Dispersive Approach(es) to Hadronic Light-by-Light Scattering for the Muon $g - 2$

Jan Lüdtke

University of Vienna

Seminar on Particle Physics, June 03, 2022
Outline

1. Experiment vs. Standard Model determination of the muon $g - 2$: hadronic contributions

2. Dispersive approaches to hadronic light-by-light
 - Dispersion relations in four-point kinematics (present approach)
 - Dispersion relations in triangle kinematics (new approach)
 → The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

3. Conclusions and outlook

in collaboration with Massimiliano Procura and Peter Stoffer
Introduction
The anomalous magnetic moment of the muon

- **Dirac equation** gives $g_f = 2$ for fermions

- for leptons: permille-level deviations due to **radiative corrections**
 \rightarrow define $a_l = \frac{g_l - 2}{2}$

- **high accuracy** in experiments and calculations (for electron and muon) allows for **strong tests** of the SM

- a_e prediction limited by knowledge of α_{QED} and no clear tension with experiment

- **different** for a_μ
Introduction

Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value × 10^{11}</th>
<th>Error × 10^{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLB L LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLB L NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

- combination of final BNL E821 result and run 1 of new FNAL E989
- experimental error expected to reduce to 16×10^{-11} in near future

Introduction

Measurement and Standard Model prediction for a_{μ}

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value $\times 10^{11}$</th>
<th>error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

- dominated by
- known up to 5 loops
- negligible uncertainty

Introduction
Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value ($\times 10^{11}$)</th>
<th>error ($\times 10^{11}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

- much smaller due to approximate scaling
 $\sim \frac{m_\mu^2}{\Lambda^2}$
- 2 loop calculation + RGE estimate of 3 loop
- model estimate for mixed EW/QCD
- small uncertainty

Introduction

Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value $\times 10^{11}$</th>
<th>error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

- related to $\sigma(e^+e^- \rightarrow \text{hadrons})$ by **unitarity**
- this data-driven evaluation is in tension with one lattice calculation: $7075(55)$

BMW collab., Science 2020

- **largest uncertainty**
Introduction

Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value $\times 10^{11}$</th>
<th>error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

- diagrams like
- non-negligible at current precision, but well known
Introduction

Measurement and Standard Model prediction for a_{μ}

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value $\times 10^{11}$</th>
<th>Error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

more complicated than HVP due to more legs attached to blob

but: 10% precision sufficient

number results from average between lattice and phenomenology (agree within uncertainties)

Introduction

Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value $\times 10^{11}$</th>
<th>error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116 592 061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116 584 718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>-98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116 591 810</td>
<td>43</td>
</tr>
</tbody>
</table>

Introduction

Measurement and Standard Model prediction for a_μ

<table>
<thead>
<tr>
<th>Contribution</th>
<th>value $\times 10^{11}$</th>
<th>error $\times 10^{11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>116,592,061</td>
<td>41</td>
</tr>
<tr>
<td>QED</td>
<td>116,584,718.931</td>
<td>0.104</td>
</tr>
<tr>
<td>Electroweak</td>
<td>153.6</td>
<td>1.0</td>
</tr>
<tr>
<td>HVP LO</td>
<td>6931</td>
<td>40</td>
</tr>
<tr>
<td>HVP NLO</td>
<td>−98.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HVP NNLO</td>
<td>12.4</td>
<td>0.1</td>
</tr>
<tr>
<td>HLbL LO</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>HLbL NLO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum SM</td>
<td>116,591,810</td>
<td>43</td>
</tr>
</tbody>
</table>

- sum **differs** by $251(59) \times 10^{-11}$ (4.2 σ) **from experiment**
- poorly understood effect on experimental or theory side or **new physics**?

Introduction

Current status in HLbL

• WP number is **combination** of

\[a_{\mu, \text{phen}}^{\text{HLbL}} = 92(19) \times 10^{-11}, \quad a_{\mu, \text{lat}}^{\text{HLbL}} = 79(35) \times 10^{-11} + c\text{-loop} \]

• both **compatible** with latest lattice result

\[a_{\mu, \text{lat}}^{\text{HLbL}} = 106.8(14.7) \times 10^{-11} + c\text{-loop} \]

• **data-driven approach** allowed for the first time to model-independently define individual contributions and assign numbers with small and reliable uncertainties

 Colangelo, Hoferichter, Procura, Stoffer (CHPS) 2015, 2017

• sub-dominant contributions from **heavier resonances** can currently only be estimated and have **larger uncertainties** due to
 ▶ lack of (precise) **data input**
 ▶ **conceptual difficulties** in the present framework → will be addressed in this talk
Review of present approach

- 4-point function, tensor structures and master formula
- Dispersion relations in general kinematics
- Results and open questions
Tensor structures
Naive decomposition and Ward identities

