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Introduction
The anomalous magnetic moment of the muon

• Dirac equation gives gf = 2 for fermions

• for leptons: permille-level deviations due to radiative corrections
→ define al = gl −2

2

• high accuracy in experiments and calculations (for electron and
muon) allows for strong tests of the SM

• ae prediction limited by knowledge of αQED and no clear tension with
experiment

• different for aµ
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Introduction
Measurement and Standard Model prediction for aµ

Contribution value×1011 error×1011

Experiment 116 592 061 41

QED 116 584 718.931 0.104
Electroweak 153.6 1.0

HVP LO 6931 40
HVP NLO −98.3 0.7
HVP NNLO 12.4 0.1

HLbL LO 90 17
HLbL NLO 2 1

Sum SM 116 591 810 43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

• combination of final
BNL E821 result and run
1 of new FNAL E989

• experimental error
expected to reduce to
16 × 10−11 in near
future
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• dominated by

q

p1 p2

• known up to 5 loops
Aoyama et al. 2012, 2019

• negligible uncertainty
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• much smaller due to
approximate scaling
∼ m2

µ

Λ2

• 2 loop calculation +
RGE estimate of 3 loop
Gnendinger et al., Phys. Rev. D 2013

• model estimate for
mixed EW/QCD

• small uncertainty
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q
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• related to
σ(e+e− → hadrons) by
unitarity

• this data-driven
evaluation is in tension
with one lattice
calculation: 7075(55)
BMW collab., Science 2020

• largest uncertainty
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• diagrams like

and

• non-negligible at current
precision, but well
known
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q
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• more complicated than
HVP due to more legs
attached to blob

• but: 10 % precision
sufficient

• number results from
average between lattice
and phenomenology
(agree within
uncertainties)
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Introduction
Measurement and Standard Model prediction for aµ

Contribution value×1011 error×1011

Experiment 116 592 061 41

QED 116 584 718.931 0.104
Electroweak 153.6 1.0

HVP LO 6931 40
HVP NLO −98.3 0.7
HVP NNLO 12.4 0.1

HLbL LO 90 17
HLbL NLO 2 1

Sum SM 116 591 810 43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

• sum differs by
251(59) × 10−11 (4.2 σ)
from experiment

• poorly understood effect
on experimental or
theory side or new
physics?
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Introduction
Current status in HLbL

q

p1 p2
• WP number is combination of

aHLbL
µ, phen = 92(19) × 10−11 , aHLbL

µ, lat = 79(35) × 10−11 + c-loop

• both compatible with latest lattice result Chao et al., EPJC 2021

aHLbL
µ, lat = 106.8(14.7) × 10−11 + c-loop

• data-driven approach allowed for the first time to model-
independently define individual contributions and assign numbers with
small and reliable uncertainties Colangelo, Hoferichter, Procura, Stoffer (CHPS) 2015, 2017

• sub-dominant contributions from heavier resonances can currently
only be estimated and have larger uncertainties due to
▶ lack of (precise) data input
▶ conceptual difficulties in the present framework

→ will be addressed in this talk
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Review of present approach

• 4-point function, tensor structures and master formula

• dispersion relations in general kinematics

• results and open questions
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Tensor structures
Naive decomposition and Ward identities

• have to describe hadronic correlator of 4 photons/em-currents

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)

× ⟨0| T{jµ
em(x)jν

em(y)jλ
em(z)jσ

em(0)} |0⟩

• in general there are 138 tensor structures consisting of qα
i and gαβ

Πµνλσ =
138∑
i=1

Lµνλσ
i Ξi

• Ward identities put 95 linear constraints on scalar functions Ξi

{qµ
1 , qν

2 , qλ
3 , qσ

4 }Πµνλσ(q1, q2, q3) = 0
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Tensor structures
BTT recipe and ambiguities CHPS 2015, 2017

• projection gives basis for subspace fulfilling the Ward identities, but
with singularities in the tensor structures
→ problematic for dispersion relations

