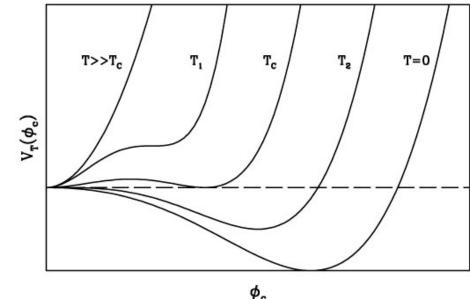
Self-organised localisation

G. F. Giudice

Erwin Schrödinger Guest Professor Lecture, 27 April 2023

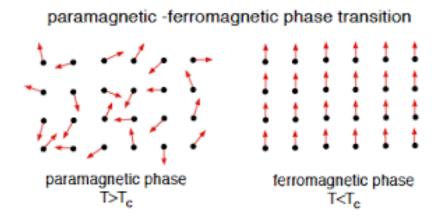
Critical phenomena

Phase transitions in the early universe (QCD, EW, inflation?, baryogenesis?)



Classical phase transitions: the phase changes as the temperature is varied.

Ferromagnet:



Quantum phase transitions: the phase changes as an external field is varied.

$$V(\phi) = V_{\phi} + (\phi - \phi_c) \mathcal{O} \qquad \begin{cases} \langle \mathcal{O} \rangle = 0 & \phi > \phi_c \\ \langle \mathcal{O} \rangle \neq 0 & \phi < \phi_c \end{cases} \Rightarrow \begin{cases} V'(\phi) = V'_{\phi} + \langle \mathcal{O} \rangle \\ \text{discontinuous at } \phi = \phi_c \end{cases}$$

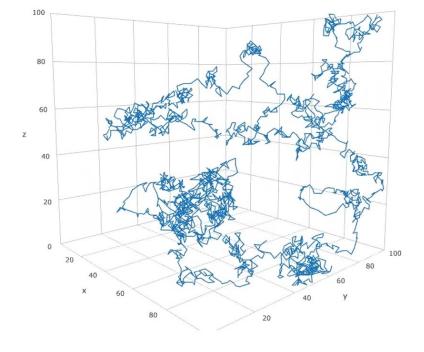
Ingredient 1:

Some parameters of the microscopic theory are promoted

to functions of one or more scalar fields.

$$\mu \rightarrow \mu(\phi)$$

Axion:
$$\mathcal{L}_{\text{dim}=4} = \frac{g_s^2}{32\pi^2} \; \bar{\theta} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} \qquad \bar{\theta} \longrightarrow a$$



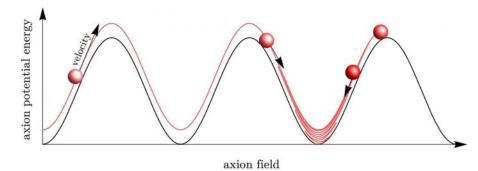
Cosmological constant: Abbott, Brown-Teitelboim, etc.

Higgs mass: relaxion, etc.

Ingredient 2:

Selection mechanism in the multiverse.

Axion: symmetry



Cosmological constant: anthropics (Weinberg)

Higgs mass: back-reaction from EW breaking (relaxion)

Self-Organised Criticality (SOL): criticality

(GFG, M. McCullough and T. You, JHEP 10, 093)

Ingredient 2:

Selection mechanism in the multiverse.

