Top-quark hadro-production and the top-quark mass

Sven-Olaf Moch

Universität Hamburg

Vienna particle seminar, Universität Wien, Oct 11, 2022

Top-quark mass on social media

• Top-quark mass already known with unprecedented precision from world combination ATLAS, CMS, CDF, D0 coll. '14 $m_t = 173.34 \pm 0.27$ (stat) ± 0.71 (syst) GeV

Top-quark mass in twitter scheme

Discovery of charged photons

Clauser habe eine Apparatur gebaut, die zwei verwickelte Photonen gleichzeitig ausgesendet habe. Dann habe er mit einem Filter die Ladung der Photonen geprüft und festgestellt, dass diese mit Vorhersagen der Quantenmechanik übereinstimmten.

Aspect habe das Experiment weiterentwickelt, indem er Atome dazu angeregt habe, Photonen schneller zu emittieren. Außerdem habe er die Messeinstellung verändert, nachdem ein verwickeltes Photonenpaar die Quelle verlassen habe. Dadurch habe die Einstellung, die zum Zeitpunkt der Emission bestand, das Ergebnis nicht beeinflussen können.

 Spectacular achievements of the 2022 Nobel laureates (according to tagesschau.de)

"[Clauser] then used a filter to check the charge of the photons".

Based on work done in collaboration with:

- One-loop soft anomalous dimension matrices for ttj hadroproduction
 B. Chargeishvili, M. V. Garzelli, and S. M. arXiv:2206.10977
- Phenomenology of tt
 j + X production at the LHC
 S. Alioli, J. Fuster, M. V. Garzelli, A. Gavardi, A. Irles, D. Melini, S. M.
 P. Uwer and K. Voß arXiv: 2202.07975
- Cross-sections for $t\bar{t}H$ production with the top quark \overline{MS} mass A. Saibel, S. M. and M. Aldaya Martin arXiv:2111.12505
- Heavy-flavor hadro-production with heavy-quark masses renormalized in the MS, MSR and on-shell schemes
 M. V. Garzelli, L. Kemmler S. M. and O. Zenaiev arXiv:2009.07763
- [...]
- Parton distribution functions, α_s, and heavy-quark masses for LHC Run II
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1701.05838
- [...]

Why top-quark physics?

Experiment

- Top-quark hadro-production processes measured at the LHC with high precision
 - $t\bar{t}$
 - $t\bar{t}V$ with $V = \gamma, W, Z$
 - $t\bar{t}$ +n jets with n = 1, 2, 3, 4
 - $t\bar{t}c\bar{c}$ and $t\bar{t}b\bar{b}$
 - $t\bar{t}t\bar{t}$
 - $t\bar{t}H$
 - single-t, $t\gamma$, tW, tH, tZq

Theory

- Challenge for theory predictions
- Dependence on fundamental parameters of the Standard Model
 - top-quark mass m_t
 - strong coupling α_s
- Constraints on new physics

Standard Model cross sections

Standard Model cross sections and predictions at the LHC CMS coll. '22

Top-quark cross sections

All results at: http://cern.ch/go/pNj7

Top-quark mass

- Top-quark is the heaviest elementary particle
- Masses and couplings are formal parameters of the theory
 - m_t and $\alpha_s = g_s^2/(4\pi)$ are no observables
- Classical part of QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_b + \sum_{\text{flavors}} \bar{q}_i \left(i \not \!\!\!D - m_q \right)_{ij} q_j$$

- field strength tensor $F^a_{\mu
 u}$ and matter fields q_i, \bar{q}_j
- covariant derivative $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$
- Parameters of Lagrangian have no unique physical interpretation
 - radiative corrections require definition of renormalization scheme

Challenge

- Suitable observables for measurements of α_s, m_q, \ldots
 - comparison of theory predictions and experimental data

Coupling constant renormalization

• Running coupling constant α_s from radiative corrections, e.g. one loop

screening (like in QED)

- anti-screening (color charge of g)

• QCD beta function
$$\mu^2 \frac{d}{d\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

- perturbative expansion to five loops
 Baikov, Chetyrkin, Kühn '16 Herzog, Ruijl, Ueda, Vermaseren, Vogt '17 ^{0.35} Luthe, Maier, Marquard, Schröder '17
- very good convergence of perturbative series even at low scales

Top-quark hadro-production and the top-quark mass – p.9

Quark mass renormalization

• Heavy-quark self-energy $\Sigma(p, m_q)$

QCD

- QCD corrections to self-energy $\Sigma(p, m_q)$
 - dimensional regularization $D = 4 2\epsilon$

$$\Sigma^{(1),\text{bare}}(p,m_q) = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{m_q^2}\right)^{\epsilon} \left\{ (\not p - m_q) \left(-C_F \frac{1}{\epsilon} + \text{fin.} \right) + m_q \left(3C_F \frac{1}{\epsilon} + \text{fin.} \right) \right\}$$

• Relate bare and renormalized mass parameter $m_q^{
m bare} = m_q^{
m ren} + \delta m_q$

one-loop: UV divergence $1/\epsilon$ (Laurent expansion)

Mass renormalization scheme

Pole mass

- Based on (unphysical) concept of top-quark being a free parton
 - $m_q^{\rm ren}$ coincides with pole of propagator at each order

$$\not p - m_q - \Sigma(p, m_q) \Big|_{\not p = m_q} \rightarrow \not p - m_q^{\text{pole}}$$

- Definition of pole mass ambiguous up to corrections $\mathcal{O}(\Lambda_{QCD})$
 - heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$

$\overline{\mathrm{MS}}$ scheme

- $\overline{\mathrm{MS}}$ mass definition
 - one-loop minimal subtraction

$$\delta m_q^{(1)} = m_q \frac{\alpha_s}{4\pi} \, 3C_F \, \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi\right)$$

• $\overline{\mathrm{MS}}$ scheme induces scale dependence: $m(\mu)$

Running quark mass

Scale dependence

- Renormalization group equation for scale dependence
 - mass anomalous dimension γ known to five loops Baikov, Chetyrkin, Kühn '14, Luthe, Maier, Marquard, Schröder '17 $\left(\mu^2 \frac{\partial}{\partial \mu^2} + \beta(\alpha_s) \frac{\partial}{\partial \alpha_s}\right) m(\mu) = \gamma(\alpha_s) m(\mu)$
- Plot mass ratio $m_t(163 \text{GeV})/m_t(\mu)$

Top-quark hadro-production and the top-quark mass - p.12

Scheme transformations

- Conversion between different renormalization schemes possible in perturbation theory
- Relation for pole mass and $\overline{\mathrm{MS}}$ mass
 - known to four loops in QCD Gray, Broadhurst, Gräfe, Schilcher '90; Chetyrkin, Steinhauser '99; Melnikov, v. Ritbergen '99; Marquard, Smirnov, Smirnov, Steinhauser '15
 - example: one-loop QCD

$$m^{\text{pole}} = m(\mu) \left\{ 1 + \frac{\alpha_s(\mu)}{4\pi} \left(\frac{4}{3} + \ln\left(\frac{\mu^2}{m(\mu)^2}\right) \right) + \dots \right\}$$

