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Overview

Dark sector

SIMPs Dark radiation
-) strongly interacting dark matter -) indirect searches of dark matter

candidates -) dark radiation from dark matter
-) self-interacting dark matter decays
-) rather new theory -) max. sensitivity in direct detection

experiments and PTOLEMY
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Strongly interacting massive particles (SIMPs)

Strongly interacting massive particles (SIMPs)
Low-energy effective description of dark Sp(4) theories

(arXiv:2202.05191)
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Project and Groups

Cooperation Partner
N.Bozorgnia (astrophysics)

Direct Detection with CRESST 
PI Schieck (ÖAW)

Collider Physics
PI Kulkarni (ÖAW)

Phenomenology and Cosmology
PI Pradler (ÖAW, Coordinator)

UV completion on the lattice
PI Maas (University of Graz)

Setup

spectrum, widths,
matrix elements,

self-coupling

Setupcross
sections

spectrum, widths,
matrix elements

velocity
dependence

direct 
detection limits

FWF research group STRONG-DM 

Cooperation Partner
B.Lucini (lattice)

J-factors,
local DM distribution

direct 
detection limits

complementarity

technology technology

SIMP Discovery Potential

essential input
essential output
information flow
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Freeze out and thermal relic dark matter

WIMP paradigm

WIMP dark matter
DM in thermal equilibrium with SM particle via annihilations
DMDM → SMSM

decoupled from thermal equilibrium, when universe cooled down → freeze out
DM relic abundance Ωdm ∼ 0.26

cold dark matter (non-relativistic) with mass mWIMP ∼ O(GeV − TeV)

searched for ∼ 35 yr, WIMPs have not been observed
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Is dark matter a WIMP?

The WIMP paradigm is being challenged (e.g. neutrino floor in direct detection
experiments)
Are there different signatures from another thermal DM?
Is there an alternative DM candidate we can search for?

IF YES:
What would happen if dark matter was secluded from the SM sector?
What would its mass be?
What interactions would appear?
How would it interact with SM?
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Production of SIMPs in the early stages of the universe

SIMP paradigm

Strongly interacting massive particles (SIMPs) as DM
3 → 2 annihilation implies heating of DM sector
DM must be coupled to SM ⇒ opens door to phenomenology, mSIMP ∼ O(MeV )

DM abundance regulated by number changing process in DM sector only
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Project goal

build a model for SIMPs
use QCD-like physics
chiral symmetry breaking ⇒ Goldstone bosons = DM composite states
what interactions and masses would appear?
want to introduce small mass splitting in SIMP masses
what interactions and masses would appear in the non-degenerate case?
relevant for future DM physics
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UV Lagrangian and spontaneous symmetry breaking UV Lagrangian

We consider Nf = 2 fermions in pseudo-real representation with gauge group
Sp(4)c
All fundamental representations of Sp(2N) are pseudo-real
UV Lagrangian (massless fermions):

LUV =
∑

q=u,d

q̄iγµ∂µq → LUV = Ψ†iσ̄µ∂µΨ with Ψ =


uL

dL
−Sσ2ūT

R

−Sσ2d̄TR

 (1)

S . . . antisymmetric matrix in color space
σ2 . . . Pauli matrix in flavor space
Global flavor symmetry is enlarged to SU(4)

2 flavor QCD: fermions in complex representation with global flavor symmetry
SU(2)L × SU(2)R ⊂ SU(4)

Global flavor symmetry spontaneously broken

SU (4)
SSB−→ Sp (4)
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Breaking patterns - explicit symmetry breaking

symmetry explicitly broken by mass term

LUV = q̄iγµ∂µq + q̄Mq → L = Ψ†iσ̄µDµΨ−1

2
ΨTσ2SMΨ+ h.c. (2)

degenerate mass matrix: M = mE

E =

(
0 I2×2

−I2×2 0

)
. (3)