Self-Organised Criticality (SOL): criticality (GFG, M. McCullough and T. You, JHEP 10, 093)

$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$
 (FPV)
classical
term

$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$
 (FPV)
quantum
term

$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$
 (FPV)
volume
term

$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$
quantum classical volume
term term term
$$\hbar \qquad 1 \qquad 1/M_{P^2}$$
(FPV)

classical mechanics
quantum mechanics SOL general relativity
critical phenomena

Fokker-Planck:
$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P_{\rm FP})}{\partial \phi} + \frac{V' P_{\rm FP}}{3H} \right] = \frac{\partial P_{\rm FP}}{\partial t} \left\langle \begin{array}{c} \frac{\partial}{\partial \phi} \left[\frac{\partial$$

Langevin:
$$\frac{d\phi}{dt} + \frac{V'(\phi)}{3H} = \eta(t) , \quad \langle \eta(t)\eta(t') \rangle = \frac{H^3}{4\pi^2} \, \delta(t-t')$$

Volume-weighted Fokker-Planck (FPV):
$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$

each trajectory is weighed by e^{3Ht}

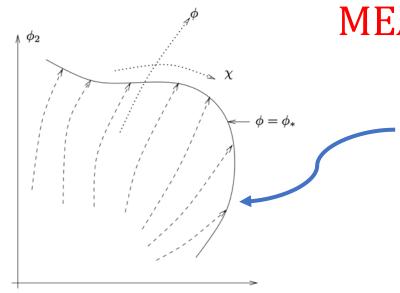
Probabilistic predictions in the multiverse?

GAUGE DEPENDENCE

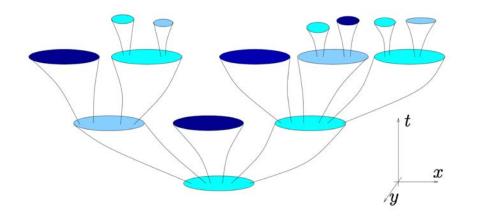
$$t \to t_{\xi}$$
 $\frac{dt_{\xi}}{dt} = \left(\frac{H}{H_0}\right)^{1-\xi}$ $0 \le \xi \le 1$

$$\begin{cases} \xi = 1 & \text{proper-time gauge} \\ \xi = 0 & e\text{-folding gauge} \end{cases}$$

MEASURE PROBLEM



Reheating surface: 3-volume hypersurface of all reheating events in spacetime.



Eternal inflation: the reheating surface is infinite and non-compact.

Steady-state solutions: $P(\phi, t) \xrightarrow{t \gg t_R} e^{K(t)} p(\phi)$

VALIDITY OF THE SEMICLASSICAL APPROXIMATION

$$N < S_{
m dS} = rac{8\pi^2 M_P^2}{\hbar \, H^2}$$

Arkani-Hamed *et al*, 0704.1814 Creminelli *et al*, 0802.1067 Dubovsky *et al*, 0812.2246; 1111.1725

Does the semiclassical approach break down after this time?

