Interpreting top quark LHC measurements in SMEFT

Ken Mimasu
King’s College London

Particle Physics Seminar, Universität Wien
28th March 2023
New physics through tops

What is the origin of electroweak symmetry breaking?
New physics through tops

What is the origin of electroweak symmetry breaking?

Who are the main players?

- Higgs boson, EW gauge bosons & top quark
- Most massive ⇔ strongly coupled to the Higgs
New physics through tops

What is the origin of electroweak symmetry breaking?

Who are the main players?

- Higgs boson, EW gauge bosons & top quark
- Most massive ⇔ strongly coupled to the Higgs

The top is special for many reasons

EW vacuum stability
[Bednyakov et al.; PRL 115 (2015) 201802]...
The LHC is a top factory

May 2021

CMS Preliminary

Production Cross Section, σ [pb]

Rarity

strong interaction

weak interaction

All results at: http://cern.ch/go/pNj7
The LHC is a top factory

CMS Preliminary

$\tilde{t}\tilde{t} : 10^9$
$tj, tW, tb : 10^8$
$\tilde{t}\tilde{t} + Z/W/\gamma : 10^7$
$\tilde{t}\tilde{t}H : 10^6$
$\tilde{t}\tilde{t}\tilde{t} : 10^4$

$\mathcal{L}_{\text{int.}} \sim 3 \text{ ab}^{-1}$

May 2021

Production Cross Section, $\sigma [\text{pb}]$

Rarity
strong interaction

weak interaction

All results at: http://cern.ch/go/pNj7
The LHC is a top factory

$\bar{t}t : 10^9$
$\bar{t}j, tW, tb : 10^8$
$\bar{t}t + Z/W/\gamma : 10^7$
$\bar{t}tH : 10^6$
$\bar{t}\bar{t}t : 10^4$
$\mathcal{L}_{\text{int.}} \sim 3 \text{ ab}^{-1}$

Decays before hadronising
- Spin/helicity information preserved

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
Where are we?

~10 years since the start of LHC Run 1

- No clear sign of new physics at the TeV scale
- Direct searches are saturating the energy frontier
What have we learnt?

BSM: new states are too...
What have we learnt?

BSM: new states are too...

- **Weakly coupled**
 - rate limited
- Room for improvement
 - With increasing integrated luminosity
What have we learnt?

BSM: new states are too…

Weakly coupled

rate limited

Exotic

we aren’t looking in the right place

Room for improvement

With increasing integrated luminosity

Limited by our creativity

Work for theorists & experimentalists: Motivate & enable searches for new signatures
What have we learnt?

BSM: new states are too...

- **Weakly coupled**
 - rate limited
 - Room for improvement
 - With increasing integrated luminosity

- **Exotic**
 - we aren't looking in the right place
 - Limited by our creativity
 - Work for theorists & experimentalists:
 - Motivate & enable searches for new signatures

- **Heavy**
 - kinematically out of reach
 - Worst-case scenario
 - ...from direct search point of view
 - Complemented by indirect searches
What have we learnt?

BSM: new states are too...

- **Weakly coupled**
 - *rate limited*
 - Room for improvement
 - With increasing integrated luminosity

- **Exotic**
 - *we aren’t looking in the right place*
 - Limited by our creativity
 - Work for theorists & experimentalists:
 - Motivate & enable searches for new signatures

- **Heavy**
 - *kinematically out of reach*
 - Worst-case scenario
 - …from direct search point of view
 - Complemented by indirect searches

SM: a tremendous amount!

- Higgs discovery & properties \Rightarrow precision LHC programme
The LHC explorer

Many new processes observed at the LHC for the first time

Main Higgs production modes

- ggF, VH, VBF, ttH

Rare top production

- tttt, ttbb
- ttV, tW, tZ

Weak boson scattering

- VBS, VVV
The LHC explorer

Many new processes observed at the LHC for the first time

Main Higgs production modes

- ggF, VH, VBF, ttH

Rare top production

- tttt, ttbb
- ttV, tW, tZ

Weak boson scattering

- VBS, VVV

Each opens a new window, through which we can

Improve our understanding of the SM

- Search for new physics via new interactions
Energy & precision

Paradigm shift at the energy frontier for BSM searches
Energy & precision

Paradigm shift at the energy frontier for BSM searches

Direct (bumps)
Energy & precision

Paradigm shift at the energy frontier for BSM searches

Direct (bumps)
Indirect (tails)
⇒ New physics is heavy
Energy & precision

Paradigm shift at the energy frontier for BSM searches

Direct (bumps)
Indirect (tails)
⇒ New physics is heavy

Heavy new physics
Precision measurements
High energy

Effective Field Theory (EFT)
Energy & precision

Paradigm shift at the energy frontier for BSM searches

Direct (bumps)
Indirect (tails)
⇒ New physics is heavy

Heavy new physics
Precision measurements
High energy

Effective Field Theory (EFT)

\[A_{BSM}^n(E, M) \sim E^{4-n} \left(a_0 + a_1 \frac{E}{M} + a_2 \frac{E^2}{M^2} + \ldots \right), \quad E \ll M \]
SMEFT: SM v2.0

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i \mathcal{O}^D_i}{\Lambda^{D-4}} \]

SM = low energy effective description

- New physics = tower of irrelevant \((D>4)\) operators
- Respecting low energy field content & symmetries

SU(3)_c \times SU(2)_L \times U(1)_Y

\[\varphi = \begin{pmatrix} G^+ \\ v + h + iG^0 \end{pmatrix} : 2^{1\over 2} \]
SM = low energy effective description

- New physics = tower of irrelevant (D>4) operators
- Respecting low energy field content & symmetries

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i \mathcal{O}_i^D}{\Lambda^D-4} \]

\[\varphi = \begin{pmatrix} G^+ \\ v + h + iG^0 \end{pmatrix} : 2^{1/2} \]

\begin{align*}
aTGC & : X^3 : \varepsilon_{i,j,k} W_{\mu\nu}^I W_{\rho}^{J,\nu} W_{\rho}^{K,\mu} \\
\lambda_h & : H^6 : (\varphi^\dagger \varphi)^3 \\
\gamma_f & : \psi^2 H^3 : (\varphi^\dagger \varphi)^2 (\bar{q}_i u_j \bar{\varphi}) \\
ffV & : \psi^2 H^2 D : (\varphi^\dagger D_\mu \varphi) (\bar{q}_i \gamma^\mu q_j)
\end{align*}
SMEFT: SM v2.0

SM = low energy effective description
- New physics = tower of irrelevant (D>4) operators
- Respecting low energy field content & symmetries

$$\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i \mathcal{O}^D_i}{\Lambda^{D-4}}$$

SU(3)_c x SU(2)_L x U(1)_Y
$$\varphi = \left(\begin{array}{c} G^+ \\ v + h + iG^0 \end{array} \right) : {\bf 2}_{\frac{1}{2}}$$

aTGC
$$X^3 : \epsilon_{ijk} W^I_{\mu \nu} W^J_{\nu \rho} W^K_{\rho \mu}$$
$$X^2 H^2 : (\varphi^\dagger \varphi)^2 G^a_{\mu \nu} G^{a \mu \nu}$$
$$ggh(h)$$

$$\lambda_h$$
$$H^6 : (\varphi^\dagger \varphi)^3$$
$$H^4 D^2 : (\varphi^\dagger D^\mu \varphi)^* (\varphi^\dagger D^\mu \varphi)$$
$$\delta M_Z$$

$$\gamma_f$$
$$\psi^2 H^3 : (\varphi^\dagger \varphi)^2 (\bar{q}_i u_j \varphi)$$
$$\psi^2 X H : (\bar{q}_i \sigma^{\mu \nu} u_j \varphi) B_{\mu \nu}$$
‘dipole’

$$ffV$$
$$\psi^2 H^2 D : (\varphi^\dagger \overleftrightarrow{D}_\mu \varphi) (\bar{q}_i \gamma^\mu q_j)$$
$$\psi^4 : (\bar{q}_i \gamma^\mu q_j) (\bar{q}_k \gamma_\mu q_l)$$
4F

More than ‘just’ a parametrisation of ignorance
- Unlike anomalous couplings
- Finite energy range (∼Λ)
- Renormalisable QFT (order-by-order)
- Well defined matching procedure
SMEFT is...

Model independent

- Underlying assumptions

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i O^D_i}{\Lambda^{D-4}} \]

Heavy new physics: \(M > E_{\text{exp}} \)

SM field content & gauge symmetries

Linear EWSB: Higgs = doublet
SMEFT is...

Model independent

- Underlying assumptions

Systematically improvable

- Double expansion

\[\mathcal{L}_{\text{eff}} = \sum_i c_i \frac{O^D_i}{\Lambda ^{D-4}} \]

Heavy new physics: \(M > E_{\text{exp}} \)

SM field content & gauge symmetries

Linear EWSB: Higgs = doublet

\[\frac{E^2}{\Lambda^2} \quad \& \quad \{g_S, g, g'_I\} \quad \text{more loops} \]
SMEFT is...

Model independent
- Underlying assumptions

Systematically improvable
- Double expansion
 \[\frac{E^2}{\Lambda^2} \]
 & \[\{g_s, g, g'\} \]
 more loops

Global
- **Model independence**: we don’t know what operators NP will generate
- Patterns & correlations among observables are key

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i O_i^D}{\Lambda^{D-4}} \]

Heavy new physics: \(M > E_{\text{exp}} \)

SM field content & gauge symmetries

Linear EWSB: Higgs = doublet
SMEFT is...

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i O_i^D}{\Lambda^{D-4}} \]

Model independent
- Underlying assumptions

Systematically improvable
- Double expansion higher dim. \(\frac{E^2}{\Lambda^2} \) & \{g_s, g, g'\} more loops

Global
- **Model independence**: we don’t know what operators NP will generate
- Patterns & correlations among observables are key
- **Ultimate goal**: complete SMEFT likelihood confronted with HEP data

EWPO, Higgs, multiboson, top, DY, flavor,…

Heavy new physics: \(M > E_{\text{exp}} \)
SM field content & gauge symmetries
Linear EWSB: Higgs = doublet
SMEFT is...

