Dispersive Approach(es) to Hadronic Light-by-Light Scattering for the Muon g-2

Jan Lüdtke

University of Vienna
Seminar on Particle Physics, June 03, 2022

Der Wissenschaftsfonds.
$\int d k \Pi$
Doktoratskolleg
Particles and Interactions

Outline

(1) Experiment vs. Standard Model determination of the muon $g-2$: hadronic contributions
(2) Dispersive approaches to hadronic light-by-light

- Dispersion relations in four-point kinematics (present approach)
- Dispersion relations in triangle kinematics (new approach)

\rightarrow The sub-process $\pi \pi \rightarrow \gamma \pi \pi$
(3) Conclusions and outlook
in collaboration with Massimiliano Procura and Peter Stoffer

Introduction

The anomalous magnetic moment of the muon

- Dirac equation gives $g_{f}=2$ for fermions
- for leptons: permille-level deviations due to radiative corrections \rightarrow define $a_{l}=\frac{g_{l}-2}{2}$
- high accuracy in experiments and calculations (for electron and muon) allows for strong tests of the SM
- a_{e} prediction limited by knowledge of α_{QED} and no clear tension with experiment
- different for a_{μ}

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- combination of final BNL E821 result and run 1 of new FNAL E989
- experimental error expected to reduce to 16×10^{-11} in near future

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- dominated by

- known up to 5 loops

Aoyama et al. 2012, 2019

- negligible uncertainty

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- much smaller due to approximate scaling $\sim \frac{m_{\mu}^{2}}{\Lambda^{2}}$
- 2 loop calculation + RGE estimate of 3 loop

Gnendinger et al., Phys. Rev. D 2013

- model estimate for mixed EW/QCD
- small uncertainty

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- related to
$\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons) by unitarity
- this data-driven
evaluation is in tension with one lattice calculation: 7075(55)

BMW collab., Science 2020

- largest uncertainty

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- diagrams like

and

- non-negligible at current precision, but well known

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

Aoyama et al., Phys. Rep. 2020 (WP 2020)

- more complicated than HVP due to more legs attached to blob
- but: 10% precision sufficient
- number results from average between lattice and phenomenology (agree within uncertainties)

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

- diagrams like

Aoyama et al., Phys. Rep. 2020 (WP 2020)

Introduction

Measurement and Standard Model prediction for a_{μ}

Contribution	value $\times 10^{11}$	error $\times 10^{11}$
Experiment	116592061	41
QED	116584718.931	0.104
Electroweak	153.6	1.0
HVP LO	6931	40
HVP NLO	-98.3	0.7
HVP NNLO	12.4	0.1
HLbL LO	90	17
HLbL NLO	2	1
Sum SM	116591810	43

- sum differs by $251(59) \times 10^{-11}(4.2 \sigma)$ from experiment
- poorly understood effect on experimental or theory side or new physics?

Introduction

Current status in HLbL

- WP number is combination of

$$
a_{\mu, \text { phen }}^{\mathrm{HLbL}}=92(19) \times 10^{-11}, \quad a_{\mu, \text { lat }}^{\mathrm{HLbL}}=79(35) \times 10^{-11}+c \text {-loop }
$$

- both compatible with latest lattice result

$$
a_{\mu, \text { lat }}^{\mathrm{HLbL}}=106.8(14.7) \times 10^{-11}+c \text {-loop }
$$

- data-driven approach allowed for the first time to modelindependently define individual contributions and assign numbers with small and reliable uncertainties Colangelo, Hofericher, Procura, Stoffer (CHPS) 2015, 2017
- sub-dominant contributions from heavier resonances can currently only be estimated and have larger uncertainties due to
- lack of (precise) data input
- conceptual difficulties in the present framework
\rightarrow will be addressed in this talk

Review of present approach

- 4-point function, tensor structures and master formula
- dispersion relations in general kinematics
- results and open questions

Tensor structures

Naive decomposition and Ward identities

- have to describe hadronic correlator of 4 photons/em-currents

$$
\begin{aligned}
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)= & -i \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y \mathrm{~d}^{4} z e^{-i\left(q_{1} \cdot x+q_{2} \cdot y+q_{3} \cdot z\right)} \\
& \times\langle 0| T\left\{j_{\mathrm{em}}^{\mu}(x) j_{\mathrm{em}}^{\nu}(y) j_{\mathrm{em}}^{\lambda}(z) j_{\mathrm{em}}^{\sigma}(0)\right\}|0\rangle
\end{aligned}
$$