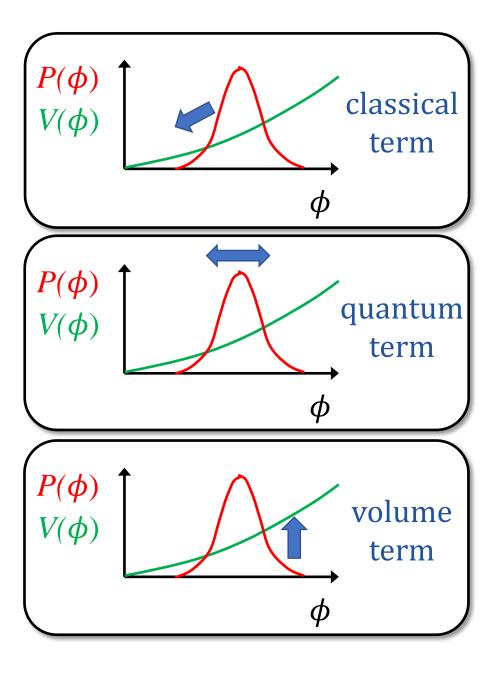
Dvali et al, 1312.4795; 1701.08776

SWAMPLAND CONJECTURES

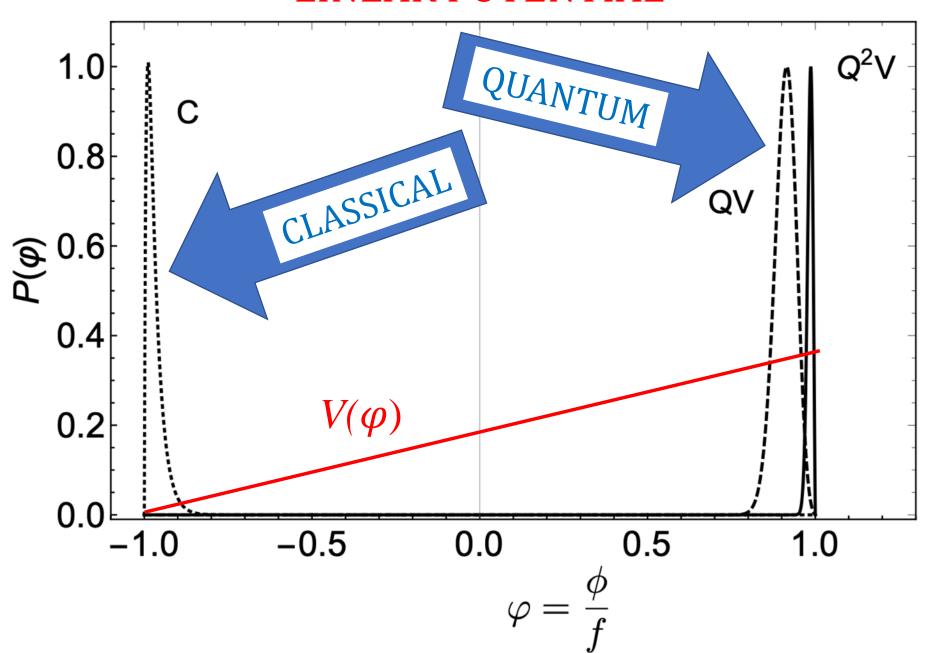
Do super-Planckian field excursions, slow-roll inflation and eternal inflation live in the swampland?

FPV

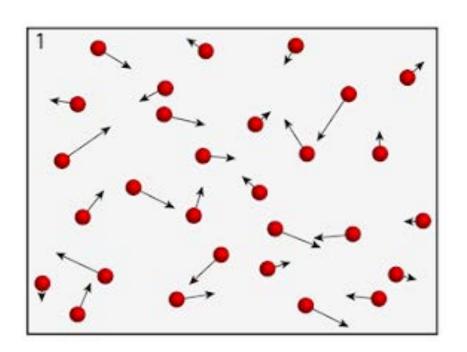
$$\frac{\partial}{\partial \phi} \left[\frac{\hbar}{8\pi^2} \frac{\partial (H^3 P)}{\partial \phi} + \frac{V' P}{3H} \right] + 3HP = \frac{\partial P}{\partial t}$$
quantum classical volume term term