Meta-stability of the universe

- Large top-quark mass implies large Higgs-Yukawa coupling y_t
- Renormalization group for the Higgs self-coupling $\lambda(\mu)$ dependent on y_t
 - limit of small Higgs mass m_H implies $\lambda(\mu)$ decreases with μ
- Implications on stability of electroweak vacuum
 - Higgs potential unbounded from below for $\lambda(\mu) < 0$
- Renormalization group evolution of λ with uncertainties in m_H , m_t and α_s up to $\mu_r = M_{\rm Planck}$ (using program mr Kniehl, Pikelner, Veretin '16)

QCD factorization

QCD factorization

- Factorization at scale μ
 - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - cross section $\hat{\sigma}_{ij \to k}$ for parton types i, j and hadronic final state X
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Hard scattering cross section

- Parton cross section $\hat{\sigma}_{ij \rightarrow k}$ calculable pertubatively in powers of α_s
 - known to NLO, NNLO, $\dots (\mathcal{O}(\text{few}\%)$ theory uncertainty)

- Accuracy of perturbative predictions
 - LO (leading order)
 - NLO (next-to-leading order)
 - NNLO (next-to-next-to-leading order)
 - N³LO (next-to-next-to-next-to-leading order)

 $(\mathcal{O}(50 - 100\%) \text{ unc.})$ $(\mathcal{O}(10 - 30\%) \text{ unc.})$ $(\lesssim \mathcal{O}(10\%) \text{ unc.})$

Parton luminosity

Long distance dynamics due to proton structure

Cross section depends on parton distributions *f_i*

$$\sigma_{pp \to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

- Parton distributions known from global fits to exp. data
 - available fits accurate to NNLO
 - information on proton structure depends on kinematic coverage

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

• LHC run at $\sqrt{s} = 7/8$ TeV

 parton kinematics well covered by HERA and fixed target experiments

Parton kinematics with $x_{1,2} = M/\sqrt{S}e^{\pm y}$

- forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots \right]$$

Top-quark theory status

Total cross section

Exact result at NNLO in QCD

- NNLO perturbative corrections (e.g. at LHC with $\sqrt{s} = 8$ TeV)
- $\overline{\mathrm{MS}}$ renormalization scheme for α_s , on-shell scheme for m_t
 - *K*-factors: $K_{\text{LO} \rightarrow \text{NLO}} = 1.46$ and $K_{\text{NLO} \rightarrow \text{NNLO}} = 1.12$
 - scale stability at NNLO of $\mathcal{O}(\pm 5\%)$
 - point of minimal sensitivity at low scales $\mu \sim \mathcal{O}(m_t/4) \sim \mathcal{O}(45)$ GeV

Total cross section with running mass

- NNLO cross section with $\overline{\mathrm{MS}}$ renormalization scheme for $lpha_s$ and m_t
 - running mass with better apparent perturbative convergence
 - *K*-factors: $K_{\text{LO}\rightarrow\text{NLO}} = 1.26$ and $K_{\text{NLO}\rightarrow\text{NNLO}} = 1.03$
 - point of minimal sensitivity at natural hard scales $\mu \sim \mathcal{O}(m_t(m_t)) \sim \mathcal{O}(160)$ GeV

Top-quark mass from total cross section

• Cross section for $t\bar{t}$ -production with parametric dependence

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \underbrace{\hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)}_{\bullet}$$

- PDFs f_i , strong coupling α_s , masses m_X
- PDFs and $\alpha_s(M_Z)$ already well constrained by global fit
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 2.5 \dots 5 \cdot 10^{-2}$

Top-quark mass determination

- Choice of renormalization scheme for treatment of heavy quarks
 - $\overline{\mathrm{MS}}$ -scheme for quark masses and α_s
- Intrinsic limitation of sensitivity in total cross section

$$\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$$

 $= \hat{\sigma}_{ij \to X}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to X}^{(1)} + \, \alpha_s^2 \, \hat{\sigma}_{ij \to X}^{(2)} + \dots$

Data on top-quark cross sections (2017)

• Pulls for $t\bar{t}$ -inclusive cross sections in ABMP16

Fit quality

- Goodness-of-fit estimator χ^2 for extracted $\alpha_s(M_Z)$ and $m_t(m_t)$ values
 - χ^2 of global fit with NDP = 2834
 - data on top-quark production with NDP = 36 D0, ATLAS, CMS, LHCb

Correlations

• Correlations between gluon PDF g(x), $\alpha_s(M_Z)$ and $m_t(m_t)$

• Fits with fixed values of m_t and $\alpha_S(M_Z)$ carry significant bias

Sven-Olaf Moch

Data on top-quark cross sections (2022)

- $t\bar{t}$ -inclusive cross sections from ATLAS and CMS at $\sqrt{s} = 7$, 8 and 13 TeV
- high precision data with small experimental uncertainties
 - cross section combinations at $\sqrt{s} = 7$ and 8 TeV with accuracy of $\mathcal{O}(\pm 2 3\%)$

Theory status 2022

- NNLO QCD differential predictions for top-quark pairs at the LHC Czakon, Heymes, Mitov '15
- Top-quark pair hadroproduction at NNLO in QCD Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Sargsyan '19
 - to be implemented in future public release of MATRIX code Catani, Devoto, Grazzini, Kallweit, Mazzitelli '19
- NNLO event generation for top-quark pair production Mazzitelli, Monni, Nason, Re, Wiesemann and Zanderighi '20
- Top-pair production at the LHC with MiNNLO_PS Mazzitelli, Monni, Nason, Re, Wiesemann and Zanderighi '21
- Narrow-width-approximation at NNLO
 - NNLO QCD corrections to leptonic observables in top-quark pair production and decay
 - implemented in private STRIPPER code
 Czakon, Mitov, Poncelet '20

Differential cross sections (I)

NNLO QCD predictions in fiducial phase space

- dynamic scales $\mu_R = \mu_F = H_T/4$ with $H_T = \sqrt{p(t)_T^2 + m_t^2} + \sqrt{p(\bar{t})_T^2 + m_t^2}$
- top quark mass is set to $m_t = 172.5$ GeV with NNPDF31 NNLO PDFs
- Parton level with stable top-quarks (left)
- Particle level with decay leptons (right) Sven-Olaf Moch

Differential cross sections (II)

Summary

 The beyond-NLO theoretical predictions provide descriptions of the data that are of similar or improved quality, compared to POW+PYT, except for kinematic spectra where the theory scale uncertainties are large.
 CMS TOP-20-006-PAS

Challenges

- NNLO codes not publicly accessible
- Very long run times (few CPU years) for distributions with fixed input parameters $(m_t, PDFs, ...)$
- Accuracy of NNLO subtraction schemes
 - local sector subtraction (STRIPPER)
 - phase space slicing with q_T^{cut} (MATRIX)

Needs

- NNLO QCD predictions for range of m_t values
- Variation of PDFs (complete set of eigenvectors)

Differential cross sections (III)

Phenomenological studies at NLO

- Top-quark p_T distribution at NLO
- Different top-quark mass renormalization schemes
 - on-shell scheme for m_t
 - $\overline{\mathrm{MS}}$ mass renormalization scheme $m_t(\mu_m)$

• MSR mass
$$m_t^{\text{MSR}}(R)$$

Scale uncertainties for running mass (I)

NLO QCD predictions with $\overline{\mathrm{MS}}$ mass: fixed $m_t(m_t)$

- dynamic scale $\mu_R = \mu_F = \sqrt{p_T^2 + 4m_t^2(m_t)}$
- $\mu_R = \mu_F$ (left)
- $\mu_R = \kappa \mu_F$ with $1/2 < \kappa < 2$ (right)
- top quark mass $m_t(m_t) = 163.0$ GeV with ABMP16 NLO PDFs