Model independent
- Underlying assumptions

Systematically improvable
- Double expansion

Global
- **Model independence**: we don’t know what operators NP will generate
- Patterns & correlations among observables are key
- **Ultimate goal**: complete SMEFT likelihood confronted with HEP data
 - EWPO, Higgs, multiboson, top, DY, flavor,…

\[\mathcal{L}_{\text{eff}} = \sum_i \frac{c_i O^D_i}{\Lambda^{D-4}} \]

Heavy new physics: \(M > E_{\text{exp}} \)
SM field content & gauge symmetries
Linear EWSB: Higgs = doublet

\[\frac{E^2}{\Lambda^2} \quad \& \quad \{ g_S, g, g' \} \quad \text{more loops} \]

\[\mathcal{L}(c_i) \Rightarrow \text{indirectly constrain many UV models} \]
SMEFT interpretation

$$\Delta o_n = o_n^{\text{EXP}} - o_n^{\text{SM}} = \sum_i \frac{a_{n,i}(\mu) c_i^{(6)}(\mu)}{\Lambda^2} + O\left(\frac{1}{\Lambda^3}\right)$$
SMEFT interpretation

Improving new physics reach means improving...

$$\Delta o_n = o_n^{\text{EXP}} - o_n^{\text{SM}} = \sum_i \frac{a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu)}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$
SMEFT interpretation

Improving new physics reach means improving...

\[\Delta o_n = o_n^{\text{EXP}} - o_n^{\text{SM}} = \sum_i \frac{a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu)}{\Lambda^2} + \mathcal{O} \left(\frac{1}{\Lambda^3} \right) \]

Global nature
As many observables as possible
Identify patterns & correlations in fits
Exploit energy-growth
SMEFT interpretation

Improving new physics reach means improving...

\[\Delta o_n = o^{\text{EXP}}_n - o^{\text{SM}}_n = \sum_i \frac{a_{n,i}^{(6)}(\mu) c_i^{(6)}(\mu)}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right) \]

Global nature
As many observables as possible
Identify patterns & correlations in fits
Exploit energy-growth

Sensitivity

Experiment:
Best measurements & understanding of uncertainties and correlations

Theory:
Best available predictions for observables (NLO, NNLO, N3LO,...)
SMEFT interpretation

Improving new physics reach means improving...

\[
\Delta o_n = o_n^{\text{EXP}} - o_n^{\text{SM}} = \sum_i \frac{a_{n,i}(\mu) c_i^{(6)}(\mu)}{\Lambda^2} + O\left(\frac{1}{\Lambda^3}\right)
\]

Global nature
As many observables as possible
Identify patterns & correlations in fits
Exploit energy-growth

Sensitivity
Experiment: Best measurements & understanding of uncertainties and correlations
Theory: Best available predictions for observables (NLO, NNLO, N3LO, ...)

Interpretation
Relies on accurate knowledge of the size & correlation among a_i
Determining $c_i^{(6)}$ requires most precise available SMEFT predictions \Rightarrow NLO
The wealth of data

Decays

Flavor

CPV

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
The wealth of data

Decays
Flavor
CPV

Today’s topic
The importance of top data

\textbf{Likelihood ⇔ Fit to the Wilson coefficients}

- Search for deviations from the SM: \(\frac{C_i}{\Lambda^2} = 0 \)
- Find \textit{hints} for heavy new physics
- LHC top data has a vital role in this programme
The importance of top data

Likelihood ⇔ Fit to the Wilson coefficients

- Search for deviations from the SM: \(\frac{C_i}{\Lambda^2} = 0 \)
- Find hints for heavy new physics
- LHC top data has a vital role in this programme

By itself: individual bounds; top data alone

- Determine top quark properties/interactions
- Probe heavy new physics that couples preferentially to tops
The importance of top data

Likelihood \Leftrightarrow Fit to the Wilson coefficients

- Search for deviations from the SM: $\frac{C_i}{\Lambda^2} = 0$
- Find hints for heavy new physics
- LHC top data has a vital role in this programme

By itself: individual bounds; top data alone

- Determine top quark properties/interactions
- Probe heavy new physics that couples preferentially to tops

Globally: marginalised; top, Higgs, diboson, LEP, ... data

- Influence determination of other couplings in EW sector,...
- Probe more realistic models connected to the EWSB puzzle
Top operator glossary
Top operator glossary

currents \[i(\phi^+ \overleftrightarrow{D}_{\mu} \phi)(\bar{Q}_{\gamma\mu} Q) \]

- Shift SM $f\bar{f}V$ couplings
- $f\bar{f}Vh$ contact interactions

$C_{\phi f}$
Top operator glossary

Currents

\[i(\phi^\dagger \vec{D}^\mu \phi)(\bar{Q}^\gamma_\mu Q) \]

- Shift SM ffV couplings
- $ffVh$ contact interactions

\[C_{\phi f} \]

Yukawa

\[(\bar{q} t \bar{\phi})(\phi^\dagger \phi) \]

- Decouple m_t & y_t
- $t\bar{t}hh(h)$ contact interactions

\[C_{t\phi} \]
Top operator glossary

Currents
\[i(\phi^\dagger \overleftrightarrow{D}^\mu \phi)(\overline{Q}\gamma^\mu Q) \]
- Shift SM \(f\bar{f}V \) couplings
- \(f\bar{f}Vh \) contact interactions

Yukawa
\[(\bar{q} t \bar{\phi})(\phi^\dagger \phi) \]
- Decouple \(m_t \) & \(y_t \)
- \(t\bar{t}hh(h) \) contact interactions

Dipole
\[(\bar{q} \sigma_{\mu\nu} t \bar{\phi})V^{\mu\nu} \]
- Chirality flipping \(f\bar{f}V \) couplings
- \(f\bar{f}V(V)h \) contact interactions
- \(W, B \) & \(G \) fields
Top operator glossary

Currents
\[i(\phi^\dagger \overrightarrow{D}^\mu \phi)(\overline{Q} \gamma^\mu Q) \]
- Shift SM ffV couplings
- $ffVh$ contact interactions

Yukawa
\[(\overline{q} t \overline{\phi})(\phi^\dagger \phi) \]
- Decouple m_t & y_t
- $t\overline{t}h(h)$ contact interactions

Dipole
\[(\overline{q} \sigma_{\mu\nu} t \overline{\phi})V^{\mu\nu} \]
- Chirality flipping ffV couplings
- $ffV(V)h$ contact interactions
- $W, B & G$ fields

4 fermion
\[(\overline{f} \gamma_\mu f)(\overline{Q} \gamma^\mu Q) \]
- Contact interactions
- 2-heavy-2-light or 4-heavy
- Numerous ($\sim O(20)$ w/ top)
Fits: status & developments

Many SMEFT interpretations in experimental analyses
Fits: status & developments

Many SMEFT interpretations in experimental analyses

Global interpretations

- **Size**: 100s of data points & 10s of operators
- **Precision**: Inclusion of NLO QCD corrections & loop sensitivity
- **Breadth**: First combinations of top, Higgs & EW precision data

[Ellis, Madigan, KM, Sanz, You; JHEP 04 (2021) 279]
Fits: status & developments

Many SMEFT interpretations in experimental analyses

Global interpretations

• **Size:** 100s of data points & 10s of operators

• **Precision:** Inclusion of NLO QCD corrections & loop sensitivity

• **Breadth:** First combinations of top, Higgs & EW precision data

Take home message

• Top sector probed around TeV scale

• EW top couplings weakly constrained

• NLO effects can be significant

• EFT validity should be studied

Ellis, Madigan, KM, Sanz, You; JHEP 04 (2021) 279
Status in a nutshell

Global new physics searches via high precision/energy

- **Z & W-pole data**: handle on the EW gauge sector
 [Han & Skiba; PRD 71 (2005) 075009]
 [Falkowski & Riva; JHEP 02 (2015) 039]

- **LHC**: thriving Higgs & top programmes

- Probing gauge interactions at high energy (V V, VBS, VVV, …)
Status in a nutshell

Global new physics searches via high precision/energy

- Z & W-pole data: handle on the EW gauge sector
 [Han & Skiba; PRD 71 (2005) 075009]
 [Falkowski & Riva; JHEP 02 (2015) 039]
- LHC: thriving Higgs & top programmes
- Probing gauge interactions at high energy (VV, VBS, VVV, …)

How much cross-talk? Where does being global matter?
Status in a nutshell

Global new physics searches via high precision/energy

- **Z & W-pole data**: handle on the EW gauge sector
 - [Han & Skiba; PRD 71 (2005) 075009]
 - [Falkowski & Riva; JHEP 02 (2015) 039]

- **LHC**: thriving Higgs & top programmes

- Probing gauge interactions at high energy (VV, VBS, VVV, …)

How much cross-talk? Where does being global matter?

We know that Higgs data greatly complements LEP

- **Access unconstrained directions** in parameter space
- Allows for a **closed fit** to flavor-universal SMEFT
- Crucial to combine EWPO, Diboson & Higgs data

[Corbett et al.; PRD 87 (2013) 015022] [Ellis et al.; JHEP 06 (2018) 146]
[Pomarol & Riva; JHEP 01 (2014) 151]
[Ellis, Sanz & You; JHEP 03 (2015) 157]
[Biekkötter, Corbett & Plehn; SciPost Phys 6 (2019) 6, 064]…
Top & Higgs

Inextricably linked in the SM

- Yukawa interaction controls ggF
- Strong BSM motivation to study tops
Top & Higgs

Inextricably linked in the SM

- Yukawa interaction controls ggF
- Strong BSM motivation to study tops

$gg \rightarrow h$ is well measured at the LHC

- Does not exclude top partners, anomalous Yukawa!
Top & Higgs

Inextricably linked in the SM

- Yukawa interaction controls ggF
- Strong BSM motivation to study tops

\[gg \rightarrow h \] is well measured at the LHC

- Does not exclude top partners, anomalous Yukawa!

\[C_{HG} \text{ Point-like} \]
\[C_{tH} \text{ Yukawa} \]
\[C_{tG} \text{ Dipole} \]

Blind direction in BSM scenarios

Effective coupling degeneracy
Top & Higgs

Inextricably linked in the SM
- Yukawa interaction controls ggF
- Strong BSM motivation to study tops

$$gg \rightarrow h$$ is well measured at the LHC
- Does not exclude top partners, anomalous Yukawa!