LINEAR POTENTIAL

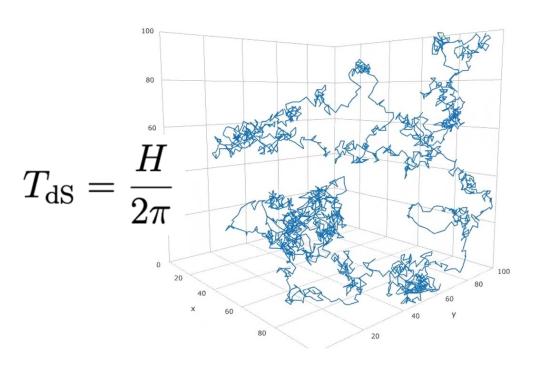


GAS



T = constant

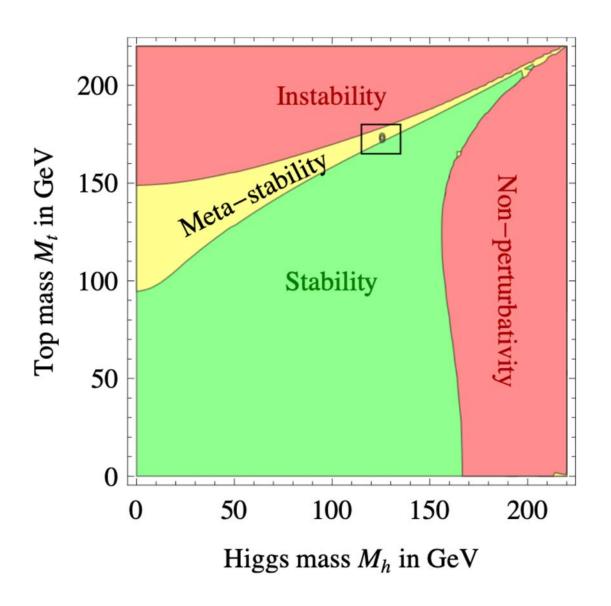
MULTIVERSE



Steady-state solutions:

$$P(\phi, t) \stackrel{t\gg t_R}{\longrightarrow} e^{K(t)} p(\phi)$$

NEAR-CRITICALITY OF THE HIGGS SELF-COUPLING



$$V(\varphi,h) = \underbrace{\frac{M^4}{g_*^2} \, \omega(\varphi)} + \frac{\lambda(\varphi,h)}{4} \, \left(h^2 - v^2\right)^2$$

$$V(\varphi,h) = \frac{M^4}{g_*^2} \, \omega(\varphi) \left(+ \frac{\lambda(\varphi,h)}{4} \left(h^2 - v^2 \right)^2 \right)$$

$$V(\varphi, h) = \frac{M^4}{g_*^2} \omega(\varphi) + \frac{\lambda(\varphi, h)}{4} \left(h^2 - v^2\right)^2$$
$$\lambda(\varphi, M/g_*) = -g_*^2 \varphi , \quad \frac{d \lambda(\varphi, h)}{d \ln h^2} = \beta_{\lambda}(h)$$

IR Phase:
$$\langle h \rangle = v$$

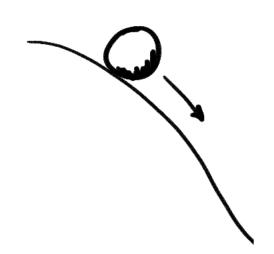
$$V = \frac{M^4}{g_*^2} \, \omega(\varphi)$$

$$V(\varphi)$$
IR Phase
$$0 \quad \varphi_* \quad \varphi_+$$

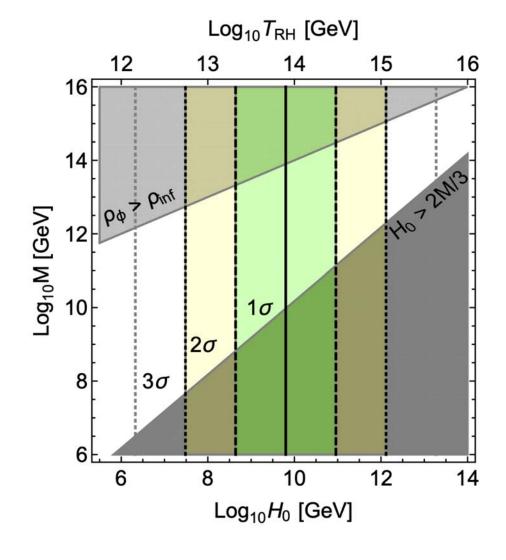
UV Phase:
$$\langle h \rangle = \frac{\sqrt{2}\,c}{g_*}\,M$$
 $V = \frac{M^4}{g_*^2}\left[\omega(\varphi) - c^4\,\varphi\right]$

SOL: at the end of inflation, there is a strong probabilistic preference for patches of the Universe where the Higgs self-coupling is near its critical value.