• singularities can be removed Bardeen & Tung, Phys. Rev. 1968

but: set becomes incomplete at specific kinematic points

• add non-singular tensor structures to obtain generating set at all
kinematic points Tarrach, Nuovo Cim. A 1975

Πµνλσ =
54∑

i=1
T µνλσ

i Πi

but: BTT set T µνλσ
i is overcomplete, which implies ambiguities in

the scalar coefficient functions Πi
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Tensor structures
Limit q → 0 and Master formula

• for aHLbL
µ we need two-loop integral over

lim
q4→0

∂

∂q4ρ
Πµνλσ

• 35 linear combinations of the 54 structures vanish in this limit
• 5 of the 8 integrals can be performed in full generality
• due to symmetry only 12 linear combinations of scalar functions in

the limit q4 → 0 enter the master formula

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ
√

1 − τ2Q3
1Q3

2

12∑
i=1

Ti (Q1, Q2, τ)Π̄i (Q1, Q2, τ)

• Qi =
√

−q2
i , τ = τ(Q1, Q2, Q3)

• kernel functions Ti known analytically
→ aim of dispersive approach(es) is to reconstruct Π̄i
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Dispersion relations for low-energy hadronic processes

Re s

Im s

Γ

sthr

C+

C−

Γ

• Consider scalar function F (s)
that is analytic apart from
branch cut on real axis

• Cauchy’s Theorem:
F (s) = 1

2πi
∮
Γ

ds ′ F (s′)
s′−s

• deform integration contour

• If F falls off sufficiently fast,
only C+ and C− contribute
F (s) = 1

2πi

∞∫
sthr

ds ′ disc F (s′)
s′−s ,

disc F (s) = F (s + iϵ) − F (s − iϵ)
= 2iImF (s)
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Dispersion relations for low-energy hadronic processes
Unitarity relations

• imaginary part determined from unitarity of the S-matrix (SS† = 1)
• plug in S = 1 + iT : i(T † − T ) = TT †

• T -invariance implies T T = T and thus i(T ∗ − T ) = 2ImT = TT ∗

• sandwiching this between states gives

Im ⟨f | T |i⟩ =
∑

s
⟨f | T |s⟩ ⟨s| T |i⟩∗

• can be visualized by unitarity diagrams
..

.

..
.

..
.

• at low energies, light states with low multiplicity dominate in sum
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Dispersion relations in four-point kinematics
Application to HLbL

• write dispersion relations for Πi (overcomplete generating set free of
kinematic singularities) in s, t, u for fixed q2

i

• single out lightest states in unitarity relations in each channel
→ imaginary parts given in terms of (simpler) sub-processes

• allows model-independent definition of individual contributions

• use experimental data on sub-processes to evaluate contributions to
aHLbL

µ due to light intermediate states
→ reliable uncertainty estimate for each contribution
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Dispersion relations in four-point kinematics
Topologies
• focus on 1 and 2 particle intermediates states

q1

q2 q3

q4

=

q1

q2 q3

q4

+

q1

q2 q3

q4

+

q1

q2 q3

q4

+

q1

q2 q3

q4

+

q1

q2 q3

q4

+ . . .

• crossed diagrams not shown
• s-channel π0 pole contributes to only 1 scalar function

Ππ0−pole
1 =

Fπ0γ∗γ∗(q2
1 , q2

2)Fπ0γ∗γ∗(q2
3 , q2

4)
s − m2

π

q4→0−−−→
Fπ0γ∗γ∗(q2

1 , q2
2)Fπ0γ∗γ∗(q2

3 , 0)
q2

3 − m2
π
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Dispersion relations in four-point kinematics
Results and current status

• contributions of 1 and 2 pseudoscalar states under good control
▶ pseudoscalar poles: 93.8(4.0) × 10−11