Sven-Olaf Moch

Scale uncertainties for running mass (II)

NLO QCD predictions with $\overline{\mathrm{MS}}$ mass: running $m_t(\mu_m)$

- dynamic scale $\mu_R = \mu_F = \sqrt{p_T^2 + 4m_t^2(\mu_m)}$
- $\mu_R = \mu_F$ (left)
- $\mu_R = \kappa \mu_F$ with $1/2 < \kappa < 2$ (right)
- top quark mass $m_t(m_t) = 163.0$ GeV with ABMP16 NLO PDFs

Sven-Olaf Moch

Determination of top-quark mass (I)

• Correlated determination of PDFs , $\alpha_s(M_Z)$ and $m_t(m_t)$ using HERA DIS data and $t\bar{t}$ cross sections by CMS collaboration Garzelli, Kemmler, S. M., Zenaiev '20

•	ansatz	from	HERAPDF	for	PDFs
---	--------	------	---------	-----	------

Settings	Fit results
pole mass	$\chi^2/dof = 1364/1151, \chi^2_{t\bar{t}}/dof = 20/23$
$\mu_R = \mu_F = H'$	$m_t^{\text{pole}} = 170.5 \pm 0.7 (\text{fit}) \pm 0.1 (\text{mod})_{-0.1}^{+0.0} (\text{par}) \pm 0.3 (\mu) \text{ GeV}$
CMS, arXiv:1904.05237	$\alpha_S(M_Z) = 0.1135 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0004} (\text{mod})^{+0.0008}_{-0.0001} (\text{par})^{+0.0011}_{-0.0005} (\mu)$
pole mass	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t^{\text{pole}}$	$m_t^{\text{pole}} = 169.9 \pm 0.7 (\text{fit}) \pm 0.1 (\text{mod})^{+0.0}_{-0.0} (\text{par})^{+0.3}_{-0.9} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit})^{+0.0003}_{-0.0004} (\text{mod})^{+0.0003}_{-0.0000} (\text{par})^{+0.0016}_{-0.0008} (\mu)$
$\overline{\mathrm{MS}}$ mass	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t(m_t)$	$m_t(m_t) = 161.0 \pm 0.6 \text{(fit)} \pm 0.1 \text{(mod)}^{+0.0}_{-0.0} \text{(par)}^{+0.4}_{-0.8} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1136 \pm 0.0016 (\text{fit})^{+0.0002}_{-0.0005} (\text{mod})^{+0.0002}_{-0.0001} (\text{par})^{+0.0015}_{-0.0009} (\mu)$
MSR mass, $R = 3 \text{ GeV}$	$\chi^2/dof = 1363/1151, \chi^2_{t\bar{t}}/dof = 19/23$
$\mu_R = \mu_F = m_t^{\text{MSR}}$	$m_t^{\text{MSR}} = 169.6 \pm 0.7 (\text{fit}) \pm 0.1 (\text{mod})^{+0.0}_{-0.0} (\text{par})^{+0.3}_{-0.9} (\mu) \text{ GeV}$
this work	$\alpha_S(M_Z) = 0.1132 \pm 0.0016 (\text{fit})^{+0.0003}_{-0.0004} (\text{mod})^{+0.0002}_{-0.0000} (\text{par})^{+0.0016}_{-0.0008} (\mu)$

Table 1. The values for $\alpha_S(M_Z)$ and the top-quark mass in different mass schemes obtained in CMS, arXiv:1904.05237 and in this work by fitting the CMS data on $t\bar{t}$ production and the HERA DIS data arXiv:1506.06042 to theoretical predictions. The fit, model (mod), parametrisation (par) and scale variation (μ) uncertainties are reported. Also the values of χ^2 are reported, as well as the partial χ^2 values per number of degrees of freedom (dof) for the $t\bar{t}$ data ($\chi^2_{t\bar{t}}$) for 23 $t\bar{t}$ cross-section bins in the fit. The scale H' is defined in the text.

Determination of top-quark mass (II)

• Extraction of $m_t(m_t)$ at NLO from differential $t\bar{t}$ cross-sections using data of CMS collaboration

Garzelli, Kemmler, S. M., Zenaiev '20

- value of $m_t(m_t)$ compared to other determinations
- world average labelled as PDG2018, appr. NNLO is based on a single determination of D0 collaboration

Top-quark pairs with one jet

Top-quark pairs with one jet

- Large rates for production of $t\bar{t}$ -pairs with additional jets
- NLO QCD corrections for $t\bar{t} + 1$ jet Dittmaier, Uwer, Weinzierl '07-'08
- Scale dependence greatly reduced at NLO
 - left: corrections for total rate at scale $\mu_R = \mu_F = m_t$ are almost zero
 - right: dynamic scale $\mu_R = \mu_F = H_T/2$ shows better scale stability with $H_T = \sqrt{p(t)_T^2 + m_t^2} + \sqrt{p(t)_T^2 + m_t^2} + p(j)_T$ Bevilacqua, Hartanto, Kraus, Worek '15

Top-quark mass from $t\bar{t} + jet$ -samples

- Differential $t\bar{t} + jet$ cross section as function of invariant mass $\sqrt{s_{t\bar{t}+1jet}}$ offers possibility for top-quark mass determination
 - additional jet raises kinematical threshold
- Normalized-differential $t\bar{t} + jet$ cross section

Alioli, Fernandez, Fuster, Irles, S.M., Uwer, Vos '13

$$\mathcal{R}(m_t, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1jet}} \frac{d\sigma_{t\bar{t}+1jet}}{d\rho_s} (m_t, \rho_s)$$

• variable $\rho_s = \frac{2 \cdot m_0}{\sqrt{s_{t\bar{t}+1jet}}}$ with invariant mass of $t\bar{t} + 1jet$ system and fixed scale $m_0 = 170 \,\text{GeV}$ $\hat{\epsilon}^{3.5}$

• Normalization with $1/\sigma_{t\bar{t}+1jet}$ cancels many (experimental) uncertainties

Mass sensitivity of $t\bar{t} + jet$ -samples

- Differential cross section $\mathcal{R}(m_t, \rho_s)$
 - good pertubative stability, small theory uncertainties, small dependence on experimental uncertainties, ...
- Increased sensitivity for system $t\bar{t} + jet$ compared

$$\left|\frac{\Delta \mathcal{R}}{\mathcal{R}}\right| \simeq (m_t \mathcal{S}) \times \left|\frac{\Delta m_t}{m_t}\right|$$

• Significant mass sensitivity for $\rho_s \ge 0.5$

Sven-Olaf Moch

Theory status for $t\bar{t}j$ production

- Theory predictions at NLO QCD for ttj production with different scale choices
 Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, S. M., Uwer, Voß '22
 - dynamical scale with better apparent perturbative convergence

Dependence on parton distributions

- Predictions for $m_{t\bar{t}j}$ (left) and ρ_s (right) distributions at LO computation with $\mu_0 = H_T^B/4$ Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, S. M., Uwer, Voß '22
 - PDF uncertainties of ABMP16, CT18, MSHT20 and NNPDF3.1 NLO sets

Gluon distribution

- PDFs sets ABMP16, CT18, MSHT20 and NNPDF3.1 at NLO for $Q^2 = m_t^2 = (172 \,\text{GeV})^2$
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 5 \cdot 10^{-2} \dots 10^{-1}$ for $m_{t\bar{t}j}$