Need more data to break degeneracy
Top & Higgs

Inextricably linked in the SM

- Yukawa interaction controls ggF
- Strong BSM motivation to study tops

$gg \rightarrow h$ is well measured at the LHC

- Does not exclude top partners, anomalous Yukawa!

C_{HG} Point-like
$C_{t\bar{t}H}$ Yukawa
C_{tG} Dipole

Need more data to break degeneracy

- $t\bar{t}H$ production for direct Yukawa measurement
Top & Higgs

Inextricably linked in the SM

- Yukawa interaction controls ggF
- Strong BSM motivation to study tops

$gg \rightarrow h$ is well measured at the LHC

- Does not exclude top partners, anomalous Yukawa!

C_{HG} Point-like
C_{th} Yukawa
C_{tG} Dipole

Blind direction in BSM scenarios

Effective coupling degeneracy

Need more data to break degeneracy

- $t\bar{t}H$ production for direct Yukawa measurement
- $t\bar{t}$ data to constrain dipole
The role of top data

$t\bar{t}$ cross section measurements constrain C_{tG}

- Indirectly improve bounds on C_{HG} and C_{tH}
The role of top data

t\bar{t} cross section measurements constrain C_{tG}
- Indirectly improve bounds on C_{HG} and C_{tH}

Several other new interactions can affect $t\bar{t}$
- Notably $q\bar{q}t\bar{t}$ operators, of which there are many (14)
- To what extent do these limit ultimate NP sensitivity in top/Higgs sector?
The role of top data

$t\bar{t}$ cross section measurements constrain C_{tG}

- Indirectly improve bounds on C_{HG} and C_{tH}

Several other new interactions can affect $t\bar{t}$

- Notably $q\bar{q}t\bar{t}$ operators, of which there are many (14)
- To what extent do these limit ultimate NP sensitivity in top/Higgs sector?

Can only be addressed in combined fit

- Identify other cross-talk (non-trivial correlations)
- Crystallisation of knowledge gained after LHC Run 2
- Broaden range of applicability to UV models
The fit

Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory

John Ellis,a,b,c Maeve Madigan,d Ken Mimasu,a Veronica Sanze,f and Tevong Youb,d,g [JHEP 04 (2021) 279]
Global SMEFT interpretation of 4 categories of data

14 • Electroweak Precision Observables (EWPO): Z-pole & W-mass

118 • LEP2 & LHC diboson production: differential WW, WZ, Zjj

72 • Higgs measurements: signal strengths & STXS

137 • Top data: single-top, ttbar & asymmetries, ttV, tZ, tW

Based on
[Ellis et al.; JHEP 06 (2018) 146]

Big thanks to authors of SMEFIT analysis
[JHEP 04 (2019) 100]
for sharing some of their top predictions
Global SMEFT interpretation of 4 categories of data

- 14 • Electroweak Precision Observables (EWPO): Z-pole & W-mass
- 118 • LEP2 & LHC diboson production: differential WW, WZ, Zjj
- 72 • Higgs measurements: signal strengths & STXS
- 137 • Top data: single-top, ttbar & asymmetries, ttV, tZ, tW

341 measurements across categories

• Chosen to be statistically independent & maximise reach
• Correlations included when publicly available (mostly are)
Global SMEFT interpretation of 4 categories of data

14 • Electroweak Precision Observables (EWPO): Z-pole & W-mass
118 • LEP2 & LHC diboson production: differential WW, WZ, Zjj
72 • Higgs measurements: signal strengths & STXS
137 • Top data: single-top, ttbar & asymmetries, ttV, tZ, tW

341 measurements across categories

• Chosen to be statistically independent & maximise reach
• Correlations included when publicly available (mostly are)

Linear EFT approximation: \[\mu_x \equiv \frac{X}{X_{SM}} = 1 + \sum_i a_i x^i \frac{C_i}{\Lambda^2} + \mathcal{O} \left(\frac{1}{\Lambda^4} \right) \]
Degrees of freedom

<table>
<thead>
<tr>
<th>Flavor scenario</th>
<th>Universal</th>
<th>‘Top specific’</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWPO:</td>
<td>O_{HWB}, O_{HD}, O_{ll}, $O_{Hl}^{(3)}$, $O_{Hl}^{(1)}$, O_{He}, $O_{Hq}^{(3)}$, $O_{Hq}^{(1)}$, O_{Hd}, O_{Hu},</td>
<td></td>
</tr>
<tr>
<td>Bosonic:</td>
<td>$O_{H\Box}$, O_{HG}, O_{HW}, O_{HB}, O_{W}, O_{G},</td>
<td></td>
</tr>
<tr>
<td>Yukawa:</td>
<td>$O_{\tau H}$, $O_{\mu H}$, O_{bH}, O_{tH},</td>
<td></td>
</tr>
<tr>
<td>Top 2F:</td>
<td>$O_{Hq}^{(3)}$, $O_{Hq}^{(1)}$, O_{Ht}, O_{tG}, O_{tW}, O_{tB},</td>
<td></td>
</tr>
<tr>
<td>Top 4F:</td>
<td>$O_{Qq}^{3,1}$, $O_{Qq}^{3,8}$, $O_{Qq}^{1,8}$, O_{Qu}^{8}, O_{Qd}^{8}, O_{tQ}^{8}, O_{tu}^{8}, O_{td}^{8},</td>
<td></td>
</tr>
</tbody>
</table>

20 + 14
Degrees of freedom

<table>
<thead>
<tr>
<th>Flavor scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal</td>
<td>EVPO: $\mathcal{O}{HWB}, \mathcal{O}{HD}, \mathcal{O}{ll}, \mathcal{O}{Hl}^{(3)}, \mathcal{O}{Hl}^{(1)}, \mathcal{O}{He}, \mathcal{O}{Hq}^{(3)}, \mathcal{O}{Hq}^{(1)}, \mathcal{O}{Hd}, \mathcal{O}{Hu}$,</td>
</tr>
<tr>
<td>‘Top specific’</td>
<td>Bosonic: $\mathcal{O}{H\Box}, \mathcal{O}{HG}, \mathcal{O}{HW}, \mathcal{O}{HB}, \mathcal{O}{W}, \mathcal{O}{G}$,</td>
</tr>
<tr>
<td></td>
<td>Yukawa: $\mathcal{O}{\tau H}, \mathcal{O}{\mu H}, \mathcal{O}{bH}, \mathcal{O}{tH}$,</td>
</tr>
<tr>
<td></td>
<td>Top 2F: $\mathcal{O}{H^{(3)}}, \mathcal{O}{H^{(1)}}, \mathcal{O}{Ht}, \mathcal{O}{tG}, \mathcal{O}{tW}, \mathcal{O}{tB}$,</td>
</tr>
<tr>
<td></td>
<td>Top 4F: $\mathcal{O}{Q_q}^{3,1}, \mathcal{O}{Q_q}^{3,8}, \mathcal{O}{Q_q}^{1,8}, \mathcal{O}{Q_u}, \mathcal{O}{Q_d}^{8}, \mathcal{O}{tQ}^{8}, \mathcal{O}{tu}, \mathcal{O}{td}$,</td>
</tr>
</tbody>
</table>

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
Top-only: top + EWPO individual

Top operators: EWPO + top EW + $t\bar{t}$ + $t\bar{t}X$

95%CL individual: $C_i \frac{(1\,\text{TeV})^2}{\Lambda^2}$

$\Lambda / \sqrt{C_i}$ [TeV]

K. Mimasu - Seminar, Vienna - 28/03/2023
Interpreting LHC top data in SMEFT
Top-only: top + EWPO individual

- Some tension in $t\bar{t}$ data
- Asymmetries help to improve agreement
Top-only: breakdown

4F (ťťq) operators

Individual:
all others = 0
Top-only: breakdown

- $t\bar{t}$ asymmetries constrain orthogonal direction to cross section
- Large marginalisation effects: many similar operators
- $t\bar{t}V$ & $t\bar{t}H$ help to close the space
Top-only: breakdown

4F ($t\bar{t}qq$) operators

- $t\bar{t}$ asymmetries constrain orthogonal direction to cross section
- Large marginalisation effects: many similar operators
- $t\bar{t}V$ & $t\bar{t}H$ help to close the space
- Marginalised linear sensitivity: $C_{4F} \left[\frac{1 \text{ TeV}^2}{\Lambda^2} \right] \sim (5 - 15)$ significant $\frac{1}{\Lambda^4}$ effects
Top-only: top + EWPO marginalised

95%CL marginalised; $C_i \frac{(1 \text{ TeV})^2}{\Lambda^2}$

$C_i = (4\pi)^2$ --- $C_i = 1$ --- $C_i = 0.01$
Top-only: top + EWPO marginalised

- Graph showing 95% CL marginalised limits for $C_i \left(\frac{1 \text{ TeV}}{\Lambda} \right)^2$
- Legend includes:
 - $t\bar{t}$ Run 1
 - $t\bar{t}$ Run 1 & 2 + Asym.
 - $t\bar{t}$ Run 1 & 2
 - no EWPO

- Bottom graph: previous individual limits for C_i with $C_i = (4\pi)^2$, $C_i = 1$, and $C_i = 0.01$
Top-only: top + EWPO marginalised

