

EFT effects in VBS: lessons from UV complete models

Dieter Zeppenfeld (KIT)

Based on arXiv 2103.16517

(in collaboration with Jannis Lang, Stefan Liebler, and Heiko Schäfer-Siebert)

KIT Center Elementary Particle and Astroparticle Physics - KCETA

Outline of seminar

- Vector boson scattering (VBS) and fusion (VBF)
- EFT parameterization of BSM effects \rightarrow Eboli basis
- Unitarity considerations and EFT
- Operators with field strengths are loop induced
- UV complete model(s) with fermions or scalars and their EFT
- Constraints from experiments
- Constraints from unitarity
- VBF cross sections: onshell and at LHC

Conclusions

Introduction

- Vector boson scattering (VBS)
- Basic process: VV→VV
- accompanied by 2 quark jets
 = tagging jets
- Observe decay leptons of weak bosons or hadronic V decay
- Vector boson fusion (VBF)
- Important Higgs production mode, e.g. H→tau+tau-
- Determine HVV coupling from production cross section
- Relatively low background

VBF and VBS signature

Characteristics:

- energetic jets in the forward and backward directions (*p_T* > 20 GeV)
- large rapidity separation and large invariant mass of the two tagging jets
 Enhance signal contributions by "VBF cuts", e.g.

$$m_{jj} > 500 \,\text{GeV}$$
 $\Delta y_{jj} = |y_{j_1} - y_{j_2}| > 2.5$

Higgs/V/VV decay products between tagging jets

VBF signature provides good background rejection

VBS and anomalous quartic gauge couplings (aQGC)

VBS provides rich source of information on dynamics of electroweak gauge bosons and EW symmetry breaking

Contributions from

- EW radiation
- Higgs exchange
- Triple gauge couplings
- Quartic gauge couplings Use EFT to parameterize them

EFT operators for VBS

$$\mathcal{L}_{EFT} = \sum_{d=6}^{\infty} \sum_{i} \frac{f_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)} = \sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} O_{i}^{(8)} + \dots$$
$$= \frac{f_{WWW}}{\Lambda^{2}} \operatorname{Tr} \left(\hat{W}^{\mu}{}_{\nu} \, \hat{W}^{\nu}{}_{\rho} \, \hat{W}^{\rho}{}_{\mu} \right) + \dots$$
$$+ \frac{f_{T_{0}}}{\Lambda^{4}} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \, \hat{W}_{\mu\nu} \right) \operatorname{Tr} \left(\hat{W}^{\alpha\beta} \, \hat{W}_{\alpha\beta} \right) + \dots$$
$$+ \frac{f_{M_{0}}}{\Lambda^{4}} \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \, \widehat{W}^{\mu\nu} \right] \times \left[(D_{\beta} \Phi)^{\dagger} \, D^{\beta} \Phi \right] + \dots$$
$$+ \frac{f_{S_{0}}}{\Lambda^{4}} \left[(D_{\mu} \Phi)^{\dagger} \, D_{\nu} \Phi \right] \times \left[(D^{\mu} \Phi)^{\dagger} \, D^{\nu} \Phi \right] + \dots$$

Extensively used tool for describing BSM effects in vector boson scattering....

Full set of dimension 8 operators (Eboli et al.)

- Distinguish by dominant set of vector boson helicities
- Longitudinal operators: derivatives of Higgs doublet field

$$\mathcal{O}_{S_0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S_1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] \\ \mathcal{O}_{S_2} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$$

Building blocks are:
$$D_{\mu}\Phi \equiv \left(\partial_{\mu} + i\frac{g'}{2}B_{\mu} + igW_{\mu}^{i}\frac{\tau^{i}}{2}\right)\Phi \quad \text{with} \quad \Phi = \begin{pmatrix}0\\\frac{\nu+H}{\sqrt{2}}\end{pmatrix}$$
$$W_{\mu\nu} = \frac{i}{2}g\tau^{I}(\partial_{\mu}W_{\nu}^{i} - \partial_{\nu}W_{\mu}^{i} - g\epsilon_{ijk}W_{\mu}^{j}W_{\nu}^{k}),$$
$$B_{\mu\nu} = \frac{i}{2}g'(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}).$$