Top-quark mass determinations (I)

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} from cross-section measurer Septembe	ments r 2021
total stat	m _{top} ± tot (stat ± syst ± theo)	Ref.
σ(tī) inclusive, NNLO+NNLL		
ATLAS, 7+8 TeV	—— 172.9 ^{+2.5} -2.6	[1]
CMS, 7+8 TeV	• 173.8 ^{+1.7} -1.8	[2]
CMS, 13 TeV	169.9 $^{+1.9}_{-2.1}$ (0.1 \pm 1.5 $^{+1.2}_{-1.5}$)	[3]
ATLAS, 13 TeV	173.1 ^{+2.0} _{-2.1}	[4]
σ(tī̄+1j) differential, NLO		
ATLAS, 7 TeV	$-++ 173.7 \begin{array}{c} ^{+2.3}_{-2.1} (1.5 \pm 1.4 \begin{array}{c} ^{+1.0}_{-0.5}) \end{array}$	[5]
CMS, 8 TeV	$-169.9 \begin{array}{c} {}^{+4.5}_{-3.7} (1.1 \begin{array}{c} {}^{+2.5}_{-3.1} \end{array} \begin{array}{c} {}^{+3.6}_{-3.0})$	[6]
ATLAS, 8 TeV	171.1 $^{+1.2}_{-1.0}$ (0.4 \pm 0.9 $^{+0.7}_{-0.3}$)	[7]
σ (tī) n-differential, NLO		
ATLAS, n=1, 8 TeV	+ 173.2 \pm 1.6 (0.9 \pm 0.8 \pm 1.2)	[8]
CMS, n=3, 13 TeV →	170.5 ± 0.8	[9]
m _{top} from top quark decay	[1] EPJC 74 (2014) 3109 [5] JHEP 10 (2015) 121 [9] EPJC 80 (202 [2] JHEP 08 (2016) 029 [6] CMS-PAS-TOP-13-006 [10] PRD 93 (201	20) 658 16) 072004
ATLAS, 7+8 TeV comb. [11]	[3] EPJC 79 (2019) 368 [7] JHEP 11 (2019) 150 [11] EPJC 79 (20 [4] EPJC 80 (2020) 528 [8] EPJC 77 (2017) 804	119) 290
55 160 165 170	175 180 185 100	
55 100 105 170 m.	_ [GeV]	

- Top-quark mass measurement from ttj production becoming competitive
- tt
 j
 cross-sections use NLO
 (NLO+PS) predictions for mass
 determination
- Elevating accuracy of theory predictions beyond NLO improves m_t values and decreases their uncertainties

Top-quark mass determinations (II)

• CMS measurement of m_t (pole mass) from distributions for $t\bar{t} + 1$ jet samples accurate to $\sim 0.8\%$ CMS coll. '22 $m_t = 172.94^{+1.37}_{-1.34}$ GeV

Progress in theory (I)

Beyond NLO

- Scale uncertainties dominate theoretical uncertainties; need NNLO computations (very difficult)
- Focus on kinematical limits
 - threshold logarithms from emission of soft and/or collinear gluons
 - high energy (boosted) regime from t-channel gluon exchange
 - Coulomb corrections
- Sample of Feynman diagrams at Born level

Progress in theory (II)

Soft and collinear singularities

Soft/collinear regions of phase space

• massless partons
$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

 $p / (p+k)^2 \longrightarrow \alpha_s \int dE_g d\theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$
 $p + k \longrightarrow \alpha_s \frac{1}{\epsilon^2} \times (\dots)$ in dim. reg. $D = 4 - 2\epsilon$

Threshold logarithms

- Sudakov logarithms in velocity $\beta_{t\bar{t}} = \sqrt{1 4m^2/s}$ of heavy quarks or $\beta_{t\bar{t}j} = \sqrt{1 m_{t\bar{t}j}^2/s}$ for $t\bar{t}j$ -system
 - all order resummation of large logarithms $\alpha_s^n \ln^{2n}(\beta) \leftrightarrow \alpha_s^n \ln^{2n}(N)$ in Mellin space (renormalization group equation) Kidonakis, Sterman '97; Bonciani, Catani, Mangano, Nason '98; Kidonakis, Laenen, S.M., Vogt '01; ...

Factorization and resummation

• Partonic cross-section factorizes in threshold limit Collins, Soper, Sterman '83

 $\hat{\sigma} = \psi_i \otimes \psi_j \otimes H \otimes S \otimes J$

- ψ_i initial state jet functions, modeling the initial state collinear radiation
- *S* soft gluon exchange
- *H* hard matrix squared
- J final state jet function

Strategy of calculation

- Evaluation of each functions perturbative
- Resummation of logarithms through renormalization group evolution
- Previously applied to $t\bar{t}$ production processes with associated bosons $t\bar{t} + W/Z/H$ Kulesza, Motyka, Theeuwes et al '17, Broggio, Ferroglia, Pecjak et al. '17.

• $t\bar{t}j$ production

- complicated because of richer color structure
- final state jet with non-trivial soft singularity structure

Soft function

Renormalization group evolution for soft function

$$\mu \frac{d}{d\mu} S_{LI}^{(f)} = \left(\mu \frac{\partial}{\partial \mu} + \beta \left(\alpha_s \right) \frac{\partial}{\partial \alpha_s} \right) S_{LI}^{(f)} = - \left(\Gamma_S^{(f)} \right)_{LB}^{\dagger} S_{BI}^{(f)} - S_{LA}^{(f)} \left(\Gamma_S^{(f)} \right)_{AI},$$

• soft anomalous dimension $\left(\Gamma_{S}^{(f)}\right)_{LI}$ computed from UV divergence of eikonal amplitudes (Wilson lines)

- Integrals at one-loop level known Kidonakis, Sterman '97.
- Color basis for Wilson lines

$$S_{LI}^{\{f\},0} = \left\langle \mathbf{c}_{L}^{\{f\}} | \mathbf{c}_{I}^{\{f\}} \right\rangle$$

Color basis

- *gg*-channel color basis
 - $\mathbf{c}^1_{abcde} = t^e_{\ cd} \delta_{ab}$ $\mathbf{c}_{abcde}^2 = i f_{abe} \delta_{cd}$ $\mathbf{c}_{abcde}^3 = i d_{abe} \delta_{cd}$ $\mathbf{c}_{abcde}^4 = i f_{abn} i f_{men} t_{cd}^m$ $\mathbf{c}_{abcde}^5 = d_{abn} i f_{men} t_{cd}^m$ $\mathbf{c}_{abcde}^{6} = i f_{abn} d_{men} t_{cd}^{m}$ $\mathbf{c}_{abcde}^7 = d_{abn} d_{men} t_{cd}^m$ $\mathbf{c}^8_{abcde} = P^{10+\overline{10}}_{abme} t^m_{\ cd}$ $\mathbf{c}_{abcde}^9 = P_{abme}^{10-\overline{10}} t_{cd}^m$ $\mathbf{c}_{abcde}^{10} = -P_{abme}^{27} t_{cd}^m$ $\mathbf{c}_{abcde}^{11} = P_{abme}^0 t_{cd}^m$

- $q\bar{q}\text{-channel}$ $\mathbf{c}_{abcde}^{1} = t_{cd}^{e}\delta_{ab}$ $\mathbf{c}_{abcde}^{2} = t_{ab}^{e}\delta_{cd}$ $\mathbf{c}_{abcde}^{3} = t_{ba}^{m}t_{cd}^{n}if_{mne}$ $\mathbf{c}_{abcde}^{4} = t_{ba}^{m}t_{cd}^{n}d_{mne}$
- P^i are projectors: $P^i_{ABmn}P^j_{mnCD} = \delta_{ij}P^i_{ABCD}$

 Recent work on color evolution and infrared physics Plätzer 22

Results for $t\bar{t}$ + *jet*

• Components of $\left(\Gamma_S^{(f)}\right)_{LI}$ for $g\bar{g} \to t\bar{t}g$ -channel at one loop

Chargeishvili, Garzelli S.M.