- C_{tH}: $t\bar{t}H$ bound alone is quite weak
- C_{tG}: Strong constraint but tension with SM
- Neutral top couplings poorly constrained
Top-only: top + EWPO marginalised

- C_{tH}: $t\bar{t}H$ bound alone is quite weak
- C_{tG}: Strong constraint but tension with SM
- Neutral top couplings poorly constrained
- EWPO closes $Zb\bar{b}$ coupling direction
- Impact of asymmetries in 4F
- Somewhat low scales (validity?)
Top-Higgs interplay

2D individual constraints
Top-Higgs interplay

2D individual constraints

- All others set to 0
- $ggF/t\bar{t}H$ complementarity for (C_{HG}, C_{tH})
- $H+\text{jets STXS}$ & $t\bar{t}V$ not yet competitive
- Strong impact of $t\bar{t}$ evident for (C_{tG}, C_{G})
- Tension with SM $\sim 2\sigma$
- Significant correlations remain
- Large marginalisation effects

K. Mimasu - Seminar, Vienna - 28/03/2023
Top-Higgs interplay

2D individual constraints

- All others set to 0
- $ggF/t\bar{t}H$ complementarity for (C_{HG}, C_{tH})
- H+jets STXS & $t\bar{t}V$ not yet competitive
- Strong impact of $t\bar{t}$ evident for (C_{tG}, C_{G})
- Tension with SM $\sim 2\sigma$
- Significant correlations remain
- Large marginalisation effects

What is the concrete impact of 4F?
4F impact

Fit to ‘Higgs-only’ subspace

\[C_{H^0}, C_{HG}, C_{HW}, C_{HB}, C_{tH}, C_{bH}, C_{\tau H}, C_{\mu H} + C_{tG} & C_{G} \]

- Allow a closed fit to Higgs data only
- Emphasises impact of \(t\bar{t}H \) & \(t\bar{t} \)
4F impact

Fit to ‘Higgs-only’ subspace
\(C_{H\Box}, C_{HG}, C_{HW}, C_{HB}, C_{tH}, C_{bH}, C_{\tau H}, C_{\mu H} + C_{tG} & C_{G}\)
- Allow a closed fit to Higgs data only
- Emphasises impact of \(t\bar{t}H & t\bar{t}\)

Now add in \(t\bar{t}\) 4F operators
\(+ C_{Qq}^{3,8}, C_{Qq}^{1,8}, C_{Qu}^{8}, C_{Qd}^{8}, C_{tq}^{8}, C_{tu}^{8}, C_{td}^{8}\)
- Relatively mild impact
- Preferred \(t\bar{t}\) phase space is different
\(C_{tG} : \) low \(m_{t\bar{t}}\)
\(4F : \) high \(m_{t\bar{t}}\)
- Able to constrain them independently
SMEFiT

Top, Higgs & Diboson w/ ‘perfect’ EWPO

- NLO QCD
- top loop sensitivity

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
SMEFiT

Top, Higgs & Diboson w/ ‘perfect’ EWPO

- NLO QCD
- top loop sensitivity

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
Linear vs Quadratic

[K. Mimasu - Seminar, Vienna - 28/03/2023]
Linear vs Quadratic

Some bounds purely \(O(\Lambda^{-4})\)

1) imprecise data
2) non-interference
Linear vs Quadratic

Some bounds purely $O(\Lambda^{-4})$
1) imprecise data
2) non-interference

Non-Gaussian posteriors: Quadratic effects important

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
Linear vs Quadratic

Non-Gaussian posteriors:
Quadratic effects important

Dim-8 effects? EFT validity?

1) imprecise data
2) non-interference

Some bounds purely $O(\Lambda^{-4})$
NLO vs LO

Top is coloured

Non-trivial QCD corrections
Loop sensitivity

Not just higher precision: new \textit{loop-induced} sensitivity

- Especially relevant for top loops: most \textit{strongly coupled} particle
- Weakly constrained directions meet precisely measured observables
- Large allowed Wilson coefficients overcome loop factors
Loop sensitivity

Not just higher precision: new loop-induced sensitivity

- Especially relevant for top loops: most strongly coupled particle
- Weakly constrained directions meet precisely measured observables
- Large allowed Wilson coefficients overcome loop factors

Example: top couplings in hVV vertex

- Yukawa, current & dipole couplings in $gg \rightarrow h \& h \rightarrow \gamma\gamma/Z\gamma$
- (Weakly) constrained at tree-level by $t\bar{t}\gamma/Z/H \& t\bar{t}$
Loop sensitivity

Not just higher precision: new loop-induced sensitivity

- Especially relevant for top loops: most strongly coupled particle
- Weakly constrained directions meet precisely measured observables
- Large allowed Wilson coefficients overcome loop factors

Example: top couplings in hVV vertex

- Yukawa, current & dipole couplings in $gg \rightarrow h$ & $h \rightarrow \gamma\gamma/Z\gamma$
- (Weakly) constrained at tree-level by $t\bar{t}\gamma/Z/H$ & $t\bar{t}$

SMEFiT: individual bounds dominated by Higgs data!

- Weak dipoles & Ztt current operators $(C_{tW}, C_{tZ}, C_{\phi Q}^{(-)}, C_{\phi Q}^{3}, C_{\phi t})$
- Also contributions to $gg \rightarrow Zh/ZZ/Z\gamma/WW$
- Complementary indirect sensitivity from non-top data
Top EW interactions

![Graph showing Top EW interactions with different categories: EWPO, Bosonic, Yuk, Top 2F. The graph displays the values of a parameter $\Lambda/\sqrt{c_i}$ in TeV for various combinations of c_i. The graph includes two error levels: 2σ Individual and 2σ Marginalised.](image)
Top EW interactions
Top EW interactions

- Charged current interactions quite well constrained
Top EW interactions

- **Charged current** interactions quite well constrained
- **Yukawa** and **neutral current** are among the worst
Top EW interactions

- Charged current interactions quite well constrained
- Yukawa and neutral current are among the worst

How can we improve?
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?

$t\bar{t}X$ for Yukawa & neutral current operators

- EFT effect $\propto \nu^2/\Lambda^2$, no energy growth (SM-kinematics)
- EFT \times SM interference often suppressed

[Azatov et al.; PRD 95 (2017) no. 6, 065014]
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?

$t\bar{t}X$ for Yukawa & neutral current operators

- EFT effect $\propto \frac{v^2}{\Lambda^2}$, no energy growth (SM-kinematics)
- EFT \times SM interference often suppressed

 [Azatov et al.; PRD 95 (2017) no. 6, 065014]

\[
\mathcal{A} \sim \mathcal{A}_{SM} \left(1 + c_i \frac{v^2}{\Lambda^2} + c_j \frac{v E}{\Lambda^2} + c_k \frac{E^2}{\Lambda^2} \right)
\]
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?

\(t\bar{t}X \) for Yukawa & neutral current operators

- EFT effect \(\propto \frac{v^2}{\Lambda^2} \), no energy growth (SM-kinematics)
- EFT \(\times \) SM interference often suppressed

[Azatov et al.; PRD 95 (2017) no. 6, 065014]

\[
\mathcal{A} \sim \mathcal{A}_{SM} \left(1 + c_i \frac{v^2}{\Lambda^2} + c_j \frac{v}{\Lambda^2} + c_k \frac{E^2}{\Lambda^2} \right)
\]

Rate measurements will become systematics dominated
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?

$t\bar{t}X$ for Yukawa & neutral current operators

- EFT effect $\propto v^2/\Lambda^2$, no energy growth (SM-kinematics)
- EFT \times SM interference often suppressed
 [Azatov et al.; PRD 95 (2017) no. 6, 065014]

$A \sim A_{SM} \left(1 + c_i \frac{v^2}{\Lambda^2} + c_j \frac{v E}{\Lambda^2} + c_k \frac{E^2}{\Lambda^2}\right)$

‘Energy helps accuracy’
 [Farina et al.; PLB 772 (2017) 210-215]

Rate measurements will become systematics dominated
Increasingly high-energy measurements scale with lumi.
High energy & multiplicity

Improving sensitivity = collect more data. Is it enough?

$t\bar{t}X$ for Yukawa & neutral current operators

- EFT effect $\propto \frac{v^2}{\Lambda^2}$, no energy growth (SM-kinematics)
- EFT \times SM interference often suppressed
 [Azatov et al.; PRD 95 (2017) no. 6, 065014]

\[\mathcal{A} \sim \mathcal{A}_{SM} \left(1 + c_i \frac{v^2}{\Lambda^2} + c_j \frac{v E}{\Lambda^2} + c_k \frac{E^2}{\Lambda^2} \right) \]

‘Energy helps accuracy’
 [Farina et al.; PLB 772 (2017) 210-215]

Rate measurements will become systematics dominated
Increasingly high-energy measurements scale with lumi.