- in general there are 138 tensor structures consisting of q_{i}^{α} and $g^{\alpha \beta}$

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{138} L_{i}^{\mu \nu \lambda \sigma} \bar{\Xi}_{i}
$$

- Ward identities put 95 linear constraints on scalar functions $\bar{\Xi}_{i}$

$$
\left\{q_{1}^{\mu}, q_{2}^{\nu}, q_{3}^{\lambda}, q_{4}^{\sigma}\right\} \Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=0
$$

Tensor structures

BTT recipe and ambiguities

- projection gives basis for subspace fulfilling the Ward identities, but with singularities in the tensor structures
\rightarrow problematic for dispersion relations
- singularities can be removed but: set becomes incomplete at specific kinematic points
- add non-singular tensor structures to obtain generating set at all kinematic points

$$
\Pi^{\mu \nu \lambda \sigma}=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}
$$

but: BTT set $T_{i}^{\mu \nu \lambda \sigma}$ is overcomplete, which implies ambiguities in the scalar coefficient functions Π_{i}

Tensor structures

Limit $q \rightarrow 0$ and Master formula

- for $a_{\mu}^{\text {HLbL }}$ we need two-loop integral over

$$
\lim _{q_{4} \rightarrow 0} \frac{\partial}{\partial q_{4} \rho} \Pi^{\mu \nu \lambda \sigma}
$$

- 35 linear combinations of the 54 structures vanish in this limit
- 5 of the 8 integrals can be performed in full generality
- due to symmetry only 12 linear combinations of scalar functions in the limit $q_{4} \rightarrow 0$ enter the master formula

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} \mathrm{d} Q_{1} \int_{0}^{\infty} \mathrm{d} Q_{2} \int_{-1}^{1} \mathrm{~d} \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
$$

- $Q_{i}=\sqrt{-q_{i}^{2}}, \tau=\tau\left(Q_{1}, Q_{2}, Q_{3}\right)$
- kernel functions T_{i} known analytically
\rightarrow aim of dispersive approach(es) is to reconstruct $\bar{\Pi}_{i}$

Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$
that is analytic apart from branch cut on real axis

Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$
$\operatorname{Im} s$

that is analytic apart from branch cut on real axis
- Cauchy's Theorem:

$$
F(s)=\frac{1}{2 \pi i} \oint_{\Gamma} \mathrm{d} s^{\prime} \frac{F\left(s^{\prime}\right)}{s^{\prime}-s}
$$

Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$ that is analytic apart from branch cut on real axis
- Cauchy's Theorem:

$$
F(s)=\frac{1}{2 \pi i} \oint_{\Gamma} \mathrm{ds}^{\prime} \frac{F\left(s^{\prime}\right)}{s^{\prime}-s}
$$

$\operatorname{Re} s$

- deform integration contour

Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$ that is analytic apart from branch cut on real axis
- Cauchy's Theorem:

$$
F(s)=\frac{1}{2 \pi i} \oint_{\Gamma} \mathrm{d} s^{\prime} \frac{F\left(s^{\prime}\right)}{s^{\prime}-s}
$$

$\operatorname{Re} s$

- deform integration contour
- If F falls off sufficiently fast, only C_{+}and C_{-}contribute

$$
\begin{aligned}
& F(s)=\frac{1}{2 \pi i} \int_{s_{\text {thr }}}^{\infty} \mathrm{d} s^{\prime} \frac{\operatorname{disc} F\left(s^{\prime}\right)}{s^{\prime}-s}, \\
& \begin{aligned}
\operatorname{disc} F(s) & =F(s+i \epsilon)-F(s-i \epsilon) \\
& =2 i \operatorname{Im} F(s)
\end{aligned}
\end{aligned}
$$

Dispersion relations for low-energy hadronic processes

Unitarity relations

- imaginary part determined from unitarity of the S-matrix $\left(S S^{\dagger}=1\right)$
- plug in $S=1+i T: i\left(T^{\dagger}-T\right)=T T^{\dagger}$
- T-invariance implies $T^{T}=T$ and thus $i\left(T^{*}-T\right)=2 \operatorname{Im} T=T T^{*}$
- sandwiching this between states gives

$$
\operatorname{Im}\langle f| T|i\rangle=\sum_{s}\langle f| T|s\rangle\langle s| T|i\rangle^{*}
$$