SU(4)
explicit→ Sp(4)

non-degenerate mass Matrix

mu 6= md ⇒M =Mdeg +∆M =


0 0 mu 0
0 0 0 md

−mu 0 0 0
0 −md 0 0

 (4)

SU(4)
explicit→ Sp(2)u× Sp(2)d
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Breaking patterns

COMPLEX

U(2)× U(2)

SU(2)× SU(2)× U(1)

SU(2)× U(1)

U(1)× U(1)

axial anomaly mu = md = 0

chiral symmetry breaking
and/or explicit breaking

mu = md = 0
mu = md 6= 0

strong isospin breaking mu 6= md

PSEUDOREAL

U(4)

SU(4)

Sp(4)

SU(2)× SU(2)

axial anomalymu = md = 0

chiral symmetry breaking
and/or explicit breaking

mu = md = 0
mu = md 6= 0

mu 6= md strong isospin breaking
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UV-theory to effective theory - existence of pseudo-Goldstone bosons

Whenever a continuous global symmetry is broken, the Goldstone theorem
guarantees the existence of low-energy Goldstone bosons

SU (4)
SSB−→ Sp (4) leads to existence of massless Goldstone bosons

Number of Goldstone bosons is determined by the dimension of the coset space
SU(4)/Sp(4)

Counting:

SU(4) has 15 generators
Sp(4) has 10 generators

}
⇒ 5 massles Goldstone bosons π ∈ SU(4)/Sp(4)

Goldstone bosons determined by broken generators TA, A = 1, . . . , 5

Additional symmetry breaking due to mass term (explicit breaking)
symmetry is not exact ⇒ Goldstone gain non-zero mass (pseudo-Goldstone
bosons)

mπ 6= 0
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UV-Lagrangian to effective Lagrangian for fermions
(dark quarks) with degenerate masses
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UV-theory to effective theory - kinetic term

UV-Lagrangian

LUV = Ψ†iγµ∂µΨ with Ψ =

(
ψL

−Sσ2ψ̄T
R

)
(5)

inputs to build chiral Lagragian:
I parameterization of the chiral field (degenerate vacuua)

Σ = V Σ0V
T , where V = exp

(
i
πn(x)Tn

fπ

)
(6)

I respecting symmetries:
-) Lorentz invariance (only even number of derivatives possible)
-) chiral symmetry invariance (only combination of Σ and Σ†)
-) P,C invariance

I low energy ⇒ smallest possible number of derivatives

effective Lagrangian:

L2 =
f2
π

4
Tr
[
∂µΣ∂

µΣ†
]

(7)
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From UV Lagrangian to effective Lagrangian - degenerate mass term

UV-Lagrangian

LUV = q̄iγµ∂µq + q̄Mq → LUV = Ψ†iσ̄µDµΨ−1

2
ΨTσ2SMΨ+ h.c. (8)

How to obtain mass term in the effective Lagrangian?
I take symmetry transformation, Ψ → UΨ, U ∈ SU(4)
I treat M as a spurion field
I chiral invariance ⇒ M → U?MU†

Σ
SU(4)→ UΣUT

M
SU(4)→ U?MU†

}
⇒ Tr [ΣM ] + Tr

[
M†Σ†

]
(9)

total effective Lagrangian:

L2 =
f2
π

4
Tr
[
∂µΣ∂

µΣ†
]
+ 2µ3

(
Tr [MΣ] + Tr

[
Σ†M†

])
(10)
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From UV Lagrangian to effective Lagrangian - Goldstone mass

effective Lagrangian in terms of Goldstone fields π (degenerate fermion masses)

Lπ =Tr ∂µπ∂
µπ −m2

π Trπ2 +
m2

π

3f2
π

Trπ4

− 2

3f2
π

Tr
(
π2∂µπ∂µπ − π∂µππ∂µπ

) (11)