Field strength $\leftarrow \rightarrow$ transverse polarizations

Transverse operators

Mixed: transverse-longitudinal

$$\begin{aligned} \mathcal{O}_{M_0} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,\\ \mathcal{O}_{M_1} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,\\ \mathcal{O}_{M_2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right] ,\\ \mathcal{O}_{M_3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right] ,\\ \mathcal{O}_{M_4} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu} ,\\ \mathcal{O}_{M_5} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu} ,\\ \mathcal{O}_{M_7} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} W_{\beta\nu} W^{\beta\mu} D^{\nu} \Phi \right] . \end{aligned}$$

$$\begin{aligned} \mathcal{O}_{T_0} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] & \times \operatorname{Tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right] \\ \mathcal{O}_{T_1} &= \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] & \times \operatorname{Tr} \left[W_{\mu\beta} W^{\alpha\nu} \right] \\ \mathcal{O}_{T_2} &= \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] & \times \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right] \\ \mathcal{O}_{T_5} &= \operatorname{Tr} \left[W_{\mu\nu} W^{\mu\nu} \right] & \times B_{\alpha\beta} B^{\alpha\beta} , \\ \mathcal{O}_{T_6} &= \operatorname{Tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] & \times B_{\mu\beta} B^{\alpha\nu} , \\ \mathcal{O}_{T_7} &= \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] & \times B_{\beta\nu} B^{\nu\alpha} , \\ \mathcal{O}_{T_8} &= B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} , \\ \mathcal{O}_{T_9} &= B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} . \end{aligned}$$

Main interest: properties of VV final state

Here: transverse mass of leptons+missing pT system for ssWW and WZ Problem: unitarity violation within LHC energy range

$VV \rightarrow W^+W^-$ with dimension 8 operators

Effect of $\mathcal{L}_{eff} = \frac{f_{M,1}}{\Lambda^4} \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$ with $T_1 = \frac{f_{M,1}}{\Lambda^4}$ constant on $pp \rightarrow W^+ W^- jj \rightarrow e^+ \nu_e \mu^- \bar{\nu}_{\mu} jj$

• Small increase in cross section at high WW invariant mass??

 $VV \rightarrow W^+W^-$ with dimension 8 operators

Effect of constant
$$T_1 = \frac{f_{M,1}}{\Lambda^4}$$
 on $pp \rightarrow W^+W^- jj \rightarrow e^+ \nu_e \mu^- \bar{\nu}_{\mu} jj$

- Huge increase in cross section at high m_{WW} is completely unphysical
- Need form factor for analysis or some other unitarization procedure

Partial wave decomposition and unitarity relation

S-matrix unitarity

$$\mathbf{S} = 1 + i\mathbf{T}, \qquad \mathbf{T}_{fi} = (2\pi)^4 \delta(P_f - P_i) \mathcal{T}_{fi}$$
$$2\mathrm{Im}\mathbf{T} = -i\left(\mathbf{T} - \mathbf{T}^{\dagger}\right) = \mathbf{T}^{\dagger}\mathbf{T} = \mathbf{T}\mathbf{T}^{\dagger}$$

- Implication for helicity amplitudes $\mathcal{M}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}} = \mathcal{T}_{fi}$ $\mathcal{T}_{fi} - \mathcal{T}_{if}^{*} = i \sum_{n} \int \underbrace{\frac{d^{3}\mathbf{q}_{n,3}d^{3}\mathbf{q}_{n,4}}{(2\pi)^{3}2q_{n,4}^{0}}(2\pi)^{4}\delta(P_{i} - q_{n,3} - q_{n,4})}_{\frac{\lambda^{1/2}(s,q_{n,3}^{2},q_{n,4}^{2})}{8s(2\pi)^{2}}d\Omega}$
- Projection onto j<=2 partial waves</p>

$$\mathcal{M}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}\left(\Theta,\varphi\right) = 8\pi\mathcal{N}_{fi}\sum_{j=\max\left(|\lambda_{12}|,|\lambda_{34}|\right)}^{j_{\max}} (2j+1)\mathcal{A}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}^{j}d_{\lambda_{12}\lambda_{34}}^{j}\left(\Theta\right)e^{i\lambda_{34}\varphi}$$