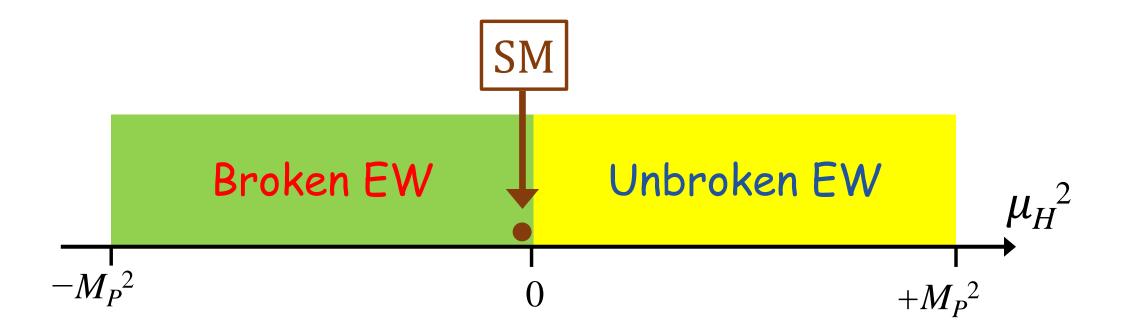
What happens to the SOL prediction during the thermal phase of the Universe?



$$\alpha^2 \beta > \left(\frac{\hbar H_0^4}{M_P H_{\text{now}} \Lambda^2}\right)^2 = \left(\frac{H_0}{2 \times 10^{-3} \text{ eV}}\right)^8 \implies Q^2 V \& \text{ eternal inflation}$$



HIGGS NATURALNESS

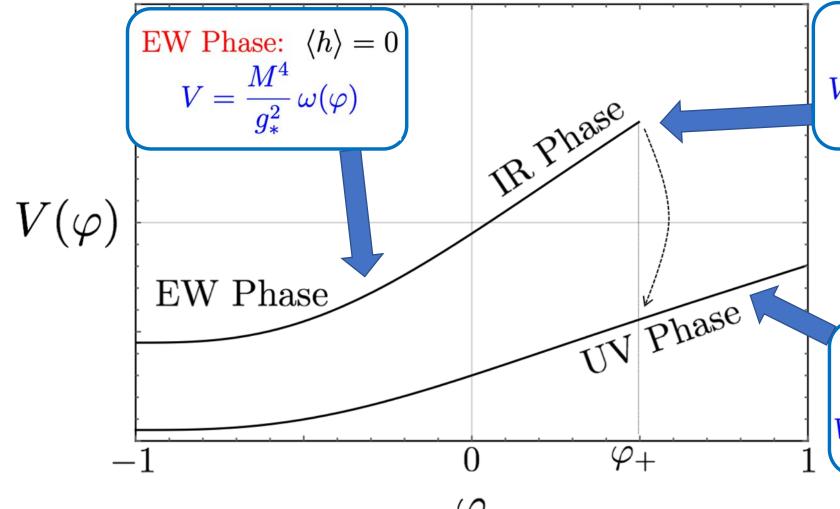


Higgs naturalness: why is nature so close to the critical point?

HIGGS NATURALNESS

$$V(\varphi,h) = \frac{M^4}{g_*^2} \,\omega(\varphi) - \frac{\varphi M^2 h^2}{2} + \frac{\lambda(h) \,h^4}{4}$$

scanning mass term



IR Phase:
$$\langle h \rangle = v$$

$$V = \frac{M^4}{g_*^2} \left[\omega(\varphi) - \frac{g_*^2}{4\lambda} \varphi^2 \right]$$

$$\begin{array}{c} \text{UV Phase:} \ \, \langle h \rangle = \frac{\sqrt{2}\,c}{g_*}\,M \\ V = \frac{M^4}{g_*^2} \left[-\frac{c^4 |\lambda_{\mathrm{UV}}|}{g_*^2} + \omega(\varphi) - c^2\,\varphi \right] \end{array}$$

SOL prediction:
$$v = e^{-\frac{3}{4}} \Lambda_I$$

 $v/M \sim \exp(-\lambda_{\scriptscriptstyle
m UV}/2eta_{\lambda})$ natural hierarchy from dimensional transmutation