Goldstone matrix

π ≡
5∑

n=1

πnT
n =

1

2
√
2


π3 π1 − iπ2 0 π5 − iπ4

π1 + iπ2 −π3 −π5 + iπ4 0
0 −π5 − iπ4 π3 π1 + iπ2

π5 + iπ4 0 π1 − iπ2 −π3

 (12)

masses of Goldstone fields
mπ =

8µ3m

f2
π

(13)

kinetic term implies 4-point interaction ⇒ 2 to 2 scattering for free
Semi-annihilation and 5-point interaction are absent, because Tr [πn] = 0 for
n odd
How to include 3 to 2 interaction?
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From UV Lagrangian to effective Lagrangian - Wess-Zumino-Witten
term

effective Lagrangian:

L2 =
f2
π

4
Tr
[
∂µΣ∂

µΣ†
]
+ 2µ3

(
Tr [MΣ] + Tr

[
Σ†M†

])
(14)

3 to 2 process ⇒ need 5 point interaction term
5-point interaction out of Goldstones ⇒ Wess-Zumino-Witten interaction

LWZW =
−iNc

240π2

∫
Tr
[
(Σ†dΣ)5

]
(15)

WZW in terms of Goldstone fields (degenerate masses Nf = 2)

LWZW =
8Nc

15π2f5
π

εµνρσ Tr [π∂µπ∂νπ∂ρπ∂σπ] +O
(
π6) (16)

WZW term allows only interactions with Goldstones of different generation

εµνρσπ1∂µπ2∂νπ3∂ρπ4∂σπ5 (17)
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UV-Lagrangian to effective Lagrangian for fermions
(dark quarks) with non-degenerate masses
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Reminder - UV-theory for non-degenerate quark masses

symmetry explicitly broken by mass term

L = Ψ†iσ̄µDµΨ−1

2
ΨTσ2SMΨ+ h.c. (18)

degenerate mass matrix: M = mE

E =

(
0 I2×2

−I2×2 0

)
. (19)

SU(4)
explicit→ Sp(4)

non-degenerate mass Matrix

mu 6= md ⇒M =Mdeg +∆M =


0 0 mu 0
0 0 0 md

−mu 0 0 0
0 −md 0 0

 (20)

SU(4)
explicit→ Sp(2)u× Sp(2)d
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UV-theory for non-degenerate quark masses

splitting of decay constants and vacuum condensates

fπ
mu 6=md−−−−−→

{
fπ for π1,2,4,5

fπ3 for π3

, µ3 mu 6=md−−−−−→

µ
3
u =

1

2
〈uTσ2SE2u〉

µ3
d =

1

2
〈dTσ2SE2d〉

, (21)

chiral Lagrangian

L = Lkin + Lmass + LWZW

=
4µ6

u

(µ3
u + µ3

d)
2

(
f2
π

4
Tr
[
∂µΣ∂

µΣ†
]
− 1

2
µ3
u (Tr [MΣ] + h.c.)

)

+
µ6
d

√
µ6
u + µ6

d

(
µ3
u + µ3

d

)5
32

√
2µ24

u

Ldeg.
WZW

(22)

Goldstone masses

m2
π ≡ m2

π1,2,4,5
=

2µ6
u(mu +md)

f2
π(µ3

u + µ3
d)

, m2
π3

=
2µ6

u(muµ
3
u +mdµ

3
d)

f2
π(µ6

u + µ6
d)

. (23)

results supported by lattice simulations
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Lattice simulations
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Multiplet structure

SU(3)c
mu = md

π+,π−,π0

ρ+,ρ−,ρ0

SU(3)c

mu ̸= md

π+,π−

π0

ρ+,ρ−

ρ0

Sp(4)c
mu = md

πA,...,E

ρF,...,O

Sp(4)c

mu ̸= md

πA,B,D,E

πC

ρG,H,K,M

ρF,I,J,L,N,O

under “naive” parity P : ψ(x, t) → γ0ψ(−x, t)