Partial wave unitarity relation

$$2\mathrm{Im}(\mathcal{A}^{j}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}) = \sum_{n} \frac{\mathcal{N}_{ni}\mathcal{N}_{nf}}{\mathcal{N}_{fi}} \frac{\lambda^{1/2}(s, q_{n,3}^{2}, q_{n,4}^{2})}{s} S_{n} \sum_{\lambda_{1}',\lambda_{2}'} \mathcal{A}^{j*}_{\lambda_{1}'\lambda_{2}'\leftarrow\lambda_{3}\lambda_{4}} \mathcal{A}^{j}_{\lambda_{1}'\lambda_{2}'\leftarrow\lambda_{1}\lambda_{2}}$$

Partial wave decomposition and unitarity relation

S-matrix unitarity

$$\mathbf{S} = 1 + i\mathbf{T}, \qquad \mathbf{T}_{fi} = (2\pi)^4 \delta(P_f - P_i) \mathcal{T}_{fi}$$
$$2\mathrm{Im}\mathbf{T} = -i\left(\mathbf{T} - \mathbf{T}^{\dagger}\right) = \mathbf{T}^{\dagger}\mathbf{T} = \mathbf{T}\mathbf{T}^{\dagger}$$

Implication for helicity amplitudes $\mathcal{M}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}} = \mathcal{T}_{fi}$ $\mathcal{T}_{fi} - \mathcal{T}_{if}^{*} = i \sum_{n} \int \underbrace{\frac{d^{3}\mathbf{q}_{n,3}d^{3}\mathbf{q}_{n,4}}{(2\pi)^{3}2q_{n,4}^{0}}(2\pi)^{4}\delta(P_{i} - q_{n,3} - q_{n,4})}_{\frac{\lambda^{1/2}(s,q_{n,3}^{2},q_{n,4}^{2})}{8s(2\pi)^{2}}d\Omega}$

Projection onto j<=2 partial waves</p>

$$\mathcal{M}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}\left(\Theta,\varphi\right) = 8\pi\mathcal{N}_{fi}\sum_{j=\max\left(|\lambda_{12}|,|\lambda_{34}|\right)}^{j_{\max}} (2j+1)\mathcal{A}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}^{j}d_{\lambda_{12}\lambda_{34}}^{j}\left(\Theta\right)e^{i\lambda_{34}\varphi}$$

Partial wave unitarity relation

$$2\mathrm{Im}(\mathcal{A}^{j}_{\lambda_{3}\lambda_{4}\leftarrow\lambda_{1}\lambda_{2}}) = \sum_{n} \sum_{\lambda_{1}^{\prime},\lambda_{2}^{\prime}} \mathcal{A}^{j}_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}\leftarrow\lambda_{3}\lambda_{4}} \mathcal{A}^{j}_{\lambda_{1}^{\prime}\lambda_{2}^{\prime}\leftarrow\lambda_{1}\lambda_{2}}$$

K matrix unitarization

Example: VBF-ZZ ($e+e-\mu+\mu$ -) good agreement between both codes for longitudinal ops. at LO

Can generate distributions also at NLO QCD via VBFNLO

Extension to mixed and transverse operators: T_u model of <u>arXiv:1807.02707</u> (work with Genessis Perez and Marco Sekulla)

Example: dim-8 effects with/out unitarization

 $qq \rightarrow W^+ Zjj \rightarrow I^+ I^- I^+ \nu_I jj,$

Tu-model unitarization applied to WZ→WZ matrix elements (see arXiv <u>1807.02707</u> for details)

Questions to ask ... and path to answers

- How realistic is EFT description (with or without unitarization) as a function of energy (m_{VV})? What is the validity range of the EFT?
- Are there relations between Wilson coefficients?
- What experimental strategy is most promising to discover BSM effects in VBS? (as opposed to merely setting limits)
- Can VBS be first place to see BSM physics?