0.10

 3σ bands in 0.08 $M_t = 173.3 \pm 0.8 \text{ GeV (gray)}$ $\alpha_3(M_Z) = 0.1184 \pm 0.0007$ (red) 0.06 $M_h = 125.1 \pm 0.2 \text{ GeV (blue)}$ Higgs quartic coupling λ $SM \Rightarrow$ 0.04 0.02 $M_t = 171.1 \text{ GeV}$ 0.00 $\alpha_{\tilde{s}}(M_Z) = 0.1205$ $\alpha_s(M_{\tilde{Z}}) = 0.1163$ -0.02 $M_t = 175.6 \, \text{GeV}$ -0.04 $10^8 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20}$

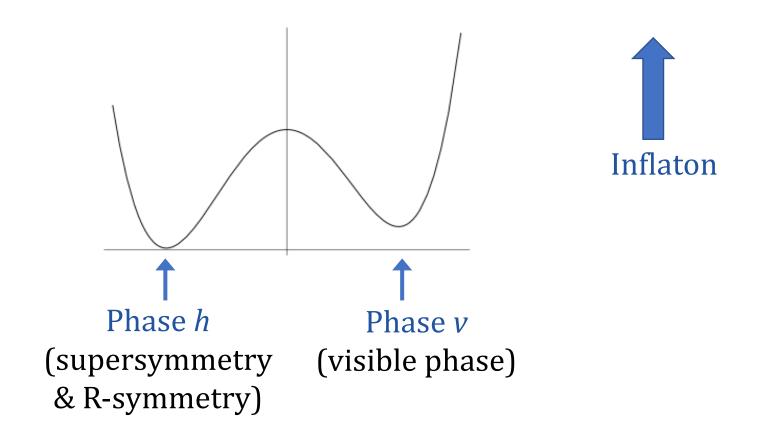
RGE scale μ in GeV

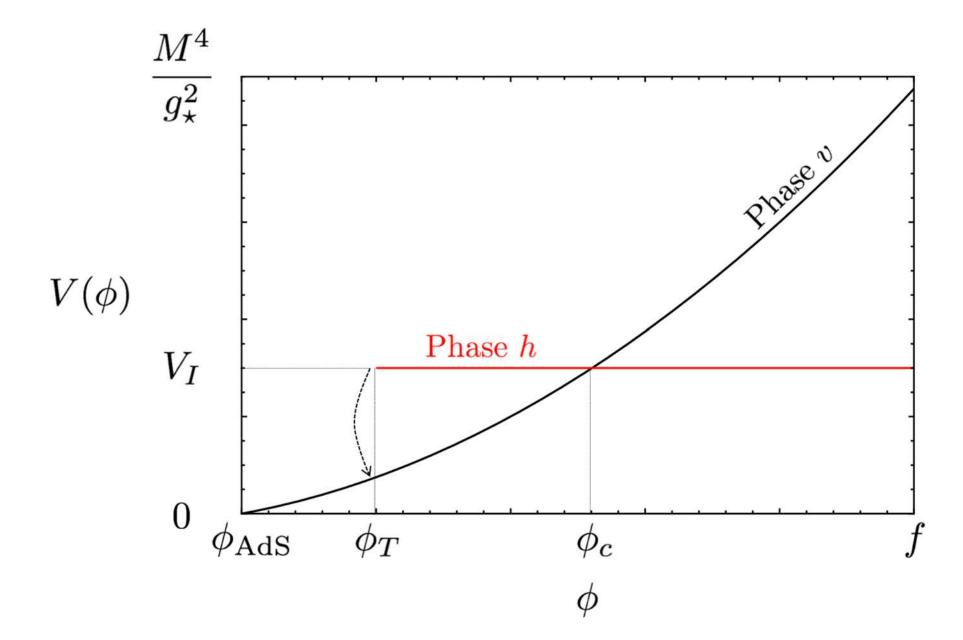
weak doublet χ and a SM singlet ψ

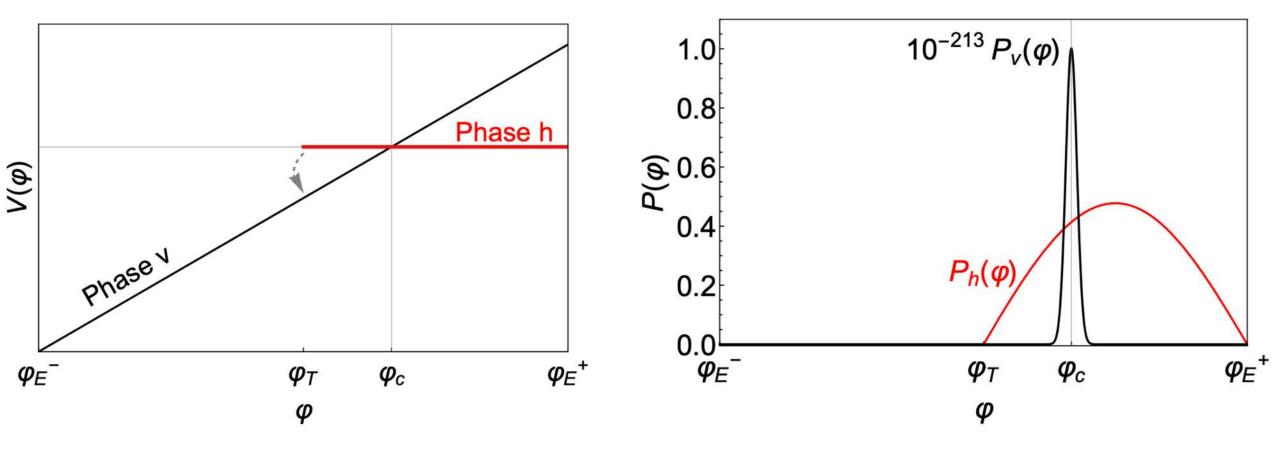