5 Goldstones =
{

3 Pseudoscalars πA, πB , πC

2 Scalars, πD, πE

under parity D : ψ(x, t) → ±iγ0ψ(−x, t)
5 Goldstones are Pseudoscalars
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DM couple to SM
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DM coupled to SM

introduce a new Abelian dark gauge group U(1)′ with (massive) gauge field V µ

V µ kinetically mix with SM hypercharge

Lint =
ε

2 cos θW
BµνV

µν , (24)

where Bµν and V µν are the U(1)D and U(1)Y field strengths
covariant derivative:

∂µΨ
ia → DµΨ

ia = ∂µΨ
ia + ieDVµQijΨ

ja. (25)
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DM coupled to SM

Gauging the theory under U(1)′ may provide a source of explicit global
symmetry breaking
study how the gauge interaction term in the Lagrangian,

L ⊃ −eDVµ

((
Ψi
)†
a
σµQijΨ

ja

)
(26)

transforms under the remaining flavor symmetry Sp(4) as

Ψia → VijΨ
ja =

(
1 + iθNTN

ij + . . .
)
Ψja, (27)

variation in the Lagrangian density

δL = ieDVµ

(
(Ψ)† σµθ

N
[
Q, TN

]
Ψ
)
, (28)

remaining flavour symmetry is spanned by those generators TN of Sp(4) that
commute with Q.
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DM coupled to SM

Charge Assignment Q Breaking Pattern Multiplet Structure

(+a,−a,−a,+a) Sp(4) → SU(2)× U(1)

πC

πD

πE

,
(
πA

πB

)

(+a,+a,−a,−a) Sp(4) → SU(2)× U(1)

πC

πA

πB

,
(
πD

πE

)
(+a,+b,−a,−b) , a 6= b Sp(4) → U(1)× U(1) (πC),

(
πA

πB

)
,
(
πD

πE

)


0 0 a 0
0 0 0 ±a
a 0 0 0
0 ±a 0 0

 Sp(4) → SU(2)× U(1)

 πC

πA,B

πE,D

,
(
πD,E

πB,A

)

other off-diagonal assignments Sp(4) → U(1)× U(1) (πC),
(
πA

πE

)
,
(
πB

πD

)
or similar

if πC is singlet, it decays away, because it is not protected by flavor symmetry
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U(1)′ interactions with mesons

interaction with gauge field Vµ with dark sector in the effective theory through
covariant derivative

DµΣ = ∂µΣ+ ieDVµ(QΣ+ ΣQ) (29)

eD is the U(1)′ gauge coupling
interaction depends on charge assignment Q
for a charge assignment (+1,−1,−1,+1)

LV −π = −2ieDV
µ
(
πA∂µπ

B − πB∂µπ
A
)
+ e2DVµV

µπAπB (30)

for (+1,+1,−1,−1) Vµ couples only to πD, πE

one pair of Golstones carry U(1)′ charge
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U(1)′ interactions with mesons

decays of Goldstone bosons occur through processes mediated by pairs of dark
photons
π − V − V vertex is sourced by the gauged WZW action

Lint ⊃ 40iCe2D
f2
π

εµναβV
µ∂νV α Tr

(
Q2∂βπ

)
(31)

since all generators of SU(4)/Sp(4) are traceless ⇒ anomaly cancellation
Lint = 0 for Q2 ∝ I
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Conclusions

SIMPs are composite states created through chiral symmetry breaking
dynamics of SIMPs are described by effective (chiral) Lagrangian
2 to 2 scattering for free, 3 to 2 interaction given by WZW term

SU (4)
SSB−→ Sp (4)

degenerate case: SU(4)
explicit→ Sp(4)

non-degenerate case: SU(4)
explicit→ Sp(2)u× Sp(2)d

non-degenerate case: πC lightest DM state
multiplet structure given by symmetry Sp(2)u× Sp(2)d

DM couple to SM through dark U(1)′ gauge field (kinetic mixing)
breaking patterns depend on charge assignments
can achieve stability of SIMPs

Marco Nikolic Strongly and weakly interacting dark matter candidatesMay 24, 2022 30 / 46



Dark radiation

Dark radiation - indirect dark matter searches
Sensitivity of direct detection experiments to neutrino dark radiation

from dark matter decay and a modified neutrino-floor
(arXiv:2008.13557)