- can be visualized by unitarity diagrams

- at low energies, light states with low multiplicity dominate in sum

Dispersion relations in four-point kinematics

Application to HLbL

- write dispersion relations for Π_{i} (overcomplete generating set free of kinematic singularities) in s, t, u for fixed q_{i}^{2}
- single out lightest states in unitarity relations in each channel
\rightarrow imaginary parts given in terms of (simpler) sub-processes
- allows model-independent definition of individual contributions
- use experimental data on sub-processes to evaluate contributions to a_{μ}^{HLbL} due to light intermediate states
\rightarrow reliable uncertainty estimate for each contribution

Dispersion relations in four-point kinematics

Topologies

- focus on 1 and 2 particle intermediates states

- crossed diagrams not shown
- s-channel π^{0} pole contributes to only 1 scalar function

$$
\begin{aligned}
\Pi_{1}^{\pi^{0}-\mathrm{pole}} & =\frac{F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{4}^{2}\right)}{s-m_{\pi}^{2}} \\
& \xrightarrow{q_{4} \rightarrow 0} \frac{F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, 0\right)}{q_{3}^{2}-m_{\pi}^{2}}
\end{aligned}
$$

Dispersion relations in four-point kinematics

Results and current status

- contributions of 1 and 2 pseudoscalar states under good control
- pseudoscalar poles: $93.8(4.0) \times 10^{-11}$

Hoferichter et al., JHEP 2018, Masjuan et al., Phys. Rev. D 2017

- π - and K-loops: $-16.4(2) \times 10^{-11}$

CHPS, JHEP 2017, WP 2020

- S-wave $\pi \pi$ rescattering: $-8(1) \times 10^{-11}$
- huge improvement in precision and reliability compared to earlier (model) estimates
- full description of 3 particle and higher intermediate states very challenging
\rightarrow describe through resonances in narrow width approximation
- but: data very scarce \rightarrow only rough estimates possible, mostly based on models
- at high energies pQCD and OPE used to constrain the Π_{i}

Dispersion relations in four-point kinematics

Singly on-shell basis and sum rules

- sufficient to consider $q_{4}^{2}=0$
- in this limit a Lorentz basis free of kinematic singularities in s, t, u exists $\left(\check{\Pi}_{i}\right)$
- $\check{\Pi}_{i}$ have different mass dimensions
$\rightarrow \check{\Pi}_{i}$ with lower mass dimension fall off faster at high energies
\rightarrow implies sum rules of form $\int d s^{\prime} \operatorname{Im} \check{\Pi}_{i}\left(s^{\prime}\right)=0$
- sum rules guarantee basis independence of a_{μ}^{HLbL}
- but: sum rules only fulfilled for (infinite) sum over intermediate states \rightarrow individual contributions basis dependent
- exception: pseudoscalar poles and loops fulfill sum rules individually

Dispersion relations in four-point kinematics

Current limitations due to singularities in photon virtualities

- in addition: $\check{\Pi}_{i}$ have singularities in \boldsymbol{q}_{i}^{2}
\rightarrow residues vanish due to sum rules for (infinite) sum over intermediate states
- poles lead to non-convergent master formula integrals for individual contributions
\rightarrow must subtract poles using same prescription for all contributions
\rightarrow additional ambiguity
- in original basis this affects contributions with spin ≥ 1
- by basis change it can be avoided for axial-vector mesons
- without additional sum rules singularities are unavoidable for intermediate states with spin ≥ 2

How can we overcome this limitation?

\rightarrow Dispersion relations at $q_{4}=0$

Dispersion relations in triangle kinematics

General idea and advantages

- has been realized that dispersion relations can also be written at $q_{4} \rightarrow 0$
- at $q_{4} \rightarrow 0$, all ambiguities disappear and a Lorentz basis free of kinematic singularities $\left(\hat{\Pi}_{i}\right)$ exists
- dispersion relations for them avoid ambiguities coming from subtraction of spurious poles
- will allow to include D-wave $\pi \pi$ rescattering, tensor-meson poles, ...