Study EFT as approximation to a UV complete model

- At our disposal: gauge theory with extra scalars, fermions, gauge fields
- Consider transverse operators as simplest case: dimension 6 and 8 operators which contain SU(2) field strength, no Higgs couplings
- Field strength tensor naturally (and only) generated at loop level: Need loops of extra fields with SU(2) charges (U(1)_Y neglected for simplicity)
- UV complete model should be perturbatively treatable
- → predictions beyond validity range of EFT with small set of parameters: mass and isospin of extra multiplets

Origins of operators with field strengths

Only term with field strength in renormalizable Lagrangian is

$$\mathscr{L} = -\frac{1}{4} W^j_{\mu
u} W^{j\mu
u}$$

- j = 1,2,3 is W or Z. Embedding SU(2) in larger gauge group G gives coupling to heavy new gauge bosons via $W_{\mu\nu}^j \sim f^{jkl}W_{\mu}^kW_{\nu}^l + ...$ with k,l>3 → pair of heavy gauge bosons couple to W/Z field strength at each BSM vertex → contribution only at loop level
- Particles in loop can be heavy gauge bosons, fermions or scalars. Fermion example: EFT approximation to gg→H three-point function
- Fermions or scalars can be in large isospin multiplets, which enhance loop contributions by huge group factors
- For extra gauge bosons, reducing adjoint representation of G to SU(2) irreps only allows isospin ½ or 0 for the extra heavy gauge bosons → no enhanced group factors in loops
- ► consider only BSM fermions and scalars in following

The model(s)

n_R SU(2) multiplets of isospin J_R of scalars (R=S) or Dirac fermions (R=F) with their SU(2) gauge interactions (no hypercharge couplings)

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} H \right)^2 - \frac{m_H^2}{2} H^2 - \frac{1}{2} \operatorname{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) + \frac{m_W^2}{2} \left(\sum_{a=1}^3 W^a_{\mu} W^{a\mu} \right) \left(1 + \frac{H}{v} \right)^2$$

$$+ \bar{\Psi} \left(i \gamma_{\mu} D^{\mu} - M_F \right) \Psi + (D^{\mu} \Phi)^{\dagger} (D_{\mu} \Phi) - M_S^2 \Phi^{\dagger} \Phi \,.$$

- Yukawa couplings of fermions to Higgs doublet absent if no fermion multiplets with J_F ±¹/₂ are present
- Yields natural dark matter models for $J_R \ge 2$
- Very small splitting induced by SU(2)xU(1) breaking in SM (order 160 MeV to few GeV) → Pair production at LHC hard to detect due to tiny phase space for β-decay within SU(2) multiplet

Consider loop contributions to n-point functions

- n=2: gauge boson propagator
- n=3: triple gauge boson vertex functions
- n=4: boxes with 4 external weak bosons
- UV divergences are simple renormalizations of SM parameters (gauge coupling and W wave function renormalization)
- Match first few terms in p^2/M_R^2 expansion to EFT

Dim-6 and dim-8 operators needed for matching of hypercharge Y=0 multiplets

Dim-6

$$O_{WWW} = \operatorname{Tr}\left(\hat{W}^{\mu}_{\ \nu}\,\hat{W}^{\nu}_{\ \rho}\,\hat{W}^{\rho}_{\ \mu}\right),$$
$$O_{DW} = \operatorname{Tr}\left([\hat{D}_{\alpha},\hat{W}^{\mu\nu}][\hat{D}^{\alpha},\hat{W}_{\mu\nu}]\right)$$