Probing sub-eV Dark Matter decays with PTOLEMY
(arXiv:2012.09704)
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Energy budget of the universe

Dark matter
many efforts to find DM in the laboratory to understand its particle nature
direct detection experiments designed to search for nuclear recoils induced by
DM
DM has not been directly observed in laboratories ⇒ look for other possible
signals
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Energy budget of the universe

Dark radiation
new form of relativistic particles produced by unstable dark matter (few % of
total DM abundance) → dark radiation (DR)
number budget unknown → large DR flux possible
DR may leave a detectable signal in direct detection experiments
we analysed sensitivity of baryonic and SM neutrinos in these experimentsMarco Nikolic Strongly and weakly interacting dark matter candidatesMay 24, 2022 33 / 46



Energy budget of the universe

Dark radiation
new form of relativistic particles produced by unstable dark matter (few % of
total DM abundance) → dark radiation (DR)
number budget unknown → large DR flux possible
DR may leave a detectable signal in direct detection experiments
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“What is the maximum sensitivity to DR that we can reach in direct detection
experiments?”

irreducible backgrounds from STANDARD NEUTRINO SOURCES
(solar,atmospheric, supernova ν) in direct detection experiments
backgrounds may mimic DR
find region in parameter space of DR where DR and backgrounds are
distinguishable
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DARK RADIATION

DARK RADIATION
DR in form of SM neutrinos
2-body decay

X → νν (32)

parameter space of DR: τX ,mX , fX (fX = 0.1)
benefit of scenario: interactions of neutrinos are known
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Dark Radiation from decaying Dark Matter

Dark Radiation as SM neutrinos

dΦX2ν(τX ,mX)

dEν
=
dΦν,gal.

dEν
+
dΦν,e.g.

dEν

galactic flux extragalactic flux
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Dark Radiation from decaying Dark Matter

DARK RADIATION vs. STANDARD NEUTRINO SOURCES

DARK RADIATION vs. STANDARD
NEUTRINO SOURCES
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Dark Radiation from decaying Dark Matter

Backgrounds vs. DR

0.001 0.01 0.1 1 10 100
ER [keV]

10−5

10−3
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101
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d
R
X

2ν
/d
E
R

[1
/k

eV
/t

on
/y

r]

total SM ν

atm. ν

τX = 105 Gyr, mX = 242 MeV

DR-induced recoil events may be misinterpreted as standard neutrino sources
experiments lose sensitivity to DR at certain combinations of progenitor lifetime
τX and mass mX

How we can properly discriminate DR from standard neutrino sources?
use hypothesis testing based on likelihood statistics
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Sensitivity

Discovery potential - DR discovery with 3σ significance

find DR signals in the presence of
standard neutrino sources
(sol,atm,supernova)
establish the minimum lifetime
corresponding to the smallest DR
flux, where DR and backgrounds are
still distinguishable
test DR+standard neutrino
background hypothesis against
standard neutrino only-background
hypothesis
generate mock data by Monte Carlo
simulations, which represent recoil
energies of DR and background rates
general tool: likelihood function

1 10 100 1000
mX [MeV]

10−3

10−1

101

103

105

107

τ X
/t

0

discovery

fX = 0.1SK(sol.)

SK(DSNB)

SK(atm.)

ε = 100 ton yr

ε = 1 ton yr

ε = 0.5 ton yr

ε = 0.1 ton yr

discovery region is superseded by SK
constraints (grey) ⇒ direct detection
experiments with ε . O(1) ton yr
cannot measure this form of DR
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Borexino

discovery region for new dark states
(semi sterile neutrinos) ⇒ larger
discovery region by new interaction
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DR in PTOLEMY

Detectability of DR in the future neutrino experiment PTOLEMY
(on going)

proposal to measure CνB (relic neutrinos)
if CνB measured, accurate measurement of mν

detection via β-decaying nuclei (neutrino capture):