Dispersion relations in triangle kinematics

Addition of cuts

- suppress additional arguments and use simplified notation $\hat{\Pi}_{i}\left(q_{3}^{2}\right)=\lim _{s \rightarrow q_{3}^{2}} \check{\Pi}_{i}\left(s, q_{3}^{2}\right)$ with $s=\left(q_{3}+q_{4}\right)^{2}$

$$
\operatorname{Im} \hat{\Pi}_{i}\left(q_{3}^{2}\right)=\lim _{s \rightarrow q_{3}^{2}}\left[\operatorname{Im}_{s} \check{\Pi}_{i}\left(s, q_{3}^{2}+i \epsilon\right)+\operatorname{Im}_{3} \check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}\right)^{*}\right]
$$

$\rightarrow s$ - and q_{3}^{2}-channel cuts have to be added

Dispersion relations in triangle kinematics

Topologies and sub-processes

- s - and q_{3}^{2}-channel cuts with 1 and 2 pion intermediate states

\rightarrow all sub-processes except for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi \gamma$ well-known
\rightarrow cancellation of infrared divergences in $\pi^{+} \pi^{-}$intermediate states between s - and q_{3}^{2}-cuts demonstrated
- s-channel resonance contributions given in terms of transition form factors (including axials and tensor mesons)

Dispersion relations in triangle kinematics

Topologies and sub-processes

- s - and q_{3}^{2}-channel cuts with 1 and 2 pion intermediate states
\rightarrow all sub-processes except for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi \gamma$ well-known
- again 2 different (s-channel) cuts

\rightarrow all sub-processes except for $\pi \pi \rightarrow \pi \pi \gamma$ well-known

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

- derivation of dispersive description to be inserted into HLbL in triangle kinematics
- shares many features with $\gamma^{*} \gamma^{*} \rightarrow \pi \pi \gamma$ and HLbL
- Lorentz structure much simpler
\rightarrow focus on this for the rest of the talk

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Kinematics and Lorentz decomposition

- amplitude $\mathcal{M}\left(\pi^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \gamma\right)=\epsilon_{\mu}^{*} \mathcal{M}^{\mu}$
- charged channel ($\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \gamma$) also needed, but related to mixed channel through isospin symmetry
- BTT decomposition $\mathcal{M}^{\mu}=\sum_{i=1}^{6} \hat{T}_{i}^{\mu} \mathcal{M}_{i}$ leads 3 Tarrach redundancies

$$
\begin{array}{ll}
\hat{T}_{1}^{\mu}=p_{2}^{\mu}\left(p_{3} \cdot q\right)-p_{3}^{\mu}\left(p_{2} \cdot q\right), & \hat{T}_{2}^{\mu}=p_{3}^{\mu}\left(p_{1} \cdot q\right)-p_{1}^{\mu}\left(p_{3} \cdot q\right), \\
\hat{T}_{3}^{\mu}=p_{1}^{\mu}\left(p_{2} \cdot q\right)-p_{2}^{\mu}\left(p_{1} \cdot q\right), & \hat{T}_{4}^{\mu}=q^{\mu}\left(p_{1} \cdot q\right)-p_{1}^{\mu} q^{2} \\
\hat{T}_{5}^{\mu}=q^{\mu}\left(p_{2} \cdot q\right)-p_{2}^{\mu} q^{2}, & \hat{T}_{6}^{\mu}=q^{\mu}\left(p_{3} \cdot q\right)-p_{3}^{\mu} q^{2}
\end{array}
$$

- 5-particle process has 10 kinematic invariants, 5 fixed by on-shell conditions

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Soft-photon limit and singularities

- in principle only $\lim _{q \rightarrow 0} \frac{\partial}{\partial q_{\nu}} \mathcal{M}^{\mu}$ needed
- Tarrach redundancies drop out in this limit and a 2D basis exists
- but: limit does not exist due to

$$
\rightarrow \text { split } \mathcal{M}^{\mu}=\mathcal{M}_{\text {sing }}^{\mu}+\mathcal{M}_{\text {reg }}^{\mu}
$$

- ambiguity to shift finite terms between $\mathcal{M}_{\text {sing }}^{\mu}$ and $\mathcal{M}_{\text {reg }}^{\mu}$
- for $\mathcal{M}_{\text {reg }}^{\mu}$ the limit can be performed and the problem reduces to 4-point kinematics \rightarrow Mandelstam variables
- singularities cancel when plugged into HLbL
- need gauge-invariant non-perturbative definition of $\mathcal{M}_{\text {sing }}^{\mu}$

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Definition of $\mathcal{M}_{\text {sing }}^{\mu}$