There will always be some scattering amplitude
that displays maximal (E^2) growth w.r.t the SM
Finding the right process

Gauge invariance +
Goldstone equivalence theorem: $\partial^\mu G \leftrightarrow Z_L^\mu$
Finding the right process

Gauge invariance +
Goldstone equivalence theorem: $\partial^\mu G \leftrightarrow Z_\mu^\mu$

\[
C_{tH}(H^\dagger H)(\bar{Q}tH) \quad \langle H^\dagger H \rangle = v^2 \Rightarrow h \sim v^2/\Lambda^2
\]
Finding the right process

Gauge invariance +
Goldstone equivalence theorem: \(\partial^\mu G \leftrightarrow Z_L^\mu \)

\[C_t H (H^t H) (\bar{Q} t \tilde{H}) \]
\[\langle H^t H \rangle = v^2 \Rightarrow h \sim v^2/\Lambda^2 \]

Feynman gauge
\[\langle H^t H \rangle = v^2 + 2v h + h^2 + G^+ G^- + G_0^2 \Rightarrow \sim v E/\Lambda^2 \]
Finding the right process

Gauge invariance + Goldstone equivalence theorem:

\[\partial_\mu G \leftrightarrow Z^\mu_L + \sim v^2 \]

\[C_{tH}(H^\dagger H)(\bar{Q}t\tilde{H}) \]

\[\langle H^\dagger H \rangle = v^2 \Rightarrow \]

\[\sim v^2 / \Lambda^2 \]

Feynman gauge

\[\langle H^\dagger H \rangle = v^2 + 2vh + h^2 + G^+G^- + G_0^2 \Rightarrow \]

\[\sim vE / \Lambda^2 \]
Finding the right process

Gauge invariance +
Goldstone equivalence theorem: \(\partial^\mu G \leftrightarrow Z_L^\mu \)

\[C_{tH}(H^+H)(\bar{Q}t\bar{H}) \quad \langle H^+H \rangle = v^2 \quad \Rightarrow \quad h \sim v^2/\Lambda^2 \]

Feynman gauge \(\langle H^+H \rangle = v^2 + 2vh + h^2 + G^+G^- + G_0^2 \quad \Rightarrow \quad \sim vE/\Lambda^2 \)
Finding the right process

Gauge invariance +
Goldstone equivalence theorem:

$$\partial^\mu G \leftrightarrow Z_L^\mu$$

$$C_{tH}(H^\dagger H)(\tilde{Q}t\tilde{H})$$

$$\langle H^\dagger H \rangle = v^2 \Rightarrow h \sim v^2/\Lambda^2$$

Feynman gauge

$$\langle H^\dagger H \rangle = v^2 + 2vh + h^2 + G^+G^- + G_0^2 \Rightarrow$$

$$C_{Ht} i(H^\dagger \vec{D}_\mu H)(\tilde{t}_R \gamma^\mu t_R) \Rightarrow z \sim v^2/\Lambda^2$$
Finding the right process

Gauge invariance +
Goldstone equivalence theorem:
\[\partial^\mu G \leftrightarrow Z^\mu_L \]

\[C_{t\bar{H}}(H^\dagger H)(\bar{Q}t\bar{H}) \quad \langle H^\dagger H \rangle = v^2 \quad \Rightarrow \]
\[\sim v^2/\Lambda^2 \]

Feynman gauge
\[\langle H^\dagger H \rangle = v^2 + 2v h + h^2 + G^+ G^- + G_0^2 \quad \Rightarrow \]
\[\sim v E/\Lambda^2 \]

\[C_{Ht} i(H^\dagger \bar{D}_\mu H)(\bar{t}_R \gamma^\mu t_R) \quad \Rightarrow \]
\[\sim v^2/\Lambda^2 \]

\[\sim E^2/\Lambda^2 \]

\[t W_L \rightarrow t W_L \]
\[t Z_L \rightarrow t h \]
\[b W_L \rightarrow t Z_L \]
\[b W_L \rightarrow t h \]
Finding the right process

Gauge invariance +
Goldstone equivalence theorem:
\[\partial^\mu G \leftrightarrow Z^\mu_L \]

\[C_{tH}(H^\dagger H)(\bar{Q}t\bar{H}) \]
\[\langle H^\dagger H \rangle = v^2 \Rightarrow h \sim v^2/\Lambda^2 \]

Feynman gauge
\[\langle H^\dagger H \rangle = v^2 + 2vh + h^2 + G^+G^- + G_0^2 \Rightarrow \]
\[\sim vE/\Lambda^2 \]

\[C_{Ht}i(H^\dagger \not{D}_\mu H)(\bar{t}_R\gamma^\mu t_R) \Rightarrow \]
\[\sim v^2/\Lambda^2 \]

Unitarity non-cancellations in scattering amplitudes \[\iff \]
Non-renormalisable contact interactions with Goldstones

\[tW_L \rightarrow tW_L \]
\[tZ_L \rightarrow th \]
\[bW_L \rightarrow tZ_L \]
\[bW_L \rightarrow th \]
Finding the right process

Gauge invariance +
Goldstone equivalence theorem:
\[\partial^\mu G \leftrightarrow Z^\mu_L \]

\[C_{tH}(H^+H)(\bar{Q}t\bar{H}) \quad \langle H^+H \rangle = v^2 \quad \Rightarrow \]
\[h \quad \sim \frac{v^2}{\Lambda^2} \]

Feynman gauge
\[\langle H^+H \rangle = v^2 + 2vh + h^2 + G^+G^- + G^0_0 \quad \Rightarrow \]
\[tW_L \rightarrow tW_L \quad tZ_L \rightarrow th \quad bW_L \rightarrow tZ_L \quad bW_L \rightarrow th \]

\[C_{Ht} i(H^+D_\mu H)(\bar{t}_R\gamma^\mu t_R) \quad \Rightarrow \]
\[z \quad \sim \frac{v^2}{\Lambda^2} \quad + \]
\[\sim \frac{E^2}{\Lambda^2} \]

Unitarity non-cancellations in scattering amplitudes
\[\Leftrightarrow \]
Non-renormalisable contact interactions with Goldstones

Less vevs, more legs! (AKA multiplicity)

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT

[Dror et al.; JHEP 01 (2016) 071]
[Mantani, Maltoni & KM; JHEP 10 (2019) 004]

[Henning et al.; PRL 123 (2019) 181801]
EW top scattering

\[s \sim t \gg m^2 \]

<table>
<thead>
<tr>
<th></th>
<th>Single-top</th>
<th>Two-top ((tt))</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Higgs</td>
<td>(bW \rightarrow t (Z/\gamma))</td>
<td>(tW \rightarrow tW)</td>
</tr>
<tr>
<td></td>
<td>(t (Z/\gamma) \rightarrow t (Z/\gamma))</td>
<td></td>
</tr>
<tr>
<td>w/ Higgs</td>
<td>(bW \rightarrow th)</td>
<td>(t (Z/\gamma) \rightarrow th)</td>
</tr>
<tr>
<td></td>
<td>(th \rightarrow th)</td>
<td></td>
</tr>
</tbody>
</table>

2 \rightarrow 2 top EW scattering amplitudes in high energy limit:
study of unitarity violating behaviour & helicity structure in dimension-6 SMEFT
EW top scattering

2 → 2 top EW scattering amplitudes in high energy limit:
study of unitarity violating behaviour & helicity structure in dimension-6 SMEFT

e.g. $bW \rightarrow th$
EW top scattering

\[s \sim t \gg m^2 \]

Single-top \[bW \rightarrow t(Z/\gamma) \]
\[tW \rightarrow tW \]
\[t(Z/\gamma) \rightarrow t(Z/\gamma) \]

Two-top \((tt)\)
\[bW \rightarrow th \]
\[t(Z/\gamma) \rightarrow th \]
\[th \rightarrow th \]

2 → 2 top EW scattering amplitudes in high energy limit:

- study of unitarity violating behaviour & helicity structure in dimension-6 SMEFT

\[A(b_L, W_L, t_R) \propto \sqrt{-t}(2m_w^2 g_{th} - g_{wh}m_t) \]

- e.g. \(bW \rightarrow th \)
EW top scattering

\[
\begin{align*}
B & \quad B' \\
\text{s} \sim t \gg m^2 & \quad f \quad f'
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Single-top</th>
<th>Two-top (tt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Higgs</td>
<td>(bW \to t (Z/\gamma))</td>
<td>(tW \to tW) (t(Z/\gamma) \to t(Z/\gamma))</td>
</tr>
<tr>
<td>w/ Higgs</td>
<td>(bW \to th)</td>
<td>(t(Z/\gamma) \to th) (th \to th)</td>
</tr>
</tbody>
</table>

2 \to 2 top EW scattering amplitudes in high energy limit:
study of unitarity violating behaviour & helicity structure in dimension-6 SMEFT

\[
A(b_L, W_L, t_R) \propto \sqrt{-t(2m_w^2 g_{th} - g_{Wlh} m_t)}
\]

e.g. \(bW \to th\) SMEFT \(\Rightarrow\)

<table>
<thead>
<tr>
<th>(\lambda_b, \lambda_W, \lambda_t)</th>
<th>SM</th>
<th>(O_{t\varphi})</th>
<th>(O_{\varphi tb})</th>
<th>(O_{\varphi W})</th>
<th>(O_{tW})</th>
<th>(O_{\varphi Q}^{(3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-, 0, -)</td>
<td>(s^0)</td>
<td>(\frac{1}{\sqrt{s}}) (\sqrt{-tv})</td>
<td>(-)</td>
<td>(s^0)</td>
<td>(s^0)</td>
<td>(s\sqrt{s+t})</td>
</tr>
<tr>
<td>(-, 0, +)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>(+, 0, -)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>(+, 0, +)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>
EW top scattering

2 → 2 top EW scattering amplitudes in high energy limit: study of unitarity violating behaviour & helicity structure in dimension-6 SMEFT

Example: $bW \rightarrow th$

SMEFT

Where is max-growth?
Behaviour of interference?