(A,Z) + νe → (A,Z + 1) + e− (33)

target material: 100 g tritium
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DR in PTOLEMY

DR in PTOLEMY

another possibility: search for DR signals in PTOLEMY
massive neutrinos: X → νν̄
backgrounds: CνB + β-decay from tritium
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DR in PTOLEMY

Discovery potential

background-only H0 : CνB + β against signal+background H1 : DR + CνB + β
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DR in PTOLEMY

Conclusions

DR in form of SM neutrinos almost completely excluded ⇒ increase exposure
DR in form of baryonic neutrinos still detectable
search for DR in PTOLEMY
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DR in PTOLEMY

Thank you for your attention!
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Breaking patterns - SSB

Global flavor symmetry spontaneously broken, because vacuum condensate is
not invarinat under SU(4)

Under an infinitesimal transformation under the group SU(4), the fermion field
transforms as

Ψ →

(
1 + i

15∑
a=1

θaT a

)
Ψ, (34)

where T a are generators of SU(4)

chiral condensate becomes

〈qq〉 → 〈qq〉 − i

2
θaΨTσ2S

(
ET a + (T a)T E

)
Ψ+ h.c. (35)

vacuum condensate is invariant if ET a + (T a)T E = 0 ⇒ invariant under Sp(4)

Marco Nikolic Strongly and weakly interacting dark matter candidatesMay 24, 2022 2 / 16



Multiplet structure

JP JD

π1 =
1√
2

(
ūγ5d+ d̄γ5u

)
πA = ūγ5d 0− 0−

π2 =
i√
2

(
d̄γ5u− ūγ5d

)
πB = d̄γ5u 0− 0−

π3 =
1√
2

(
ūγ5u− d̄γ5d

)
πC =

1√
2

(
ūγ5u− d̄γ5d

)
0− 0−

π4 =
i√
2

(
d̄γ5SCū

T − dTSCγ5u
)

πD = d̄γ5SCū
T 0+ 0−

π5 =
1√
2

(
d̄γ5SCū

T + dTSCγ5u
)

πE = dTSCγ5u 0+ 0−

under “naive” parity P : ψ(x, t) → γ0ψ(−x, t)

5 Goldstones =
{

3 Pseudoscalars πA, πB , πC

2 Scalars, πD, πE

under parity D : ψ(x, t) → ±iγ0ψ(−x, t)
5 Goldstones are Pseudoscalars
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Including spin-1 states - ρ-mesons

5 axial-vector and 10 vector mesonic states under parity D: ρµ =

15∑
a=1

ρaµT
a.

add kinetic and mass terms for the spin-1 states to chiral Lagrangian Lπ

Lρ = −1

2
Tr (ρµνρ

µν) +
1

2
m2

ρ Tr (ρµρ
µ) (36)

interactions between Goldstone bosons and spin-1 states

DµΣ = ∂µΣ+ igρππ

[
ρµΣ+ ΣρTµ

]
, (37)

axial-vectors heavier than vectors

m2
a = m2

ρ/Z
2. (38)

axial-vectors not important for DM physics
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Neutrino fluxes
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Neutrino sources

Solar neutrinos produced in the Sun by fusion processes
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Neutrino sources

atmospheric neutrinos
Cosmic rays collide with nuclei in the atmosphere
hadronic showers: pions, kaons, neutrons, protons
muon decay: µ− → e− + ν̄µ + νe, µ+ → e+ + νµ + ν̄e

electromagnetic showers: production of photons and electrons
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Irreducible neutrino background

coherent scattering

ν +N → ν +N (39)

spin-independent neutrino-nucleus cross section

dσNν(Eν , ER)

dER
=
Q2

WG2
FmNF (~q )2

4π

[
1− ERmN

2E2
ν

]
, (40)

Fermi constant GF = 1.1663787(6) · 10−5 GeV−2

weak charge QW = (4 sin2 θW − 1)Z +N , Weinberg angle θ
Helm form factor

F (~q ) =
3j1(~q R)