- Low's theorem: terms of order \boldsymbol{q}^{-1} obtainable from with scalar QED vertex for soft photon,

Low, Phys. Rev. 1958 terms of order \boldsymbol{q}^{0} fixed by imposing Ward identity \rightarrow terms up to order q^{0} given in terms of $\pi \pi \rightarrow \pi \pi$

- but: $\lim _{q \rightarrow 0} \frac{\partial}{\partial q_{\nu}}\left(\mathcal{M}^{\mu}-\mathcal{M}_{\text {sing }}^{\mu}\right)$ still does not exist due to terms like $q^{\mu} \frac{p_{i} \cdot q}{p_{j} \cdot q}$ (of order q^{1}, but limit depends on direction of q)
\rightarrow need definition of $\mathcal{M}_{\text {sing }}^{\mu}$ that includes all singular terms
- achieved from unitarity with a single-pion intermediate state \rightarrow also only depends on $\pi \pi \rightarrow \pi \pi$ amplitude \mathcal{T}

$$
\begin{aligned}
\mathcal{M}_{\operatorname{sing}}^{\mu} & =F_{\pi}^{V}\left(q^{2}\right)\left(\frac{\left(2 p_{3}+q\right)^{\mu}}{\left(p_{3}+q\right)^{2}-m_{\pi}^{2}} \mathcal{T}(s, \tilde{t}-u)-\frac{\left(2 p_{4}+q\right)^{\mu}}{\left(p_{4}+q\right)^{2}-m_{\pi}^{2}} \mathcal{T}(s, t-\tilde{u})-2\left(p_{1}-p_{2}\right)^{\mu} \Delta \mathcal{T}\right) \\
\Delta \mathcal{T} & =\frac{\mathcal{T}(s, \tilde{t}-u)-\mathcal{T}(s, t-\tilde{u})}{\tilde{t}-u-t+\tilde{u}}
\end{aligned}
$$

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Unitarity relation and Cancellation of singularities

- two-pion intermediate states in unitarity relations involve $\pi \pi \rightarrow \gamma \pi \pi$ as a sub-process (similarly in t - and u-channels)

\rightarrow contains the soft-singular piece $\mathcal{M}_{\text {sing }}^{\mu}$
- checked that sum of cuts reproduces the singularities of $\operatorname{Im}^{\pi \pi} \mathcal{M}_{\text {sing }}^{\mu}$ \rightarrow finite difference is $\operatorname{Im}^{\pi \pi} \mathcal{M}_{\text {reg }}^{\mu}$ and can be projected onto basis Lorentz structures in limit $q \rightarrow 0$

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

 Imaginary parts- t-channel imaginary part of 1 scalar function

$$
\begin{aligned}
\operatorname{Im}_{t}^{\pi^{-}} \pi^{0} \overline{\mathcal{M}}_{1}= & \frac{1}{8}
\end{aligned} \begin{aligned}
16 \pi^{2} & \operatorname{Re} \sum_{l}(2 l+1) \int \mathrm{d} \Omega_{t}^{\prime}\left(t_{l}^{1 *}(t)+t_{l}^{2 *}(t)\right) P_{l}\left(z_{t}^{\prime}\right) \\
& \times\left[\left(2 \frac{z_{t}^{\prime}-z_{t}^{\prime \prime}}{1-z_{t}}+\frac{z_{t}^{\prime}+z_{t}^{\prime \prime}}{1+z_{t}}-5\right) \overline{\mathcal{M}}_{1}\left(t, z_{t}^{\prime \prime}\right)+\left(\frac{z_{t}^{\prime}+z_{t}^{\prime \prime}}{1+z_{t}}-1\right) \overline{\mathcal{M}}_{2}\left(t, z_{t}^{\prime \prime}\right)\right] \\
& +\Delta_{1}
\end{aligned}
$$

- Δ_{1} finite remainder of terms involving $\mathcal{M}_{\text {sing }}^{\mu}$ \rightarrow only depends on $\pi \pi \rightarrow \pi \pi$ partial waves t_{l}^{i}
- s-channel imaginary parts depend on both s - and t-channel amplitudes
- have checked imaginary parts at one loop in χ PT