Phenomenological SOL prediction: new matter that modifies β_{λ} such that the theory is near-critical with respect to variations of the Higgs bilinear.

COSMOLOGICAL CONSTANT

Parameters of a microscopic theory are functions of the apeiron.

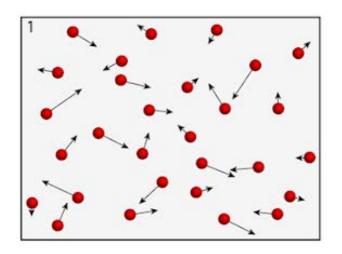


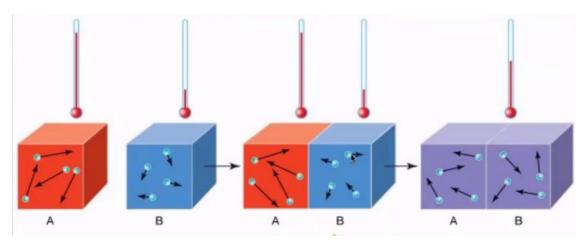




SOL prediction: the distribution is peaked on phase *v* at the point where the two phases are degenerate.

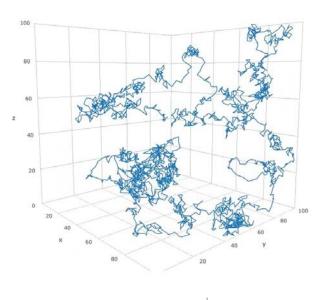
GAS

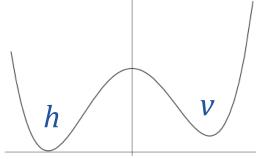




In equilibrium, *T* in box A and B become equal.