~q R
e−~q 2s2/2 (41)

Coherence lost, when momentum transfer too large
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WIMP event mimicked by neutrino backgrounds
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σn = 2 · 10−49 cm2, mχ = 100 GeV

Large number of neutrino-induced nuclear recoils at ER ∼ few keV
Relevant neutrino backgrounds: solar, atmospheric and supernova neutrinos
8B-ν mimic WIMP with σn = 4.9 · 10−45 cm2, mχ = 6 GeV
atm. ν mimic WIMP with σn = 2 · 10−49 cm2, mχ = 100 GeV
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Dark Radiation from decaying Dark Matter

Dark radiation from an anomalous neutrino source

Two-body decay into neutrino pair (monochromatic injection)

X → νν,
dN

dEν
= Nνδ(Eν − Ein), Nν = 2 (42)

dΦν,gal.

dEν
= Nν

κe
− t0

τX

mXτX
r�ρ�〈Jdec(θ)〉δ(Eν − Ein), Ein =

mX

2
(43)

dΦν,e.g.

dEλ
= Nν

κΩdmρcrit
H0mX

1

Eν

1
τX
e
− t(α−1)

τX

√
α3ΩM +ΩΛ

θ(α− 1), α = Ein/Eν (44)
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Dark Radiation from decaying Dark Matter

Likelihood statistics

Likelihood function:

L
(
τX , ~φν

)
=

(
µDR (τX) +

∑nν
j=1 µν

(
φj
ν

))Nobs
e
−
(
µDR(τX )+

∑nν
j=1 µν

(
φj
ν

))
Nobs !

×
µobs∏
i=1

f
(
ERi , τX ,

~φν

)
µDR (τX) +

∑nν
j=1 µν

(
φj
ν

) ×
nν∏
j=1

Lj

(
φj
ν

) (45)

measure of discrepancy is obtained by the test statistics (likelihood ratio)

q0 = −2 lnλ(0) =


−2 ln

L(ΓX = 0, ~̃φν ;mX |ER)

L(Γ̂X , ~̂φν ;mX |ER)
for Γ̂X > 0

0 for Γ̂X ≤ 0,
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Dark Radiation from decaying Dark Matter

Improve sensitivity
reducing uncertainty of neutrino fluxes
measure direction of recoil energies when hitting solar neutrino background
using different detector materials for additional information

other DR sources
new particle with different strength
DR from multi-body decays
evaporating primordial back holes or emerging from supernova explosions
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Dark Radiation from decaying Dark Matter

Neutrino flux - CνB

CνB neutrino flux at Eν ∼ 10−4 eV ⇒ nuclear recoils of ER . 10−15 eV in direct
detection → impossible to measure, large thresholds
detection via β-decaying nuclei (neutrino capture): (A,Z)+ νe → (A,Z +1)+ e−

CνB rate: ΓCNB ≈ (4 or 8) yr−1

(
MT

100 g

)
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Dark Radiation from decaying Dark Matter

Detection of CνB

Consider unstable nucleus (A,Z),
that decays through β -decay,

(A,Z) → (A,Z + 1) + e− + ν̄e

releasing energy Qβ

There exists a threshold-less
reaction of neutrino capture

(A,Z) + νe → (A,Z + 1) + e−

β -decays create a background for
neutrino capture, but we can
distinguish them using different
kinematics
PTOLEMY will measure neutrino
mass mν

CνB rate:
ΓCNB ≈ (4 or 8) yr−1

(
MT

100 g

)
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Dark Radiation from decaying Dark Matter

Suppression factor (Pauli-blocking) and accumulating neutrinos

galactic rate is affected by Pauli-blocking issues
galactic rate suppressed by Pauli-blocking
Non-escaping neutrinos: galactic neutrinos from DM decay are injected at
non-relativistic speeds with vν � vesc ∼ 10−3c

happens when mDM − 2mν

mDM
. 10−6
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Dark Radiation from decaying Dark Matter
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