The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Dispersion relations

- from fixed-s dispersion relations for $\overline{\mathcal{M}}_{i}$, make ansatz for partialwave expansion in t-channel: $\overline{\mathcal{M}}_{i}\left(t, z_{t}\right)=\sum_{l=0}^{\infty}(2 l+1) g_{l}^{i}(t) P_{l}\left(z_{t}\right)$
- allows to perform angular integral
- considering $\pi \pi$ scattering only up to D-waves truncates tower of $g i$
- project dispersion relation onto partial waves to obtain coupled integral equations for $g_{l}^{j}(t) \rightarrow$ Roy-Steiner equations

$$
g_{j}^{i}(t)=\sum_{j^{\prime}, l} \sum_{i^{\prime}=1}^{2} \frac{1}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d t^{\prime} K_{j j^{\prime}}^{i j^{\prime}}\left(t, t^{\prime}\right) \operatorname{Re}\left[\left(t_{l}^{1 *}\left(t^{\prime}\right)+t_{l}^{2 *}\left(t^{\prime}\right)\right) g_{j^{\prime}}^{i^{\prime}}\left(t^{\prime}\right)\right]+\Delta_{j}^{i}(t)
$$

- similar equations exist for s-channel partial waves (include integrals over t-channel partial waves g_{l}^{i})
- solving this will complete the dispersive reconstruction of the sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Conclusions

- discrepancy between measurement and Standard Model prediction of a_{μ} could be due to New Physics: higher precision needed
- established dispersive formalism for HLbL very successful for most important contributions
- complementary dispersive approach promises to overcome roadblocks in inclusion of higher-spin intermediate states
- important steps towards complete calculation in new approach already achieved:
- unitarity relations
- cancellation of infrared divergences
- new dispersion relations for $\pi \pi \rightarrow \gamma \pi \pi$

Outlook

- solution of Roy-Steiner equations will complete study of $\pi \pi \rightarrow \gamma \pi \pi$
- with $\pi \pi \rightarrow \gamma \pi \pi$ as input, similar study possible for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi \gamma$
- more complicated Lorentz structure
- but: many similarities concerning kinematics, cancellation of IR singularities, phase-space integrals, ... expected
- this will allow for a complete treatment of all 1- and 2-particle intermediate states in HLbL with arbitrary angular momenta
- study in detail reshuffling of contributions between the 2 dispersive approaches to HLbL
- learn how to combine them to include as many contributions as possible
- study dispersive representation of pQCD quark loop to incorporate short-distance constraints

Thank you for your attention!

Backup

Addition of cuts

- suppress additional arguments and use simplified notation $\operatorname{Im} \hat{\Pi}_{i}\left(q_{3}^{2}\right)=\lim _{s \rightarrow q_{3}^{2}} \check{\Pi}_{i}\left(s, q_{3}^{2}\right)$ with $s=\left(q_{3}+q_{4}\right)^{2}$

$$
\begin{aligned}
& \operatorname{Im} \hat{\Pi}_{i}(s)=\lim _{q_{3}^{2} \rightarrow s} \frac{\check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}+i \epsilon\right)-\check{\Pi}_{i}\left(s-i \epsilon, q_{3}^{2}-i \epsilon\right)}{2 i} \\
& =\lim _{q_{3}^{2} \rightarrow s}\left[\frac{\check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}+i \epsilon\right)-\check{\Pi}_{i}\left(s-i \epsilon, q_{3}^{2}+i \epsilon\right)}{2 i}\right. \\
& \left.+\frac{\check{\Pi}_{i}\left(s-i \epsilon, q_{3}^{2}+i \epsilon\right)-\check{\Pi}_{i}\left(s-i \epsilon, q_{3}^{2}-i \epsilon\right)}{2 i}\right] \\
& =\lim _{q_{3}^{2} \rightarrow s}\left[\frac{\check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}+i \epsilon\right)-\check{\Pi}_{i}\left(s-i \epsilon, q_{3}^{2}+i \epsilon\right)}{2 i}\right. \\
& \left.+\left(\frac{\check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}+i \epsilon\right)-\check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}-i \epsilon\right)}{2 i}\right)^{*}\right] \\
& =: \lim _{q_{3}^{2} \rightarrow s}\left[\operatorname{Im}_{s} \check{\Pi}_{i}\left(s, q_{3}^{2}+i \epsilon\right)+\operatorname{Im}_{3} \check{\Pi}_{i}\left(s+i \epsilon, q_{3}^{2}\right)^{*}\right]
\end{aligned}
$$