$\Gamma_{1,1}^{(1)} = \frac{1}{N_c} \bigg[L_\beta + N_c^2 \bigg(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \log\left(\nu_{35}\right) + \log\left(\nu_{45}\right) + \log\left(\frac{1}{m_c^2}\right) - \log\left(8\right) \bigg] = 0$
+2+2ix + 1
$\Gamma_{1,2}^{(1)} = \frac{2N_c}{N_c^2 - 1} [\log{(v_{13})} - \log{(v_{14})} - \log{(v_{23})} + \log{(v_{24})}]$
$\Gamma_{1,3}^{(1)} = 0$
$\Gamma_{1,4}^{(1)} = \frac{N_x^2}{N_x^2 - 1} [-\log\left(v_{13}\right) - \log\left(v_{14}\right) + 2\log\left(v_{15}\right) + \log\left(v_{23}\right) + \log\left(v_{24}\right) - 2\log\left(v_{25}\right)]$
$\Gamma_{1,5}^{(1)} = 0$
$\Gamma_{1,i}^{(1)} = \frac{N_c^2 - 4}{N_c^2 - 1} [\log \left(v_{13} \right) - \log \left(v_{14} \right) - \log \left(v_{23} \right) + \log \left(v_{24} \right)]$
$\Gamma_{1,7}^{(1)} = 0$
$\Gamma_{1,8}^{(1)} = 0$
$\Gamma_{1,9}^{(1)} = 0$
$\Gamma_{1,10}^{(1)} = 0$
$\Gamma_{1,10}^{(1)} = 0$ $\Gamma_{1,11}^{(1)} = 0$
$\begin{split} & \Gamma_{1,1}^{(1)} = 0 \\ & \Gamma_{1,1}^{(1)} = 0 \\ & \Gamma_{2,1}^{(1)} = \frac{1}{N_c} [\log\left(v_{11}\right) - \log\left(v_{11}\right) - \log\left(v_{21}\right) + \log\left(v_{21}\right)] \end{split}$
$\begin{split} &\Gamma_{1,1}^{1,1}=0\\ &\Gamma_{2,1}^{1,1}=0\\ &\Gamma_{2,1}^{1,1}=\frac{1}{N_c}\left[\log\left(\tau_{1,1}\right)-\log\left(\tau_{1,1}\right)-\log\left(\tau_{2,1}\right)+\log\left(\tau_{2,1}\right)\right]\\ &\Gamma_{2,1}^{1,1}=\frac{1}{N_c}\left[-L_0\left(N_c^2-1\right)+N_c^2\left(-\log\left(\tau_{1,1}\right)-\log\left(\tau_{2,1}\right)-\log\left(\tau_{2,1}\right)-\log\left(\tau_{2,1}\right)-\log\left(\tau_{2,1}\right)\right]\right] \end{split}$
$\begin{split} & \Gamma_{11}^{(0)} = 0 \\ & \Gamma_{11}^{(1)} = \frac{1}{N_{0}} \log \left(v_{11} - \log \left(v_{11} \right) - \log \left(v_{12} \right) + \log \left(v_{12} \right) \right] \\ & = \frac{1}{N_{0}} \left[-L_{0}\left(v_{1}^{(1)} - 1 \right) - N_{1}^{(2)} - \log \left(v_{11} \right) - \log \left(v_{12} \right) + \log \left(v_{12} \right) + \log \left(v_{12} \right) - \log \left(v_{$
$\begin{split} &\Gamma_{1,k}^{(1)}=0\\ &\Gamma_{k,1}^{(1)}=\frac{1}{2}\log\left(n_{1,k}\right)-\log\left(n_{1,k}\right)+\log\left(n_{2,k}\right)+\log\left(n_{2,k}\right)\right \\ &\Gamma_{k,1}^{(1)}=\frac{1}{2}\left[-\frac{1}{2}\left(L_{0}\left(X_{k}^{(1)}-1 \right)+X_{k}^{(1)}-\log\left(n_{1}\right)-\log\left(n_{2}\right)-\log\left(n_{2}\right)+\log\left(n_{2}\right)+\log\left(n_{2}\right)-\log\left(n_{2}\right)\right)\\ &+2+n+1+1\\ &+2+n+1\\ &\Gamma_{k,1}^{(1)}=0 \end{split}$
$\begin{split} & \Gamma_{11}^{(0)} = 0 \\ & \Gamma_{11}^{(1)} = \frac{1}{N_{12}^{-1}} \frac{1}{N$
$\begin{split} & \Gamma_{1,2}^{(0)} = 0 \\ & \Gamma_{2,1}^{(1)} = \frac{1}{N_{2}} \sum_{i=1}^{N_{2}} \log\left(r_{i_{1}}\right) - \log\left(r_{i_{2}}\right) + \log\left(r_{i_{2}}\right) + \log\left(r_{i_{2}}\right) \\ & + \frac{1}{N_{2}} - \frac{1}{N_{2}} \left[L_{i_{1}}(N_{i_{1}}^{(2)} - 1) + N_{i_{1}}^{(2)} - \log\left(r_{i_{1}}\right) - \log\left(r_{i_{2}}\right) + \log\left(r_{i_{2}}\right) - \log\left(r_{i_{2}}\right) + \log\left(r_{i_{2}}\right) - \log\left(r_{i_{2}}\right) + \log\left(r_{i_{2}}\right) - \log\left(r_{i_{2}}\right) \\ & + 2 + ir_{i_{1}} + 1 \\ & \Gamma_{1,2}^{(2)} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} \\ & + 2 + ir_{i_{2}} + 1 \\ & \Gamma_{1,2}^{(2)} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \log\left(r_{i_{2}}\right) - \log\left(r_{i_{2}}\right) \\ & + 2 + ir_{i_{2}} + 1 \\ & \Gamma_{1,2}^{(2)} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} \\ & + 2 + ir_{i_{2}} + 1 \\ & \Gamma_{1,2}^{(2)} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} \\ & + 2 + ir_{i_{2}} + 1 \\ & \Gamma_{1,2}^{(2)} - \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} \\ & + 2 + ir_{i_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} \\ & + 2 + ir_{i_{2}} \sum_{i_{2}} \frac{1}{N_{2}} \frac{1}{N_{2}} + \frac{1}{N_{2}} \sum_{i_{2}} \frac{1}{N_$
$\begin{split} & \Gamma_{11}^{(0)} = 0 \\ & \Gamma_{12}^{(1)} = \frac{1}{\sqrt{2}} \log(r_{11}) - \log(r_{11}) + \log(r_{21}) + \log(r_{21}) \\ & \Gamma_{12}^{(1)} = \frac{1}{\sqrt{2}} r_{12}(r_{12}(r_{12}) + r_{12}) + r_{12}^{(1)} - \log(r_{12}) - \log(r_{12}) - \log(r_{12}) + \log(r_{21}) + \log(r_{21}) - \log(r_{21}) \\ & + \frac{1}{\sqrt{2}} (r_{12} + r_{12}) + \frac{1}{\sqrt{2}} \\ & \Gamma_{12}^{(1)} = -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \log(r_{21}) - \log(r_{21}) - \log(r_{21}) - \log(r_{22}) - \log(r_{22})$
$\begin{split} & \Gamma_{11}^{(0)} = 0 \\ \\ & \Gamma_{12}^{(1)} = \frac{1}{\sqrt{2}} \log(r_{11} - \log(r_{11}) + \log(r_{21}) + \log(r_{21}) \\ & \Gamma_{12}^{(1)} = \frac{1}{\sqrt{2}} (-L_{11}(N_{1}^{-1} - 1) + N_{1}^{2} - \log(r_{11}) - \log(r_{12}) - \log(r_{12}) + \log(r_{21}) + \log(r_{21}) - \log(r_{21}) \\ & + T_{12}^{(1)} = 0 \\ \\ & \Gamma_{12}^{(1)} = -\frac{1+2r_{21}}{2} + \frac{1+2r_{22}}{2} + \frac{1+2r_{22}}{2} + \frac{1+2r_{22}}{2} + \log(r_{21}) - \log(r_{21}) \\ \\ & \Gamma_{12}^{(1)} = 0 \\ \\ & \Gamma_{12}^{(1)} = \frac{2}{2N_{1}^{2}} \log(r_{11}) - \log(r_{11}) - \log(r_{21}) + \log(r_{21}) \\ \\ \end{array}$