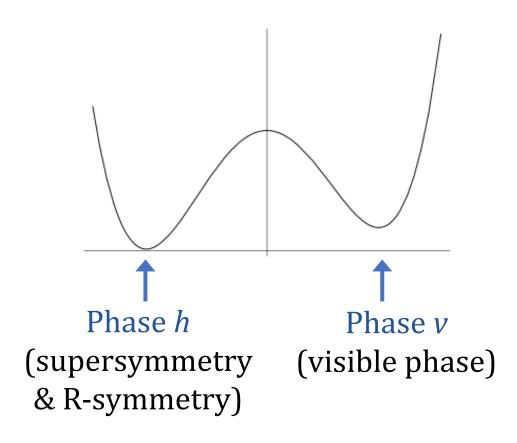
MULTIVERSE





In steady-state, the expansion rates in phase h and v become equal \Rightarrow energy degeneracy.

A NEW WAY OF USING SUPERSYMMETRY



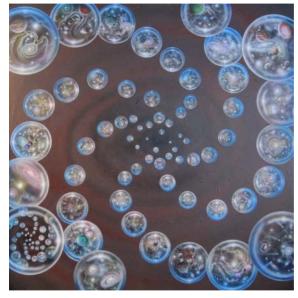
Supersymmetry is a hidden feature of the theory to any observer, like us, who lives in phase v, and yet it determines parameters measurable in our vacuum.

REHEATING TEMPERATURE

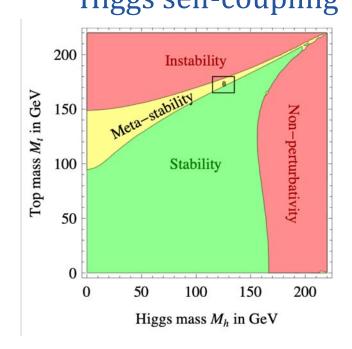
$$T_{\rm RH} < c_{\xi}^{1/6} (\Lambda_{\rm CC}^2 M_P)^{1/3} \approx c_{\xi}^{1/6} 25 \text{ MeV}$$

DARK-ENERGY EQUATION OF STATE

$$w = \frac{P_{\phi}}{\rho_{\phi}} = -1 + \left(\frac{V_v'(0)}{3H_{\text{now}}\Lambda_{\text{CC}}^2}\right)^2 = -1 + \frac{c_{\xi}^2}{3}$$



Near-criticality of the Higgs self-coupling

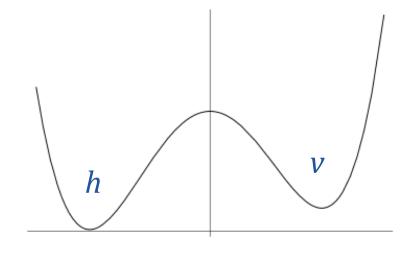


TESTING SOL EXPERIMENTALLY?

SOL's smoking gun is phase coexistence.

New matter at the TeV makes the SM unstable under variations of the Higgs bilinear.

Cosmological constant

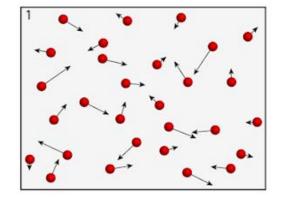


Dark energy EoS

CONCLUSIONS

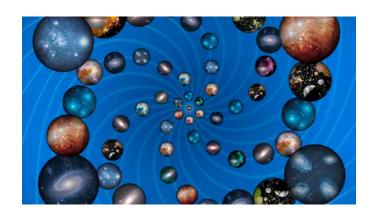
 SOL is an approach radically different from the symmetry paradigm: critical points can become dynamical attractors during inflation and determine low-energy parameters.

Single atom: energy?



Gas in statistical equilibrium: probabilistic prediction.

Single Universe: SM parameters?



Multiverse in steady-state: probabilistic prediction.

SOL can address some of the classical open questions in particle physics.

Self-organised localisation

G. F. Giudice

Erwin Schrödinger Guest Professor Lecture, 27 April 2023