Table:

<table>
<thead>
<tr>
<th></th>
<th>Single-top</th>
<th>Two-top (tt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o Higgs</td>
<td>$bW \rightarrow t (Z/\gamma)$</td>
<td>$tW \rightarrow tW$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t(Z/\gamma) \rightarrow t(Z/\gamma)$</td>
</tr>
<tr>
<td>w/ Higgs</td>
<td>$bW \rightarrow th$</td>
<td>$t(Z/\gamma) \rightarrow th$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$th \rightarrow th$</td>
</tr>
</tbody>
</table>

Formula:

$$A(b_L, W_L, t_R) \propto \sqrt{-t(2m_W^2 g_{th} - g_{wh} m_t)}$$
Overview of results

gauge/higgs operators ↔ top operators

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ_Q}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bW \rightarrow tZ$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>$bW \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$bW \rightarrow th$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ_Q}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tW \rightarrow tW$</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>$tZ \rightarrow tZ$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>$tZ \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$t\gamma \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ_Q}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tZ \rightarrow th$</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$t\gamma \rightarrow th$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$th \rightarrow th$</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Energy-growing interference

single-top

two-top w/o Higgs

two-top w/ Higgs

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
Overview of results

gauge/higgs operators \leftrightarrow top operators

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ^D}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bW \rightarrow tZ$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
</tr>
<tr>
<td>$bW \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E^2</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$bW \rightarrow th$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>$-E^2$</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ^D}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tW \rightarrow tW$</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>$tZ \rightarrow tZ$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E^2</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>$tZ \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$t\gamma \rightarrow t\gamma$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O_{φ_D}</th>
<th>O_{φ^D}</th>
<th>O_{φ_B}</th>
<th>O_{φ_W}</th>
<th>$O_{\varphi_{WB}}$</th>
<th>O_W</th>
<th>$O_{t\varphi}$</th>
<th>O_{tB}</th>
<th>O_{tW}</th>
<th>$O_{\varphi_Q}^{(1)}$</th>
<th>$O_{\varphi_Q}^{(3)}$</th>
<th>O_{φ_t}</th>
<th>$O_{\varphi_{tb}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tZ \rightarrow th$</td>
<td>E</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>E</td>
<td>$-$</td>
</tr>
<tr>
<td>$t\gamma \rightarrow th$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>E^2</td>
<td>E^2</td>
<td>E^2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$th \rightarrow th$</td>
<td>E</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>E</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Most top operators show max growth somewhere

- Interfering growth rare, only in longitudinal configurations (c.f. helicity selection)
Embedding the amplitudes

Collider processes: high multiplicity, EW top production

(a) $t\bar{t}X$

(b) tX_j

(c) tWX

(d) $t\bar{t}X_j$

(e) $t\bar{t}XY$

(f) VBF
Embedding the amplitudes

Collider processes: high multiplicity, EW top production

Couplings \{ top EW, Higgs, triple gauge \} \Rightarrow \text{Heart of EWSB sector}
Top EW scattering pheno

<table>
<thead>
<tr>
<th></th>
<th>tWj</th>
<th>tZj</th>
<th>$t\gamma j$</th>
<th>tWZ</th>
<th>$tW\gamma$</th>
<th>thj</th>
<th>thW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bW \rightarrow tZ$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$bW \rightarrow t\gamma$</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$bW \rightarrow th$</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Single-top

<table>
<thead>
<tr>
<th></th>
<th>$ttW(j)$</th>
<th>$tt\bar{W}$</th>
<th>$tt\bar{Z}(j)$</th>
<th>$tt\gamma(j)$</th>
<th>$tt\gamma\gamma$</th>
<th>$tt\gamma Z$</th>
<th>$tt\bar{Z}Z$</th>
<th>VBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tW \rightarrow tW$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$tZ \rightarrow tZ$</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$tZ \rightarrow t\gamma$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>$t\gamma \rightarrow t\gamma$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Two-top w/o Higgs

<table>
<thead>
<tr>
<th></th>
<th>$tt\bar{h}(j)$</th>
<th>$tt\bar{Z}h$</th>
<th>$tt\gamma h$</th>
<th>$tt\bar{h}\bar{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tZ \rightarrow th$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$t\gamma \rightarrow th$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>$th \rightarrow th$</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Two-top w/ Higgs
Top EW scattering pheno

<table>
<thead>
<tr>
<th></th>
<th>tWj</th>
<th>tZj</th>
<th>$t\gamma j$</th>
<th>tWZ</th>
<th>$tW\gamma$</th>
<th>thj</th>
<th>thW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bW \rightarrow tZ$</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$bW \rightarrow t\gamma$</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$bW \rightarrow th$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$ttW(j)$</th>
<th>$t\bar{t}WW$</th>
<th>$t\bar{t}Z(j)$</th>
<th>$t\bar{t}\gamma(j)$</th>
<th>$t\bar{t}\gamma\gamma$</th>
<th>$t\bar{t}\gamma Z$</th>
<th>$t\bar{t}ZZ$</th>
<th>VBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tW \rightarrow tW$</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>$tZ \rightarrow tZ$</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$tZ \rightarrow t\gamma$</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\gamma \rightarrow t\gamma$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$t\bar{t}h(j)$</th>
<th>$t\bar{t}Zh$</th>
<th>$t\bar{t}\gamma h$</th>
<th>$t\bar{t}hh$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$tZ \rightarrow th$</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\gamma \rightarrow th$</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$th \rightarrow th$</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

See, e.g., tZj/tHj [Degrande, Maltoni, KM, Vryonidou & Zhang; JHEP 01 (2022) 100]
tWZ [El Faham, Maltoni, KM & Zaro; JHEP 01 (2022) 100]
Rare single top modes

\[t\bar{Z}, tWZ \]
Rare single top modes

\[tZ \]

\[bW \rightarrow tZ \]

neutral & charged current
top quark gauge interactions

\[tWZ \]

\[\bar{b}/b \rightarrow W^\pm Z \]

\[g \rightarrow t/\bar{t} \]
Rare single top modes

$b/b \rightarrow tZ$

tWZ

$bW \rightarrow tZ$

neutral & charged current top quark gauge interactions

$O_{\varphi Q}^{(3)} = i (\varphi^\dagger \overleftrightarrow{D}_\mu \tau^I \varphi) (\bar{Q} \gamma^\mu \tau_I Q)$

Expectation:
Energy-growing interference
Rare single top modes

\[b/\bar{b} \rightarrow t/Z \]

Neutral & charged current
Top quark gauge interactions

\[tW \rightarrow t/Z \]

Expectation:
Energy-growing interference

Dedicated \(tZj \) study:

- Larger rate, differential measurements available
- Expected E-growing interference is suppressed...

[Degrande, Maltoni, KM, Vryonidou & Zhang; JHEP 10 (2018) 005]
Rare single top modes

\[\begin{align*}
 b/\bar{b} & \rightarrow t/\bar{t} \\
 tZ & \\
 q & \rightarrow W \\
 q' & \\
\end{align*} \]

neutral & charged current
top quark gauge interactions

\[\begin{align*}
 \bar{b}/b & \rightarrow W^\pm \\
 tWZ & \\
 g & \rightarrow Z \\
 t/\bar{t} & \\
\end{align*} \]

\[\mathcal{O}^{(3)}_{\varphi Q} = i (\varphi^\dagger \bar{D}_\mu \tau^I \varphi) (\bar{Q} \gamma^\mu \tau_I Q) \]

Expectation:
Energy-growing interference

Dedicated \(tZj \) study:

- Larger rate, differential measurements available
- Expected E-growing interference is suppressed...

Growth recovered in \(tWZ \)

- Generally larger relative effect of all BSM interactions

[Degrande, Maltoni, KM, Vryonidou & Zhang; JHEP 10 (2018) 005]

[Mantani, Maltoni & KM; JHEP 10 (2019) 004]
tZ radar plot

$p p \rightarrow tZj$

$C_i = 1$
Inclusive
$p_T(Z) > 500$ GeV

K. Mimasu - Seminar, Vienna - 28/03/2023
Interpreting LHC top data in SMEFT
tZ radar plot

interference/SM

$p p \rightarrow t Z j$

square/SM

$C_i = 1$
Inclusive
$p_T(Z) > 500$ GeV
tZ radar plot

interference/SM

$square/SM$

$\sigma_{QCD} = \sigma_{EW} = 621.3 \text{ fb}$
$\sigma_{HE} = 794.8 \text{ ab}$

$pp \rightarrow tZj$

Total rate impact

$C_i = 1$
Inclusive
$p_T(Z) > 500 \text{ GeV}$
tZ radar plot

interference/SM

$pp \rightarrow tZj$

square/SM

Total rate impact

Energy growth

$C_i = 1$

Inclusive

$p_T(Z) > 500$ GeV
tZ radar plot

interference/SM

$pp \to tZj$

Cancellations

square/SM

Total rate impact

Energy growth

$C_i = 1$

Inclusive

$p_T(Z) > 500$ GeV

K. Mimasu - Seminar, Vienna - 28/03/2023
tZ radar plot

interference/SM

square/SM

Cancellations

Total rate impact

Energy growth

Expected growth from 2→2 absent!

$C_i = 1$
Inclusive
$p_T(Z) > 500$ GeV

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
tZW radar plot

interference/SM

$pp \rightarrow tZW$

square/SM

$C_i = 1$

Inclusive

$p_T(W,Z) > 500$ GeV

K. Mimasu - Seminar, Vienna - 28/03/2023
tZW radar plot

interference/SM

$pp \rightarrow tZW$

Cancellations gone!

square/SM

$C_i = 1$
Inclusive
$p_T(W,Z) > 500$ GeV
tZW radar plot

interference/SM

\[p p \rightarrow tZW \]

square/SM

Cancellations gone!

Expected growth is there!

\[C_i = 1 \]

Inclusive

\[p_T (W,Z) > 500 \text{ GeV} \]
tZW radar plot

interference/SM

$\sigma_{QCD} = -$ $\sigma_{EW} = 114.6$ fb $\sigma_{HE} = 85.3$ ab

$\log(r_i)$

$\sigma^{(1)}_{QCD}$ $\sigma^{(3)}_{QCD}$

θ_{Q} θ_{Q}

ϕ_{Q} ϕ_{Q}

ϕ_{t} ϕ_{t}

ϕ_{tb} ϕ_{tb}

θ_{tw} θ_{tw}

θ_{tq} θ_{tq}

Cancellations gone!

$p p \rightarrow tZW$

square/SM

$\log(r_{i,i})$

$\sigma^{(1)}_{QCD}$ $\sigma^{(3)}_{QCD}$

θ_{Q} θ_{Q}

ϕ_{Q} ϕ_{Q}

ϕ_{t} ϕ_{t}

ϕ_{tb} ϕ_{tb}

θ_{tw} θ_{tw}

θ_{tq} θ_{tq}

Bigger impact

Expected growth is there!