 $\Gamma_{2,9}^{(1)} = 0$ $\Gamma_{2,10}^{(1)} = \frac{N_c + 3}{4N_c + 4} [\log(v_{13}) - \log(v_{14}) - \log(v_{23}) + \log(v_{24})]$ $\Gamma_{2,11}^{(1)} = \frac{N_e - 3}{4N_e - 4} [\log(v_{12}) - \log(v_{14}) - \log(v_{23}) + \log(v_{24})]$ $\Gamma_{2,1}^{(1)} = 0$ $\Gamma_{3,2}^{(1)} = 0$ $\Gamma_{3,3}^{(1)} = \frac{1}{N_c} \left[-L_\beta \left(N_c^2 - 1 \right) + N_c^2 (-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \log\left(\nu_{15}\right) + \log\left(\nu_{25}\right) - \log\left(8\right) \right] \right]$ $+2 + i\pi) + 1$ $\Gamma_{1,4}^{(1)} = 0$ $\Gamma_{3.5}^{(1)} = -\frac{\log(v_{13})}{v_{15}} + \frac{\log(v_{13})}{v_{15}} - \frac{\log(v_{23})}{v_{15}} + \frac{\log(v_{23})}{v_{15}} + \log(v_{25}) - \log(v_{25})$ $\Gamma_{3,6}^{(1)} = \frac{\log(v_{13})}{2} - \frac{\log(v_{14})}{2} - \frac{\log(v_{13})}{2} + \frac{\log(v_{14})}{2}$ $\Gamma_{3,7}^{(1)} = 0$ $\Gamma_{3,8}^{(1)} = 0$ $\Gamma_{3,9}^{(1)} = \frac{\log(v_{12})}{2} - \frac{\log(v_{13})}{2} - \frac{\log(v_{13})}{2} + \frac{\log(v_{13})}{2}$ $\Gamma_{3,10}^{(1)} = 0$ $\Gamma_{2,11}^{(1)} = 0$ $\Gamma_{s\,1}^{(1)} = -\log(v_{13}) - \log(v_{14}) + 2\log(v_{15}) + \log(v_{23}) + \log(v_{24}) - 2\log(v_{25})$ $\Gamma_{4,2}^{(1)} = -\log\left(v_{13}\right) + \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right) + 2\log\left(v_{35}\right) - 2\log\left(v_{45}\right)$ $\Gamma_{1,2}^{(1)} = 0$ $\Gamma_{4,4}^{(1)} = \frac{1}{N_c} \left[L_\beta + N_c^2 \left(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \frac{\log\left(\nu_{14}\right)}{4} + \frac{\log\left(\nu_{14}\right)}{4} + \frac{\log\left(\nu_{14}\right)}{2} + \frac{\log\left(\nu_{14}\right)}{4} \right) \right] \right]$ $+ \frac{\log (vas)}{4} + \frac{\log (vat)}{2} + \frac{\log (vat)}{2} + \frac{\log (vat)}{2} + \log \left(\frac{s}{m^2}\right) - \frac{\log (2006)}{4} + 2 + i\pi + 1$ $\Gamma_{4,5}^{(1)} = \frac{N_{\pi}^2 - 4}{4N} \left[\log (v_{13}) - \log (v_{14}) - \log (v_{23}) + \log (v_{24}) \right]$ $\Gamma_{4,6}^{(1)} = \frac{N_c^2 - 4}{4N} \left[-\log(v_{13}) + \log(v_{14}) - \log(v_{23}) + \log(v_{24}) + 2\log(v_{26}) - 2\log(v_{26}) \right]$

 $\Gamma_{4,7}^{(1)} = \frac{N_a^2 - 4}{4N} \left[-\log(v_{13}) - \log(v_{14}) + 2\log(v_{15}) + \log(v_{23}) + \log(v_{24}) - 2\log(v_{25}) \right]$ $\Gamma_{s,a}^{(1)} = 0$ $\Gamma_{4,9}^{(1)} = 0$ $\Gamma_{4,10}^{(1)} = \frac{N_c + 3}{4N_c + 4} \left[\log (v_{13}) + \log (v_{14}) - 2 \log (v_{15}) - \log (v_{23}) - \log (v_{24}) + 2 \log (v_{25}) \right]$ $\Gamma_{4,11}^{(1)} = \frac{N_e - 3}{4N_e - 4} \left[-\log(v_{13}) - \log(v_{14}) + 2\log(v_{15}) + \log(v_{23}) + \log(v_{24}) - 2\log(v_{25}) \right]$ $\Gamma_{5,1}^{(1)} = 0$ $\Gamma_{5,2}^{(1)} = 0$ $\Gamma_{5,3}^{(1)} = -\log\left(v_{13}\right) + \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right) + 2\log\left(v_{35}\right) - 2\log\left(v_{45}\right)$ $\Gamma_{5,4}^{(1)} = \frac{N_e}{t} [\log(v_{13}) - \log(v_{14}) - \log(v_{24}) + \log(v_{24})]$ $\Gamma_{5,5}^{(1)} = \frac{1}{N} \left[L_{\beta} + N_c^2 \left(-\log(\nu_1) - \log(\nu_2) - \log(\nu_3) + \frac{\log(\nu_{13})}{2} + \frac{\log(\nu_{13}$ $+\frac{\log(v_{24})}{4}+\frac{\log(v_{24})}{2}+\frac{\log(v_{24})}{2}+\frac{\log(v_{24})}{2}+\log\left(\frac{\pi}{m_1^2}\right)-\frac{\log(4000)}{4}+2+i\pi$ $\Gamma_{5,6}^{(1)} = \frac{N_c}{4} \left[-\log \left(v_{13} \right) - \log \left(v_{14} \right) + 2 \log \left(v_{15} \right) + \log \left(v_{23} \right) + \log \left(v_{24} \right) - 2 \log \left(v_{25} \right) \right]$ $\Gamma_{h,l}^{(1)} = \frac{N_e^2 - 4}{4N_e} \left[-\log\left(v_{13}\right) + \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right) + 2\log\left(v_{25}\right) - 2\log\left(v_{45}\right) \right] \right]$ $\Gamma_{5,8}^{(1)} = \frac{\log(ex)}{2} - \frac{\log(ex)}{2} - \frac{\log(ex)}{2} + \frac{\log(ex)}{2}$ $\Gamma_{r,a}^{(1)} = 0$ $\Gamma_{5.00}^{(1)} = 0$ $\Gamma_{r,1}^{(1)} = 0$ $\Gamma_{6,1}^{(1)} = \! \log\left(v_{13}\right) - \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right)$ $\Gamma_{n-1}^{(1)} = 0$ $\Gamma_{0,2}^{(1)} = \log(v_{13}) - \log(v_{14}) - \log(v_{23}) + \log(v_{24})$ $\Gamma_{6,4}^{(1)} = \frac{N_{c}}{4} \left[-\log \left(v_{13} \right) + \log \left(v_{14} \right) - \log \left(v_{23} \right) + \log \left(v_{24} \right) + 2 \log \left(v_{35} \right) - 2 \log \left(v_{45} \right) \right]$