Hoferichter et al., JHEP 2018, Masjuan et al., Phys. Rev. D 2017

▶ π- and K -loops: −16.4(2) × 10−11 CHPS, JHEP 2017, WP 2020

▶ S-wave ππ rescattering: −8(1) × 10−11 CHPS, JHEP 2017

▶ huge improvement in precision and reliability compared to earlier
(model) estimates

• full description of 3 particle and higher intermediate states very
challenging
→ describe through resonances in narrow width approximation

• but: data very scarce → only rough estimates possible, mostly based
on models

• at high energies pQCD and OPE used to constrain the Πi
Melnikov & Vainshtein, Phys. Rev. D 2004, Colangelo et al. JHEP 2020, JL & Procura, EPJC 2020
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Dispersion relations in four-point kinematics
Singly on-shell basis and sum rules CHPS, JHEP 2017

• sufficient to consider q2
4 = 0

• in this limit a Lorentz basis free of kinematic singularities in s, t, u
exists (Π̌i)

• Π̌i have different mass dimensions
→ Π̌i with lower mass dimension fall off faster at high energies
→ implies sum rules of form

∫
ds ′ ImΠ̌i(s ′) = 0

• sum rules guarantee basis independence of aHLbL
µ

• but: sum rules only fulfilled for (infinite) sum over intermediate states
→ individual contributions basis dependent

• exception: pseudoscalar poles and loops fulfill sum rules individually
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Dispersion relations in four-point kinematics
Current limitations due to singularities in photon virtualities

• in addition: Π̌i have singularities in q2
i

→ residues vanish due to sum rules for (infinite) sum over
intermediate states

• poles lead to non-convergent master formula integrals for individual
contributions
→ must subtract poles using same prescription for all contributions
→ additional ambiguity

• in original basis this affects contributions with spin ≥ 1

• by basis change it can be avoided for axial-vector mesons
Colangelo et al., EPJC 2021

• without additional sum rules singularities are unavoidable for
intermediate states with spin ≥ 2
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How can we overcome this limitation?

→ Dispersion relations at q4 = 0
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Dispersion relations in triangle kinematics
General idea and advantages

• has been realized that dispersion relations can also be written at
q4 → 0 Colangelo et al., JHEP 2020

• at q4 → 0, all ambiguities disappear and a Lorentz basis free of
kinematic singularities (Π̂i) exists

• dispersion relations for them avoid ambiguities coming from
subtraction of spurious poles

• will allow to include D-wave ππ rescattering, tensor-meson poles, . . .
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Dispersion relations in triangle kinematics
Addition of cuts

• suppress additional arguments and use simplified notation
Π̂i(q2

3) = lim
s→q2

3

Π̌i(s, q2
3) with s = (q3 + q4)2

Im Π̂i(q2
3) = lim

s→q2
3

[
ImsΠ̌i(s, q2

3 + iϵ) + Im3Π̌i(s + iϵ, q2
3)∗
]

Im


q1

q2 q3

q4

 =

q1

q2 q3

q4

+


q1

q2 q3

q4


∗

→ s- and q2
3-channel cuts have to be added

Jan Lüdtke (Uni Wien) DRs for HLbL June 03, 2022 18 / 28



Dispersion relations in triangle kinematics
Topologies and sub-processes
• s- and q2

3-channel cuts with 1 and 2 pion intermediate states
q1

q2 q3

q4

=

q1

q2 q3

q4

+

q1

q2 q3

q4

+ . . .

q1

q2 q3

q4

=

q1

q2 q3

q4

+ . . .

→ all sub-processes except for γ∗γ∗ → ππγ well-known
→ cancellation of infrared divergences in π+π− intermediate
states between s- and q2

3-cuts demonstrated
• s-channel resonance contributions given in terms of transition form

factors (including axials and tensor mesons . . . )
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Dispersion relations in triangle kinematics
Topologies and sub-processes

• s- and q2
3-channel cuts with 1 and 2 pion intermediate states

→ all sub-processes except for γ∗γ∗ → ππγ well-known
• again 2 different (s-channel) cuts

q1

q2

p1

p2

q3

=

q1

q2

p1

p2

q3

+

q1

q2

p1

p2

q3

+ . . .

q1

q2

p1

p2

q3

=

q1

q2

p1

p2

q3

+ . . .