Dim-8

$$O_{T_0} = \operatorname{Tr}\left(\hat{W}^{\mu\nu}\hat{W}_{\mu\nu}\right)\operatorname{Tr}\left(\hat{W}^{\alpha\beta}\hat{W}_{\alpha\beta}\right)$$
$$O_{T_1} = \operatorname{Tr}\left(\hat{W}^{\mu\nu}\hat{W}_{\alpha\beta}\right)\operatorname{Tr}\left(\hat{W}^{\alpha\beta}\hat{W}_{\mu\nu}\right)$$
$$O_{T_2} = \operatorname{Tr}\left(\hat{W}^{\mu\nu}\hat{W}_{\nu\alpha}\right)\operatorname{Tr}\left(\hat{W}^{\alpha\beta}\hat{W}_{\beta\mu}\right)$$
$$O_{T_3} = \operatorname{Tr}\left(\hat{W}^{\mu\nu}\hat{W}^{\alpha\beta}\right)\operatorname{Tr}\left(\hat{W}_{\nu\alpha}\hat{W}_{\beta\mu}\right)$$

Karlsruher Institut für Technologie

Propagator correction ...

aQGC ...

aTGC

aTGC ...

 $O_{D2W} = \operatorname{Tr}\left([\hat{D}_{\alpha}, [\hat{D}^{\alpha}, \hat{W}^{\mu\nu}]] [\hat{D}_{\beta}, [\hat{D}^{\beta}, \hat{W}_{\mu\nu}]] \right)$

 $O_{DWWW_0} = \text{Tr}\left([\hat{D}_{\alpha}, \hat{W}^{\mu}_{\ \nu}] [\hat{D}^{\alpha}, \hat{W}^{\nu}_{\ \rho}] \hat{W}^{\rho}_{\ \mu} \right)$

 $O_{DWWW_1} = \operatorname{Tr}\left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}_{\beta}, \hat{W}_{\mu\nu}] \hat{W}^{\alpha\beta} \right)$

Propagator correction ...

$$\begin{split} \mathcal{L}_{EFT} &= f_{WW} \text{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) + \frac{f_{DW}}{\Lambda^2} \text{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}^{\alpha}, \hat{W}_{\mu\nu}] \right) \\ &+ \frac{f_{WWW}}{\Lambda^2} \text{Tr} \left(\hat{W}^{\mu}_{\ \nu} \hat{W}^{\nu}_{\ \rho} \hat{W}^{\rho}_{\ \mu} \right) + \frac{f_{D2W}}{\Lambda^4} \text{Tr} \left([\hat{D}_{\alpha}, [\hat{D}^{\alpha}, \hat{W}^{\mu\nu}]] [\hat{D}_{\beta}, [\hat{D}^{\beta}, \hat{W}_{\mu\nu}]] \right) \\ &+ \frac{f_{DWWW_0}}{\Lambda^4} \text{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu}_{\ \nu}] [\hat{D}^{\alpha}, \hat{W}^{\nu}_{\ \rho}] \hat{W}^{\rho}_{\ \mu} \right) \\ &+ \frac{f_{DWWW_1}}{\Lambda^4} \text{Tr} \left([\hat{D}_{\alpha}, \hat{W}^{\mu\nu}] [\hat{D}_{\beta}, \hat{W}^{\mu\nu}] \hat{W}^{\alpha\beta} \right) \\ &+ \frac{f_{T_0}}{\Lambda^4} \text{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\mu\nu} \right) \text{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\alpha\beta} \right) + \frac{f_{T_1}}{\Lambda^4} \text{Tr} \left(\hat{W}^{\mu\nu} \hat{W}_{\alpha\beta} \right) \text{Tr} \left(\hat{W}^{\alpha\beta} \hat{W}_{\mu\nu} \right) \\ &+ \frac{f_{T_2}}{\Lambda^4} \text{Tr} \left(\hat{W}^{\mu}_{\ \nu} \hat{W}^{\nu}_{\ \alpha} \right) \text{Tr} \left(\hat{W}^{\alpha}_{\ \beta} \hat{W}^{\beta}_{\ \mu} \right) + \frac{f_{T_3}}{\Lambda^4} \text{Tr} \left(\hat{W}^{\mu\nu} \hat{W}^{\alpha\beta} \right) \text{Tr} \left(\hat{W}_{\nu\alpha} \hat{W}_{\beta\mu} \right) \;. \end{split}$$