$\Gamma_{6,5}^{(1)} = \frac{N_{c}}{4} [-\log\left(v_{1:3}\right) - \log\left(v_{1:4}\right) + 2\log\left(v_{1:5}\right) + \log\left(v_{2:3}\right) + \log\left(v_{2:4}\right) - 2\log\left(v_{2:5}\right)]$
$\Gamma_{0,0}^{(1)} = \frac{1}{N_c} \bigg[L_\beta + N_s^2 \bigg(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \frac{\log\left(\nu_{11}\right)}{4} + \frac{\log\left(\nu_{11}\right)}{4} + \frac{\log\left(\nu_{11}\right)}{2} + \frac{\log\left(\nu_{11}\right)}{4} \bigg]$
$+ \frac{\log{(v_{01})}}{4} + \frac{\log{(v_{01})}}{2} + \frac{\log{(v_{01})}}{2} + \frac{\log{(v_{01})}}{2} + \log{\left(\frac{\pi}{w_1^2}\right)} - \frac{\log{(2000)}}{4} + 2 + i\pi \right) + 1 \bigg]$
$\Gamma_{6,7}^{(1)} = \frac{N_{\pi}^2 - 12}{4N_{\pi}} [\log (v_{13}) - \log (v_{14}) - \log (v_{24}) + \log (v_{24})]$
$\Gamma_{0,3}^{(1)} = 0$
$\Gamma_{6,9}^{(1)} = 0$
$\Gamma_{6,13}^{(1)} = \frac{N_e(N_e+3)}{4N_e^2 + 12N_e + 8} \left[\log\left(v_{13}\right) - \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right) \right]$
$\Gamma_{6,11}^{(1)} = \frac{N_e(N_e-3)}{4N_e^2 - 12N_e + 8} [-\log\left(v_{12}\right) + \log\left(v_{14}\right) + \log\left(v_{23}\right) - \log\left(v_{24}\right)]$
$\Gamma_{7,1}^{(1)} = 0$
$\Gamma_{7,2}^{(1)} = \frac{N_{2}^{2}}{N_{2}^{2} - 4} [\log \left(v_{13}\right) - \log \left(v_{14}\right) - \log \left(v_{23}\right) + \log \left(v_{24}\right)]$
$\Gamma_{7,3}^{(1)} = 0$
$\Gamma_{7,4}^{(1)} = \frac{N_c^2}{4N_c^2 - 16} \left[-\log\left(v_{13}\right) - \log\left(v_{14}\right) + 2\log\left(v_{15}\right) + \log\left(v_{23}\right) + \log\left(v_{24}\right) - 2\log\left(v_{25}\right) \right]$
$\Gamma_{7,5}^{(1)} = \frac{N_{c}}{4} [-\log\left(v_{13}\right) + \log\left(v_{14}\right) - \log\left(v_{23}\right) + \log\left(v_{24}\right) + 2\log\left(v_{25}\right) - 2\log\left(v_{15}\right)]$
$\Gamma_{7,6}^{(1)} = \frac{N_e(N_e^2 - 12)}{4N_e^2 - 16} [\log (v_{13}) - \log (v_{14}) - \log (v_{24}) + \log (v_{24})]$
$\Gamma_{7,7}^{(1)} = \frac{1}{N_e} \bigg[L_\beta + N_e^2 \bigg(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{2} + \frac{\log\left(\nu_{13}\right)}{4} \bigg] \bigg] + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} \bigg] \bigg] + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} + \frac{\log\left(\nu_{13}\right)}{4} \bigg] \bigg] + \frac{\log\left(\nu_{13}\right)}{4} + \log\left(\nu_{$
$+ \frac{\log(viz)}{4} + \frac{\log(viz)}{2} + \frac{\log(viz)}{2} + \frac{\log(viz)}{2} + \log\left(\frac{s}{ss_s^2}\right) - \frac{\log(200i)}{4} + 2 + i\pi\right) + 1 \bigg]$
$\Gamma_{7,8}^{(1)} = \frac{N_e^2}{2N_e^2 - 8} \left[\log\left(v_{13}\right) + \log\left(v_{14}\right) - 2\log\left(v_{15}\right) - \log\left(v_{23}\right) - \log\left(v_{24}\right) + 2\log\left(v_{25}\right) \right]$
$\Gamma_{7,9}^{(1)} = \frac{N_e}{N_e^2 - 4} [-\log{(v_{13})} + \log{(v_{14})} + \log{(v_{23})} - \log{(v_{24})}]$
$\Gamma^{(1)}_{-} = 0$