→ all sub-processes except for ππ → ππγ well-known
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The sub-process ππ → γππ

• derivation of dispersive description to be inserted into HLbL in
triangle kinematics

• shares many features with γ∗γ∗ → ππγ and HLbL

• Lorentz structure much simpler

→ focus on this for the rest of the talk
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The sub-process ππ → γππ
Kinematics and Lorentz decomposition

• amplitude M(π0π0 → π+π−γ) = ϵ∗
µMµ

• charged channel (π+π− → π+π−γ) also needed, but related to mixed
channel through isospin symmetry Kuhn 1999, Ecker & Unterdorfer 2002

• BTT decomposition Mµ =
∑6

i=1 T̂ µ
i Mi leads 3 Tarrach

redundancies

T̂ µ
1 = pµ

2 (p3 · q) − pµ
3 (p2 · q) , T̂ µ

2 = pµ
3 (p1 · q) − pµ

1 (p3 · q) ,

T̂ µ
3 = pµ

1 (p2 · q) − pµ
2 (p1 · q) , T̂ µ

4 = qµ(p1 · q) − pµ
1 q2 ,

T̂ µ
5 = qµ(p2 · q) − pµ

2 q2 , T̂ µ
6 = qµ(p3 · q) − pµ

3 q2

• 5-particle process has 10 kinematic invariants, 5 fixed by on-shell
conditions
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The sub-process ππ → γππ
Soft-photon limit and singularities

• in principle only lim
q→0

∂
∂qν

Mµ needed

• Tarrach redundancies drop out in this limit and a 2D basis exists
• but: limit does not exist due to

p1

p2

p3

p4

q

→ split Mµ = Mµ
sing + Mµ

reg

• ambiguity to shift finite terms between Mµ
sing and Mµ

reg
• for Mµ

reg the limit can be performed and the problem reduces to
4-point kinematics → Mandelstam variables

• singularities cancel when plugged into HLbL
• need gauge-invariant non-perturbative definition of Mµ

sing
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The sub-process ππ → γππ
Definition of Mµ

sing

• Low’s theorem: terms of order q−1 obtainable from

p1

p2

p3

p4

q

with scalar QED vertex for soft photon,
terms of order q0 fixed by imposing Ward identity Low, Phys. Rev. 1958

→ terms up to order q0 given in terms of ππ → ππ

• but: lim
q→0

∂
∂qν

(Mµ − Mµ
sing) still does not exist due to terms like

qµ pi ·q
pj ·q (of order q1, but limit depends on direction of q)

→ need definition of Mµ
sing that includes all singular terms

• achieved from unitarity with a single-pion intermediate state
→ also only depends on ππ → ππ amplitude T

Mµ
sing = F V

π (q2)
(

(2p3 + q)µ

(p3 + q)2 − m2
π

T (s, t̃ − u) −
(2p4 + q)µ

(p4 + q)2 − m2
π

T (s, t − ũ) − 2(p1 − p2)µ∆T
)

∆T =
T (s, t̃ − u) − T (s, t − ũ)

t̃ − u − t + ũ
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The sub-process ππ → γππ
Unitarity relation and Cancellation of singularities

• two-pion intermediate states in unitarity relations involve ππ → γππ
as a sub-process (similarly in t- and u-channels)

p1

p2

p3

p4

q

=

p1

p2

p3

p4

q

+ . . .

p1

p2

p3

p4

q

=

p1

p2

p3

p4

q

+ . . .