$C_{2,R} = J_R(J_R + 1)$ Wilson coefficients with $T_R = \frac{1}{3} [J_R(J_R + 1)(2J_R + 1)]$

- Propagator and higher
- aTGC and higher

aQGC

and higher

$$\begin{split} \frac{f_{DW}}{\Lambda^2} &= \sum_F n_F \frac{T_F}{120\pi^2 M_F^2} + \sum_S n_S \frac{T_S}{960\pi^2 M_S^2} \,, \\ \frac{f_{D2W}}{\Lambda^4} &= \sum_F n_F \frac{T_F}{1120\pi^2 M_F^4} + \sum_S n_S \frac{T_S}{13440\pi^2 M_S^4} \\ \frac{f_{WWW}}{\Lambda^2} &= \sum_F n_F \frac{13T_F}{360\pi^2 M_F^2} + \sum_S n_S \frac{T_S}{360\pi^2 M_S^2} \,, \\ \frac{f_{DWWW_0}}{\Lambda^4} &= \sum_F n_F \frac{2T_F}{105\pi^2 M_F^4} + \sum_S n_S \frac{T_S}{1120\pi^2 M_S^4} \\ \frac{f_{DWWW_1}}{\Lambda^4} &= \sum_F n_F \frac{T_F}{630\pi^2 M_F^4} + \sum_S n_S \frac{T_S}{4032\pi^2 M_S^4} \,, \\ \frac{f_{T_0}}{\Lambda^4} &= \sum_F n_F \frac{(-14C_{2,F} + 1) T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(7C_{2,S} - 2) T_S}{40320\pi^2 M_S^4} \,, \\ \frac{f_{T_1}}{\Lambda^4} &= \sum_F n_F \frac{(-28C_{2,F} + 13) T_F}{10080\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S} - 5) T_S}{40320\pi^2 M_S^4} \,, \\ \frac{f_{T_2}}{\Lambda^4} &= \sum_F n_F \frac{(196C_{2,F} - 397) T_F}{25200\pi^2 M_F^4} + \sum_S n_S \frac{(14C_{2,S} - 23) T_S}{50400\pi^2 M_S^4} \,, \\ \frac{f_{T_3}}{\Lambda^4} &= \sum_F n_F \frac{(98C_{2,F} + 299) T_F}{25200\pi^2 M_F^4} + \sum_S n_S \frac{(7C_{2,S} + 16) T_S}{50400\pi^2 M_S^4} \,. \end{split}$$

• Loop suppressed, but $(J_R)^3$ enhanced for trilinear couplings, $(J_R)^5$ for aQGC

Constraints from experiment:

Bounds on (J_S, M_S) with cut at unitarity limit for aQGCs

Deviation in Drell-Yan cross section, normalized to SM expectation (1- and 2- σ error bands adapted from CMS: arXiv:2103.02708)

limits on individual Wilson coefficients: No serious competition to VBS from aTGC measurements in VV production (Assume wide EFT validity range)

Unitarity considerations limit size of isospin representations

 Argand diagram for dominant VV→VV partial wave amplitude: At large J_R, model becomes nonperturbative

Energy dependence of

dominant partial wave

Consider $J_F \le 4$ and $J_S \le 6$ as range of perturbative domain

amplitude

Parameter choices:

- Use fermion model with $J_F = 4$ and $M_F = 600$ GeV or scalar model with $J_S = 6$ and $M_S = 600$ GeV for illustration from here on
- Parameter choices are optimistic for sake of sizable VBS signals
- $J_F \leq 3$ better accomodates Drell-Yan constraints
- J_S ≤ 5 better fits in the perturbative domain (as estimated from unitarity)
- Qualitative results, below, do not depend on this

Onshell cross section in low energy region...