$C_i = 1$
Inclusive
$p_T(W,Z) > 500$ GeV

K. Mimasu - Seminar, Vienna - 28/03/2023
tZW radar plot

interference/SM

\[p p \rightarrow tZW \]

\[\sigma_{QCD} = - \]
\[\sigma_{EW} = 114.6 \text{ fb} \]
\[\sigma_{HE} = 85.3 \text{ ab} \]

\[\log(r_i) \]

Cancellations gone!

square/SM

Bigger impact

More growth

\[C_i = 1 \]

Inclusive

\[p_T(W,Z) > 500 \text{ GeV} \]

Expected growth is there!

K. Mimasu - Seminar, Vienna - 28/03/2023
tZW radar plot

interference/SM

square/SM

$\sigma_{QCD} = -$
$\sigma_{EW} = 114.6 \text{ fb}$
$\sigma_{HE} = 85.3 \text{ ab}$

$log(r_i)$

$p p \rightarrow tZW$

Cancellations gone!

Bigger impact

More growth

Expected growth is there!

Interesting process that should be accessible at the LHC

$C_i = 1$
Inclusive
$p_T(W,Z) > 500 \text{ GeV}$
New physics in tWZ

Rare top production with promising BSM sensitivity
- Precision differential predictions for SM & EFT
New physics in tWZ

Rare top production with promising BSM sensitivity
- Precision differential predictions for SM & EFT

Well-defined NLO calculation
- Control uncertainties & check stability of BSM impact (SMEFT K-factors)
- tWZ non-trivial: overlap with other processes
New physics in tWZ

Rare top production with promising BSM sensitivity
- Precision differential predictions for SM & EFT

Well-defined NLO calculation
- Control uncertainties & check stability of BSM impact (SMEFT K-factors)
- tWZ non-trivial: **overlap** with other processes

NLO 5FS: real-emission includes $tWZ\bar{b}$ final state

LO \Rightarrow NLO
Overlap in tWZ

\[t\bar{t}Z(t \rightarrow W\bar{b}) \]

Overlap: **resonant** contributions from \(t\bar{t} \) & \(t\bar{t}Z \)

Contrast to our **non-resonant** \(tWZ \) topology
Overlap in tWZ

$\bar{t}tZ(\bar{t} \rightarrow W\bar{b})$

Overlap: **resonant** contributions from $\bar{t}t$ & $\bar{t}tZ$

Contrast to our **non-resonant** tWZ topology

- Unwanted pieces are LO contribution to other processes, interfere w/ signal
- Resonant structure can spoil perturbative convergence ($\Gamma_t \sim 1/\alpha_{EW}$)
Overlap in tWZ

$t\bar{t}Z(\bar{t} \rightarrow W\bar{b})$

Overlap: **resonant** contributions from $t\bar{t}$ & $t\bar{t}Z$

Contrast to our **non-resonant** tWZ topology

- Unwanted pieces are LO contribution to other processes, interfere w/ signal
- Resonant structure can spoil perturbative convergence ($\Gamma_t \sim 1/\alpha_{EW}$)
Overlap in tWZ

$t\bar{t}Z(\bar{t} \rightarrow W\bar{b})$

Overlap: **resonant** contributions from $t\bar{t}$ & $t\bar{t}Z$

Contrast to our **non-resonant** tWZ topology

- Unwanted pieces are LO contribution to other processes, interfere w/ signal
- Resonant structure can **spoil** perturbative convergence ($\Gamma_t \sim 1/\alpha_{EW}$)

Analogous behaviour in any $tW(X)$ production process
Overlap in tWZ

Overlap: **resonant** contributions from $t\bar{t}$ & $t\bar{t}Z$

Contrast to our **non-resonant** tWZ topology

- Unwanted pieces are LO contribution to other processes, interfere w/ signal
- Resonant structure can spoil perturbative convergence ($\Gamma_t \sim 1/\alpha_{EW}$)

Analogous behaviour in any $tW(X)$ production process

A. Full final state, 4FS: $pp \rightarrow b\bar{b}W^+W^-Z$! NLO computationally intensive !
Overlap in tWZ

$t\bar{t}Z (t \rightarrow W\bar{b})$

Overlap: **resonant** contributions from $t\bar{t}$ & $t\bar{t}Z$

Contrast to our **non-resonant** tWZ topology

- Unwanted pieces are LO contribution to other processes, interfere w/ signal
- Resonant structure can spoil perturbative convergence ($\Gamma_t \sim 1/\alpha_{EW}$)

Analogous behaviour in any $tW(X)$ **production process**

A. Full final state, 4FS: $pp \rightarrow b\bar{b}W^+W^-Z$! NLO computationally intensive!

B. Subtract resonant contributions: operative definition of signal region @ NLO
We follow: [Demartin et al.; EPJC 77 (2017) 34], [Frixione et al.; JHEP 12 (2019) 008]

tWZ in the SM

tWZ $\rightarrow tW\ell\ell$: resonant overlap = $1\rightarrow 2(3)$ & $1\rightarrow 3(4)$ decays
tWZ in the SM

tWZ $\rightarrow tW\ell\ell$: resonant overlap = $1\rightarrow 2(3)$ & $1\rightarrow 3(4)$ decays

- Use Diagram Removal (DR) technique to mitigate overlap
- Suppress resonant interference: veto hard or central b-quarks

$p_T > 30 \text{ GeV}$
$|\eta| < 2.5$
tWZ in the SM

tWZ $\rightarrow tW\ell\ell$: resonant overlap $= 1\rightarrow 2(3)$ & $1\rightarrow 3(4)$ decays

- Use Diagram Removal (DR) technique to mitigate overlap
- Suppress resonant interference: **veto hard or central b-quarks** $p_T > 30$ GeV $|\eta| < 2.5$
tWZ in the SM

tWZ → tWℓℓ: resonant overlap = 1→2(3) & 1→3(4) decays

- Use Diagram Removal (DR) technique to mitigate overlap
- Suppress resonant interference: veto hard or central b-quarks

$\mathbf{p_T > 30 \text{ GeV}}$

$| \eta | < 2.5$

High mass & Z-pole

w/o b-veto:
DR1/DR2 diverge at high energy.
Gauge invariance issues...

w/ b-veto:
DR1/DR2 agree.
Uncertainty under control.
\(tWZ \) in the SMEFT

Pros

- Sensitive to unitarity violation in \(bW \rightarrow tZ \) scattering
- Energy growth found to be more pronounced w.r.t. \(tZj, tWj, \ldots \)
- No LO contribution from 4F operators, unlike \(t\bar{t}Z \) & \(tZj \)
- Global fit: help to de-correlate 4F from top EW couplings
tWZ in the SMEFT

Pros
- Sensitive to unitarity violation in \(bW \rightarrow tZ \) scattering
- Energy growth found to be more pronounced w.r.t. \(tZj, tWj, \ldots \)
- No LO contribution from 4F operators, unlike \(t\bar{t}Z \) & \(t\bar{Z}j \)
- Global fit: help to de-correlate 4F from top EW couplings

Cons
- Rare process \(~100 \text{ fb before decays}\)
- Not yet observed
- Overlap with resonant backgrounds
- Challenging to disentangle from other rate top processes
 - \(tW, t\bar{t}Z, t\bar{t}W, tZj, \ldots \)
$O(\Lambda^{-2})$

W_L, Z_L

W_L, Z_T

W_T, Z_L

W_T, Z_T
$\mathcal{O}(\Lambda^{-2})$

W_L, Z_L

Expected E-growing interference

W_T, Z_L

Other unexpected ones... finite mass effects?

W_T, Z_T
LO, unpolarised \(\Lambda = 1 \text{ TeV}, C_i = 1 \)

SM: TT=56 fb, TL=47 fb & LL = 13 fb
LO, unpolarised $\Lambda = 1$ TeV, $C_i = 1$

SM: TT=56 fb, TL=47 fb & LL = 13 fb

$C_{\phi Q}^{(-)}$, $C_{\phi t}$ no energy growth: expected in interference, too mild in square
\[\mathcal{O} = \mathcal{O}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}^i_{\text{int}} + \sum_{i,j} \frac{c_i c_j}{\Lambda^4} \mathcal{O}^{ij}_{\text{sq}} \]

<table>
<thead>
<tr>
<th></th>
<th>Inclusive</th>
<th>High-Energy $\equiv p_T^{Z,W} > 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO DR1</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>103.36(4) $^{+12.76%}_{-12.82%}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106.80(9) $^{+5.04%}_{-5.62%}$</td>
</tr>
<tr>
<td></td>
<td>LO</td>
<td>0.073(0) $^{+15.92%}_{-14.23%}$</td>
</tr>
<tr>
<td></td>
<td>NLO DR1</td>
<td>0.036(0) $^{+26.82%}_{-45.63%}$</td>
</tr>
</tbody>
</table>
NLO inclusive \(\Lambda = 1 \text{ TeV}, C_i = 1 \)

\[
\mathcal{O} = \mathcal{O}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}^{i}_{\text{int}} + \sum_{i,j} \frac{c_i c_j}{\Lambda^4} \mathcal{O}^{ij}_{\text{sq}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Inclusive (\mathcal{O}(\Lambda^{-2}))</th>
<th>Inclusive (\mathcal{O}(\Lambda^{-4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO DR1</td>
</tr>
<tr>
<td>(c_{\varphi Q}^{(3)})</td>
<td>19.78(1)(^{+12.98%}_{-13.02%})</td>
<td>21.20(2)(^{+5.66%}_{-6.13%})</td>
</tr>
<tr>
<td>(c_{\varphi Q}^{(-1)})</td>
<td>2.19(0)(^{+12.65%}_{-12.72%})</td>
<td>2.69(1)(^{+8.92%}_{-8.18%})</td>
</tr>
<tr>
<td>(c_{\varphi t})</td>
<td>1.77(0)(^{+13.11%}_{-13.13%})</td>
<td>1.81(0)(^{+4.81%}_{-5.53%})</td>
</tr>
<tr>
<td>(c_{tW})</td>
<td>-11.34(1)(^{+12.27%}_{-12.15%})</td>
<td>-11.49(2)(^{+5.84%}_{-5.57%})</td>
</tr>
<tr>
<td>(c_{tZ})</td>
<td>-0.26(0)(^{+11.03%}_{-11.01%})</td>
<td>-0.35(2)(^{+4.99%}_{-6.66%})</td>
</tr>
<tr>
<td>(c_{tG})</td>
<td>7.95(0)(^{+13.00%}_{-13.04%})</td>
<td>7.36(1)(^{+4.00%}_{-5.01%})</td>
</tr>
</tbody>
</table>

