089

[Frederix, Pagani, Zaro; 1711.02116]

[Denner; Pelliccioli; 2102.03246]

- Large cancellations between various orders
- Similar picture for on-shell and off-shell computation

Persistent tension in $t\bar{t}W$ data

- Theory prediction: [Frederix, Tsinikos; 2108.07826]
 - \rightarrow merged prediction with EW corrections
 - \rightarrow more events than expected

Mathieu PELLEN

Theory predictions for top-pair production at collider experiments

NLO QCD to tīWj [Bi, Kraus, Reinartz, Worek; 2305.03802]

- Non-negligible contributions in certain phase space
- $\underline{\wedge}$ Not a merged prediction (selection on extra jet for $t\bar{t}Wj$)

- Wealth of multi-legs computations
- Wealth of physics effects
- Outlook: make these computations available to th. and exp. communities

- Wealth of multi-legs computations
- Wealth of physics effects
- Outlook: make these computations available to th. and exp. communities
- Decisive information for SM measurements
 - \rightarrow Precision programme at the LHC (and future colliders)
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

BACK-UP