→ contains the soft-singular piece Mµ
sing

• checked that sum of cuts reproduces the singularities of ImππMµ
sing

→ finite difference is ImππMµ
reg and can be projected onto basis

Lorentz structures in limit q → 0
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The sub-process ππ → γππ
Imaginary parts

p1

p2

p3

p4

q

+


p1

p2

p3

p4
q


∗

• t-channel imaginary part of 1 scalar function

Imπ−π0
t M̄1 =

1
8

√
1 − 4m2

π
t

16π2 Re
∑

l

(2l + 1)
∫

dΩ′
t(t1∗

l (t) + t2∗
l (t))Pl (z ′

t )

×
[(

2
z ′

t − z ′′
t

1 − zt
+

z ′
t + z ′′

t
1 + zt

− 5
)

M̄1(t, z ′′
t ) +

( z ′
t + z ′′

t
1 + zt

− 1
)

M̄2(t, z ′′
t )
]

+ ∆1

• ∆1 finite remainder of terms involving Mµ
sing

→ only depends on ππ → ππ partial waves t i
l

• s-channel imaginary parts depend on both s- and t-channel
amplitudes

• have checked imaginary parts at one loop in χPT
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The sub-process ππ → γππ
Dispersion relations
• from fixed-s dispersion relations for M̄i , make ansatz for partial-

wave expansion in t-channel: M̄i(t, zt) =
∞∑

l=0
(2l + 1)g i

l (t)Pl(zt)
▶ allows to perform angular integral
▶ considering ππ scattering only up to D-waves truncates tower of g i

l

• project dispersion relation onto partial waves to obtain coupled
integral equations for g i

l (t) → Roy–Steiner equations

g i
j (t) =

∑
j′,l

2∑
i′=1

1
π

∫ ∞

4m2
π

dt ′K ii′

jj′l(t, t ′)Re[(t1∗
l (t ′) + t2∗

l (t ′))g i′

j′ (t ′)] + ∆i
j(t)

• similar equations exist for s-channel partial waves (include integrals
over t-channel partial waves g i

l )

• solving this will complete the dispersive reconstruction of the
sub-process ππ → γππ
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Conclusions

• discrepancy between measurement and Standard Model prediction of
aµ could be due to New Physics: higher precision needed

• established dispersive formalism for HLbL very successful for most
important contributions

• complementary dispersive approach promises to overcome roadblocks
in inclusion of higher-spin intermediate states

• important steps towards complete calculation in new approach
already achieved:
▶ unitarity relations
▶ cancellation of infrared divergences
▶ new dispersion relations for ππ → γππ
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Outlook

• solution of Roy–Steiner equations will complete study of ππ → γππ

• with ππ → γππ as input, similar study possible for γ∗γ∗ → ππγ
▶ more complicated Lorentz structure
▶ but: many similarities concerning kinematics, cancellation of IR

singularities, phase-space integrals, ... expected

• this will allow for a complete treatment of all 1- and 2-particle
intermediate states in HLbL with arbitrary angular momenta

• study in detail reshuffling of contributions between the 2 dispersive
approaches to HLbL
▶ learn how to combine them to include as many contributions as possible

• study dispersive representation of pQCD quark loop to incorporate
short-distance constraints → Michael’s work
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Thank you for your attention!



Backup



Addition of cuts
• suppress additional arguments and use simplified notation

ImΠ̂i(q2
3) = lim

s→q2
3

Π̌i(s, q2
3) with s = (q3 + q4)2

Im Π̂i(s) = lim
q2

3→s

Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 − iϵ)
2i

= lim
q2

3→s

[ Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 + iϵ)
2i

+ Π̌i(s − iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 − iϵ)
2i

]
= lim

q2
3→s

[ Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s − iϵ, q2

3 + iϵ)
2i

+
(

Π̌i(s + iϵ, q2
3 + iϵ) − Π̌i(s + iϵ, q2

3 − iϵ)
2i

)∗ ]
=: lim

q2
3→s

[
ImsΠ̌i(s, q2

3 + iϵ) + Im3Π̌i(s + iϵ, q2
3)∗
]
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