$\Gamma_{7,11}^{(1)} = I$	0
$\Gamma_{8,1}^{(1)} = 0$	0
$\Gamma_{8,2}^{(1)} = 0$	0
$\Gamma_{8,3}^{(1)} = 0$	0
$\Gamma_{8,4}^{(1)} = 0$	0
$\Gamma_{8,5}^{(1)} = 1$	$\log (v_{13}) - \log (v_{14}) - \log (v_{23}) + \log (v_{24})$
$\Gamma_{8,6}^{(1)} = 0$	0
$\Gamma_{8,7}^{(1)}=$	$\log \left(v_{13} \right) + \log \left(v_{14} \right) - 2 \log \left(v_{15} \right) - \log \left(v_{23} \right) - \log \left(v_{24} \right) + 2 \log \left(v_{25} \right)$
$\Gamma_{8,8}^{(1)} =$	$\frac{1}{N_c} \left[L_\beta + N_c^2 \left(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \frac{\log\left(\nu_{13}\right)}{2} + \frac{\log\left(\nu_{13}\right)}{2} + \log\left(\nu_{13}\right) + \frac{\log\left(\nu_{13}\right)}{2} \right) \right] \right] + \frac{\log\left(\nu_{13}\right)}{2} + \log\left(\nu_{13}\right) + \log$
	$+ \frac{\log\left(v_{23}\right)}{2} + \log\left(v_{23}\right) + \log\left(\frac{s}{s_1^2}\right) - \frac{\log\left(s_1\right)}{2} + 2 + 1 \right]$
$\Gamma_{8,9}^{(1)} = -$	$-\frac{\log(v_{13})}{2} + \frac{\log(v_{13})}{2} - \frac{\log(v_{23})}{2} + \frac{\log(v_{23})}{2} + \log(v_{23}) - \log(v_{43})$
$\Gamma_{8,10}^{(1)} =$	$\frac{N_{c}(N_{a}+3)}{4N_{e}+8}[-\log\left(v_{13}\right)-\log\left(v_{14}\right)+2\log\left(v_{15}\right)+\log\left(v_{23}\right)+\log\left(v_{24}\right)-2\log\left(v_{25}\right)]$
$\Gamma^{(1)}_{8,11} =$	$\frac{N_{c}(N_{c}-3)}{4N_{c}-8}[\log\left(v_{13}\right) + \log\left(v_{14}\right) - 2\log\left(v_{15}\right) - \log\left(v_{23}\right) - \log\left(v_{24}\right) + 2\log\left(v_{25}\right)]$
$\Gamma_{9,1}^{(1)} = 0$	0
$\Gamma_{9,2}^{(1)} = 0$	0
$\Gamma_{9,3}^{(1)} =$	$2 \log (v_{13}) - 2 \log (v_{14}) - 2 \log (v_{23}) + 2 \log (v_{24})$
$\Gamma_{9,4}^{(1)} = 0$	0
$\Gamma_{9,5}^{(1)} = 0$	0
$\Gamma_{3,6}^{(1)} = 0$	0
$\Gamma_{9,7}^{(1)} =$	$\frac{1}{N_c} [-2 \log \left(v_{13}\right) + 2 \log \left(v_{14}\right) + 2 \log \left(v_{23}\right) - 2 \log \left(v_{24}\right)]$
r.(1)	$-\log(v_{10}) + \log(v_{10}) - \log(v_{20}) + \log(v_{20}) + \log(v_{20}) - \log(v_{20})$

- $\Gamma_{0,0}^{(1)} = \frac{1}{N_c} \bigg[L_\beta + N_c^2 \bigg(-\log\left(\nu_1\right) \log\left(\nu_2\right) \log\left(\nu_3\right) + \frac{\log\left(\nu_{11}\right)}{2} + \frac{\log\left(\nu_{11}\right)}{2} + \log\left(\nu_{11}\right) + \frac{\log\left(\nu_{11}\right)}{2} + \frac{\log\left(\nu_{11}\right)}{2} + \log\left(\nu_{11}\right) + \log\left(\nu_{11$ $+\frac{\log(a_1)}{2} + \log(v_{25}) + \log\left(\frac{s}{s_1^2}\right) - \frac{\log(a_1)}{2} + 2 + 1$ $\Gamma_{8,10}^{(1)} = \frac{N_{c}(N_{c} + 3)}{4N_{c} + 8} \left[-\log(v_{13}) + \log(v_{14}) + \log(v_{23}) - \log(v_{24}) \right]$ $\Gamma_{9,11}^{(1)} = \frac{N_{e}(N_{e} - 3)}{4N_{e} - 8} \left[-\log(v_{13}) + \log(v_{14}) + \log(v_{23}) - \log(v_{24}) \right]$ $\Gamma^{(1)}_{10,1} = 0$ $\Gamma_{10,2}^{(1)} \!=\! 2 \log\left(v_{13}\right) - 2 \log\left(v_{14}\right) - 2 \log\left(v_{23}\right) + 2 \log\left(v_{24}\right)$ $\Gamma_{10,2}^{(1)} = 0$ $\Gamma_{10,4}^{(1)} = \log\left(v_{13}\right) + \log\left(v_{14}\right) - 2\log\left(v_{13}\right) - \log\left(v_{23}\right) - \log\left(v_{24}\right) + 2\log\left(v_{25}\right)$ $\Gamma_{50.5}^{(1)} = 0$ $\Gamma_{10,6}^{(1)} = \frac{N_c - 2}{M} [\log(v_{13}) - \log(v_{14}) - \log(v_{23}) + \log(v_{24})]$ $\Gamma_{12}^{(1)} = 0$ $\Gamma_{u_{12}}^{(1)} = \frac{-N_{c}(N_{c}-1)+2}{\left[\log\left(v_{13}\right) + \log\left(v_{14}\right) - 2\log\left(v_{15}\right) - \log\left(v_{23}\right) - \log\left(v_{23}\right) + 2\log\left(v_{25}\right)\right]}$ $\Gamma_{10,9}^{(1)} = \frac{-N_c(N_c - 1) + 2}{2N} [\log(v_{13}) - \log(v_{14}) - \log(v_{23}) + \log(v_{24})]$ $\Gamma_{10,10}^{(1)} = \frac{1}{N_c} \Big[L_{\beta} + N_c \Big(N_c \Big(-\log\left(\nu_1\right) - \log\left(\nu_2\right) - \log\left(\nu_3\right) + \log\left(\frac{s}{m_c^2}\right) - \frac{\log\left(6t\right)}{2} + 2 \Big) + (N_c + N_c +$ $+1)\left(\frac{\log (v_{13})}{2} + \frac{\log (v_{13})}{2} + \log (v_{15}) + \frac{\log (v_{23})}{2} + \frac{\log (v_{23})}{2} + \log (v_{23})\right) - \log (v_{25})$ $-\log(v_{45}) - 2i\pi + 1$ $\Gamma^{(1)}_{10,11} = 0$ $\Gamma_{11,1}^{(1)} = 0$ $\Gamma_{11,2}^{(1)} = 2\log\left(v_{13}\right) - 2\log\left(v_{14}\right) - 2\log\left(v_{23}\right) + 2\log\left(v_{24}\right)$ $\Gamma_{11,3}^{(1)} = 0$ $\Gamma_{11,4}^{(1)} = -\log\left(v_{13}\right) - \log\left(v_{14}\right) + 2\log\left(v_{15}\right) + \log\left(v_{23}\right) + \log\left(v_{24}\right) - 2\log\left(v_{26}\right)$
- $$\begin{split} & \Gamma_{11,1}^{(1)} = \frac{M_{1,1}}{2M_{1,1}} = \frac{M_{1,1}}{M_{1,1}} \frac{M_{1,1}}{M_{1,1}} + \log\left(r_{11}\right) + \log\left(r_{12}\right) \log\left(r_{21}\right) \\ & \Gamma_{11,1}^{(1)} = \frac{M_{1,1}}{M_{1,1}} = \frac{M_{1,1}}{M_{1,1}} \frac{M$$

Summary

Data analysis

- Top-quark mass extraction subject to correlations with $\alpha_s(M_Z)$ and PDFs
 - fixing of gluon PDF g(x) and $\alpha_s(M_Z)$ may lead to bias
- Use of different mass schemes: $\overline{\mathrm{MS}}$, MSR and on-shell schemes
 - preference for short distance mass schemes $\overline{\mathrm{MS}}$, MSR

Theory improvements

- Experimental precision of $\lesssim 1\%$ makes theoretical predictions at NNLO in QCD mandatory
- Need public NNLO QCD codes for hadro-production of top-quark pairs (incl. benchmarking)
- Need QCD perturbation theory for $t\bar{t}H$, $t\bar{t}j + X$ production at NNLO
 - generally very difficult: $2 \rightarrow 3$ processes with masses are beyond current state-of-the-art
 - progress in kinematic limits (threshold, high-energy, ...) feasible

Future tasks

Joint effort theory and experiment

Sven-Olaf Moch