- Dimension 6 operator contributions are negligible due to mere J_R^3 growth and cancellations
- Good agreement between full model and dim-8 EFT below threshold
- Combination of all dim-8 operators is crucial

.... and for scalars in the loop

- Dimension 6 operator contributions again negligible
- Good agreement between full model and dim-8 EFT well below threshold
- Deviations from SM below 10% in EFT validity region

Full LHC cross sections simulations with VBFNLO

Sizable deviations from SM well above threshold, for high isospin fermions

Disclaimer: VBFNLO implementation is so far approximate, based on on-shell VV→ VV amplitudes

Only transverse mass can be reconstructed experimentally for same sign W pairs

Right hand plot shows binning of CMS publication:

- Unitarized EFT: BSM effects mostly in last bin
- Full model: visible effects extend to lower transverse mass

Changing the mass of the heavy multiplets

Conclusions

- There are many UV-complete models which generate EFT operators with field strength tensors at low energy
- They require existence of extra SU(2) scalar or fermion (or gauge boson) multiplets which generate these EFT operators via 1-loop contributions
- Sizable effects in VBS require very high multiplicity of BSM fields, like SU(2) nonets (quintets may do): rarely expected in BSM models
- Model is generic: existence of additional SU(2) multiplets in loops is also necessary condition for EFT operators with W field strength
- Further complexity does not change basic result, e.g.
- Additional confining gauge interaction of multiplets expected to average out (analogous to quark-hadron duality in QCD)
- Perturbative coupling of two multiplets to Higgs doublet field generates modest multiplet splitting (suppressed by $(v/M_R)^2$) which smears out threshold structure

Conclusions continued...

- VBS signal is most dramatic close to threshold, not at highest energy => do not concentrate efforts on highest energy bin
- VBS is competitive with other searches for this type of model:
- $q\bar{q} \rightarrow VV$ is not as sensitive due to mere J_R^3 growth and cancellations
- Direct search for the extra multiplets is hampered by compressed spectra
- Drell-Yan process is most likely competitor
- EFT as tool for describing BSM effects is of only limited use in describing processes with vast dynamic range such as VBS at the LHC => use models discussed here as alternative benchmark for VBS studies

Backup

Constraints from experiment: limits on individual Wilson coefficients

Constraints from experiment:

Deviation in Drell-Yan cross section, normalized to SM expectation (1- and 2- σ error bands adapted from CMS: arXiv:2103.02708)

EFT validity range for ZZ production in VBS

- EFT is valid only well below threshold at 2 M_S = 1200 GeV (as expected)
- Deviations from SM barely reach 10% within EFT validity range, even for $J_s = 6$
- Because of J_R^5 vs J_R^3 growth, dim-8 terms are much more important than dim-6

Diboson mass vs transverse mass

Off-shell VBS amplitude

 $\mathcal{M}_{pp \to 4fjj} = \mathcal{M}_{pp \to 4fjj}^{\rm SM} + \mathcal{M}_{pp \to 4fjj}^{\rm BSM}$ Assume new physics in $VV \rightarrow VV$ only SM part alone has vector boson emission, triple gauge couplings, H etc., which interfere destructively \rightarrow SM piece is unitary and small (a) Vector boson emission (b) Quartic gauge interaction. $\mathcal{M}_{pp \to 4fjj}^{\text{BSM}} = J_{p_1 \to jV_1}^{\mu} J_{p_2 \to jV_2}^{\nu} D_{\mu\alpha}^{V_1}(q_1) D_{\nu\beta}^{V_2}(q_2)$ \rightarrow unitarize BSM piece only $\times \mathbf{M}_{V_1 V_2 \to V_3 V_4}^{\alpha\beta\gamma\delta} D_{\gamma\rho}^{V_3}(q_3) D_{\delta\sigma}^{V_4}(q_4)$ $\times J^{\rho}_{V_2 \to \bar{f}f} J^{\sigma}_{V_4 \to \bar{f}f}$ $D_V^{\mu\nu}(q) = \frac{-i}{q^2 - m_V^2 + i \, m_V \, \Gamma_V} \left(g^{\mu\nu} - \frac{q^\mu q^\nu}{q^2} \right)$ V-propagators decompose into polarization sums $\equiv \frac{-\mathrm{i}}{a^2 - m_V^2 + i \, m_V \, \Gamma_V} \sum_{\lambda} \epsilon_J^{*\,\mu}(q,\lambda) \epsilon_{\mathcal{M}}^{\nu}(q,\lambda)$