Good DR1/DR2 agreement: stick to DR2 henceforth
NLO inclusive

$\Lambda = 1 \text{ TeV}, C_i = 1$

Inclusive vs. High energy

$\log_{10}(\mathcal{O}(\Lambda^{-2})/SM) \cdot C_{tG}$

Interference/SM $C^{(-)}_{\phi Q}$

Square/SM $C^{(-)}_{\phi Q}$

b-veto inclusive

b-veto $p_T > 500 \text{ GeV}$

$\sigma_{SM}^{DR2} = 106.80 \text{ fb}$
NLO inclusive

$\Lambda = 1 \text{ TeV}, C_i = 1$

Inclusive vs. High energy

$\log_{10}(\mathcal{O}(\Lambda^{-2})/\text{SM})$

C_tG

b-veto inclusive
b-veto $p_T > 500 \text{ GeV}$
$
\sigma_{\text{SM}}^{\text{DR2}} = 106.80 \text{ fb}
$

Interference/SM $C_{\phi Q}^{(-)}$

Square/SM $C_{\phi Q}^{(3)}$

<table>
<thead>
<tr>
<th>c_i</th>
<th>$\mathcal{O}(\Lambda^{-2})$</th>
<th>$\mathcal{O}(\Lambda^{-4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>$c_{tQ}^{(3)}$</td>
<td>0.191</td>
<td>0.200</td>
</tr>
<tr>
<td>$c_{\phi Q}^{(-)}$</td>
<td>0.021</td>
<td>0.026</td>
</tr>
<tr>
<td>c_{ct}</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>c_{tW}</td>
<td>-0.110</td>
<td>-0.109</td>
</tr>
<tr>
<td>c_{tZ}</td>
<td>-0.003</td>
<td>-0.003</td>
</tr>
<tr>
<td>c_{tG}</td>
<td>0.077</td>
<td>0.068</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c_i</th>
<th>$\mathcal{O}(\Lambda^{-2})$</th>
<th>$\mathcal{O}(\Lambda^{-4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LO</td>
<td>NLO</td>
</tr>
<tr>
<td>$c_{tQ}^{(3)}$</td>
<td>-0.870</td>
<td>-0.715</td>
</tr>
<tr>
<td>$c_{\phi Q}^{(-)}$</td>
<td>0.028</td>
<td>0.056</td>
</tr>
<tr>
<td>c_{ct}</td>
<td>0.017</td>
<td>0.023</td>
</tr>
<tr>
<td>c_{tW}</td>
<td>-0.528</td>
<td>-0.524</td>
</tr>
<tr>
<td>c_{tZ}</td>
<td>0.098</td>
<td>0.076</td>
</tr>
<tr>
<td>c_{tG}</td>
<td>-0.232</td>
<td>-0.354</td>
</tr>
</tbody>
</table>
NLO inclusive

\[\Lambda = 1 \text{ TeV}, \ C_i = 1 \]

Inclusive vs. High energy

- **b-veto:** LO/NLO have different phase space
 - "K-factor" ill defined: compute for **relative impacts**
 - Some non-trivial NLO QCD corrections

K. Mimasu - Seminar, Vienna - 28/03/2023
NLO differential

Fixed order: relative impact stable under NLO QCD
NLO differential

Fixed order: relative impact stable under NLO QCD
- top p_T not sensitive, not in relevant $tb \rightarrow WZ$ sub-amplitude
NLO differential

Dipoles, dominated by quadratic

K. Mimasu - Seminar, Vienna - 28/03/2023
NLO differential

Dipoles, dominated by quadratic

- Omitted other current operators due to lack of growth
- Potential sensitivity to gluon dipole (quite constrained by $t\bar{t}$)
NLO differential

Dipoles, dominated by quadratic
- Omitted other current operators due to lack of growth
- Potential sensitivity to gluon dipole (quite constrained by $t\bar{t}$)

SMEFT contribution to suppressed overlap processes included!
NLO+PS

Allow tops to decay, keep W & Z stable
- Now require exactly one b-jet (veto applied to additional b-jet)
- Assumes 100% b-tagging efficiency within $|\eta| < 2.5$

K. Mimasu - Seminar, Vienna - 28/03/2023

Interpreting LHC top data in SMEFT
NLO+PS

Allow tops to decay, keep W & Z stable
- Now require exactly one b-jet (veto applied to additional b-jet)
- Assumes 100% b-tagging efficiency within $|\eta| < 2.5$

Some DR1/DR2 difference when selecting 'wrong' b-jet

Otherwise NLO stable!

K. Mimasu - Seminar, Vienna - 28/03/2023
Interpreting LHC top data in SMEFT
Prospects & challenges

EW top scattering: promising avenue for EW top couplings
Prospects & challenges

EW top scattering: promising avenue for EW top couplings

- Go beyond rate measurements & access energy growth/unitarity violation
- Increasingly high energy & multiplicity processes: future-proof
- Rare EW top modes: probe complimentary directions in SMEFT space
- Some already measured or within LHC reach ($t\bar{t}Wj$, tHj, tWZ, …)
- Others challenging, dedicated pheno studies required…
Prospects & challenges

EW top scattering: promising avenue for EW top couplings

- Go beyond rate measurements & access energy growth/unitarity violation
- Increasingly high energy & multiplicity processes: future-proof
- Rare EW top modes: probe complimentary directions in SMEFT space
- Some already measured or within LHC reach (t\bar{t}Wj, tHj, tWZ, ...)
- Others challenging, dedicated pheno studies required...

<table>
<thead>
<tr>
<th>Sig.</th>
<th>Bkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttZ(\ell^+\ell^-)</td>
<td>ttW, ttH, tZj, WZ,...</td>
</tr>
<tr>
<td>ttH(bb)</td>
<td>ttZ, tt\bar{b}b, ttW, tZj,...</td>
</tr>
<tr>
<td>ttH(\gamma\gamma)</td>
<td>tt, b\bar{b}H, tHj, tHW</td>
</tr>
<tr>
<td>ttH(\tau^+\tau^-)</td>
<td>ttW(W), ttZ,...</td>
</tr>
<tr>
<td>tZj</td>
<td>ttV, tHj, tHW, tZW,...</td>
</tr>
<tr>
<td>tHj</td>
<td>ttH, ttZ, tt\bar{b}b, ttW, tZj,...</td>
</tr>
<tr>
<td>tt\bar{t}t</td>
<td>ttW, ttZ, ttH,...</td>
</tr>
</tbody>
</table>

Sig/Bkg. overlap ⇒ global measurements
Prospects & challenges

EW top scattering: promising avenue for EW top couplings

- Go beyond rate measurements & access energy growth/unitarity violation
- Increasingly high energy & multiplicity processes: future-proof
- Rare EW top modes: probe complimentary directions in SMEFT space
- Some already measured or within LHC reach ($t\bar{t}Wj$, tHj, tWZ, …)
- Others challenging, dedicated pheno studies required...

<table>
<thead>
<tr>
<th>Sig.</th>
<th>Bkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}Z(\ell^+\ell^-)$</td>
<td>$t\bar{t}W$, $t\bar{t}H$, tZ_j, WZ,...</td>
</tr>
<tr>
<td>$t\bar{t}H(bb)$</td>
<td>$t\bar{t}Z$, $t\bar{t}b\bar{b}$, $t\bar{t}W$, tZ_j,...</td>
</tr>
<tr>
<td>$t\bar{t}H(\gamma\gamma)$</td>
<td>$t\bar{t}$, $b\bar{b}H$, tH_j, tHW</td>
</tr>
<tr>
<td>$t\bar{t}H(\tau^+\tau^-)$</td>
<td>$t\bar{t}W(W)$, $t\bar{t}Z$,...</td>
</tr>
<tr>
<td>tZ_j</td>
<td>$t\bar{t}V$, tH_j, tHW, tZW,...</td>
</tr>
<tr>
<td>tHj</td>
<td>$t\bar{t}H$, $t\bar{t}Z$, $t\bar{t}b\bar{b}$, $t\bar{t}W$, tZ_j,...</td>
</tr>
<tr>
<td>$t\bar{t}\bar{t}t$</td>
<td>$t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}H$,...</td>
</tr>
</tbody>
</table>

Sig/Bkg. overlap \Rightarrow global measurements

- SMEFT contributes everywhere… blurs the lines
- Challenging to incorporate into global likelihood
- From individual to simultaneous measurements
- Signal regions based on final state properties
Conclusions

The future is bright for top physics in SMEFT
Conclusions

The future is bright for top physics in SMEFT

- Global SMEFT analyses are rapidly expanding & probing model space
- New precision tools available (SMEFTatNLO): NLO & loop-induced effects
- Being incorporated into experimental interpretations
- Rare EW top production: high energy & high multiplicity
- Towards global measurements for global fits
Conclusions

The future is bright for top physics in SMEFT

- Global SMEFT analyses are rapidly expanding & probing model space
- New precision tools available (SMEFTatNLO): NLO & loop-induced effects
- Being incorporated into experimental interpretations
- Rare EW top production: high energy & high multiplicity
- Towards global measurements for global fits

Things I couldn’t mention!

- Future direction: global study on CP violating operators in top data
- Fantastic progress in UV model interpretations of global fits
- Automated matching tools available
- Very important for testing validity