Defines $\mathcal{M}_{\lambda_3,\lambda_4;\lambda_1,\lambda_2}^{VBS}\left(q_1,q_2;q_3,q_4\right) = \epsilon_{\mathcal{M},\alpha}(q_1,\lambda_1)\epsilon_{\mathcal{M},\beta}(q_2,\lambda_2) \mathbf{M}_{V_1V_2 \to V_3V_4}^{\alpha\beta\gamma\delta} \epsilon_{\mathcal{M},\gamma}^*(q_3,\lambda_3)\epsilon_{\mathcal{M},\delta}^*(q_4,\lambda_4)$

Relative importance of terms (thesis Jannis Lang)

\mathcal{M}_i	$2\mathrm{Re}\left(\mathcal{M}_{SM}\mathcal{M}_{i}\right)$	$rac{s}{\Lambda^2} ightarrow \left[rac{(2m_W)^2}{M_F^2}, 1 ight]$	$ \mathcal{M}_i ^2$	$rac{s}{\Lambda^2} ightarrow \left[rac{(2m_W)^2}{M_F^2}, 1 ight]$
$\mathcal{M}_{f_{WWW}}$	$rac{g^2}{16\pi^2}rac{s}{\Lambda^2}J_R^3$	[0.01616, 0.34481]	$\left(rac{g^2}{16\pi^2} ight)^2rac{s^2}{\Lambda^4}J_R^6$	[0.00026, 0.11889]
$\mathcal{M}_{f_{T_i}}$	$rac{g^2}{16\pi^2}rac{s^2}{\Lambda^4}J_R^5$	[0.01893, 8.62022]	$\left(rac{g^2}{16\pi^2} ight)^2rac{s^4}{\Lambda^8}J_R^{10}$	[0.00036, 74.3081]
$\mathcal{M}_{f^2_{WWW}}$	$\left(rac{g^2}{16\pi^2} ight)^2 rac{s^2}{\Lambda^4} J_R^6$	[0.00026, 0.11889]	$\left(\frac{g^2}{16\pi^2}\right)^4 \frac{s^4}{\Lambda^8} J_R^{12}$	$[6.8 \cdot 10^{-8}, 0.01414]$
\mathcal{M}_{SM}^{NLO}	$\frac{g^2}{16\pi^2}$	[0.00276, 0.00276]	$\left(\frac{g^2}{16\pi^2}\right)^2$	$[7.6 \cdot 10^{-6}, 7.6 \cdot 10^{-6}]$
$\mathcal{M}_{f_{WWW}}^{NLO}$	$\left(rac{g^2}{16\pi^2} ight)^2rac{s}{\Lambda^2}J_R^3$	[0.00004, 0.00095]	$\left(rac{g^2}{16\pi^2} ight)^4 rac{s^2}{\Lambda^4} J_R^6$	$[2.0 \cdot 10^{-9}, 9.0 \cdot 10^{-7}]$
$\mathcal{M}_{f_{T_i}}^{NLO}$	$\left(rac{g^2}{16\pi^2} ight)^2 rac{s^2}{\Lambda^4} J_R^5$	[0.00005, 0.02378]	$\left(rac{g^2}{16\pi^2} ight)^4 rac{s^4}{\Lambda^8} J_R^{10}$	$[2.7 \cdot 10^{-9}, 0.00057]$

Table 5.1.: Counting of additional factors in EFT perturbative expansion of the cross section arising from one-loop calculation/matching (factor $\frac{g^2}{16\pi^2}$) and EFT expansion (factor $\frac{s}{\Lambda^2}$). The powers of isospin J_R follow from the representation factor of the NP fields, leading to an enhanced coupling and, therefore, enhanced contribution to the cross section. The explicit values are estimated for g = 0.66, $J_R = J_F = 5$, $\Lambda = M_F = 750$ GeV and the estimated limits of the EFT validity region given by the kinematic threshold $s = (2m_W)^2$ as lower bound and the NP energy scale Λ as higher bound.