• have to describe **hadronic correlator** of 4 photons/em-currents

\[
\Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = -i \int d^4x \, d^4y \, d^4z \, e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \times \langle 0 | T\{j_{em}^\mu(x)j_{em}^\nu(y)j_{em}^\lambda(z)j_{em}^\sigma(0)\} | 0 \rangle
\]

• **in general** there are 138 tensor structures consisting of \(q_i^\alpha \) and \(g^{\alpha\beta} \)

\[
\Pi_{\mu\nu\lambda\sigma} = \sum_{i=1}^{138} L_i^{\mu\nu\lambda\sigma} \Xi_i
\]

• **Ward identities** put 95 linear constraints on scalar functions \(\Xi_i \)

\[
\{ q_1^\mu, q_2^\nu, q_3^\lambda, q_4^\sigma \} \Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = 0
\]
Tensor structures
BTT recipe and ambiguities

• **projection** gives basis for subspace fulfilling the Ward identities, but with **singularities** in the tensor structures → problematic for dispersion relations

• singularities can be **removed**
 but: set becomes **incomplete** at specific kinematic points

• **add** non-singular tensor structures to obtain generating set at all kinematic points

\[\Pi_{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_{i}^{\mu\nu\lambda\sigma} \Pi_{i} \]

but: BTT set \(T_{i}^{\mu\nu\lambda\sigma} \) is **overcomplete**, which implies **ambiguities** in the scalar coefficient functions \(\Pi_{i} \)
Tensor structures

Limit $q \to 0$ and Master formula

- for a^{HLbL}_{μ} we need **two-loop integral** over

\[
\lim_{q_4 \to 0} \frac{\partial}{\partial q_4} \Pi_{\mu\nu\lambda\sigma}
\]

- 35 linear combinations of the 54 structures **vanish** in this limit

- 5 of the 8 integrals can be performed in **full generality**

- due to **symmetry** only 12 linear combinations of scalar functions in the limit $q_4 \to 0$ enter the master formula

\[
a^{\text{HLbL}}_{\mu} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)
\]

- $Q_i = \sqrt{-q_i^2}$, $\tau = \tau(Q_1, Q_2, Q_3)$

- kernel functions T_i **known** analytically

→ aim of dispersive approach(es) is to **reconstruct** $\bar{\Pi}_i$
Consider scalar function $F(s)$ that is analytic apart from a branch cut on real axis.

\[F(s) = \frac{1}{2\pi i} \oint_{C} ds' s'^{-1} F(s') \]

where C is a contour that encloses the branch cut from s_{thr}. If $F(s)$ falls off sufficiently fast, only C^+ and C^- contribute.

\[F(s) = \frac{1}{2\pi i} \int_{s_{\text{thr}}}^{s_{\text{thr}}} ds' \text{disc} F(s') \]

\[\text{disc} F(s) = F(s + i\epsilon) - F(s - i\epsilon) = 2i \text{Im} F(s) \]
Dispersion relations for low-energy hadronic processes

• Consider scalar function $F(s)$ that is analytic apart from branch cut on real axis

• Cauchy’s Theorem:

 $$F(s) = \frac{1}{2\pi i} \oint_{\Gamma} ds' \frac{F(s')}{s'-s}$$

Jan Lüdtke (Uni Wien)
Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$ that is analytic apart from branch cut on real axis
- Cauchy’s Theorem:
 \[F(s) = \frac{1}{2\pi i} \oint \frac{F(s')}{s'-s} \, ds' \]
- deform integration contour

Jan Lüdtke (Uni Wien)
Dispersion relations for low-energy hadronic processes

- Consider scalar function $F(s)$ that is analytic apart from \textbf{branch cut} on real axis

- Cauchy’s Theorem:
 $$F(s) = \frac{1}{2\pi i} \oint_{\Gamma} ds' \frac{F(s')}{s' - s}$$

- deform integration contour

- If F falls off \textbf{sufficiently fast}, only C_+ and C_- contribute

 $$F(s) = \frac{1}{2\pi i} \int_{s_{\text{thr}}}^{\infty} ds' \text{disc} F(s'),$$

 $$\text{disc} F(s) = F(s + i\epsilon) - F(s - i\epsilon) = 2i\text{Im} F(s)$$
Dispersion relations for low-energy hadronic processes

Unitarity relations

- imaginary part determined from **unitarity** of the S-matrix ($SS^\dagger = 1$)
- plug in $S = 1 + iT$: $i(T^\dagger - T) = TT^\dagger$
- T-invariance implies $T^T = T$ and thus $i(T^\ast - T) = 2\text{Im}T = TT^\ast$
- sandwiching this between states gives
 \[
 \text{Im} \langle f | T | i \rangle = \sum_s \langle f | T | s \rangle \langle s | T | i \rangle^\ast
 \]
- can be visualized by **unitarity diagrams**

- at **low energies**, light states with low multiplicity **dominate** in sum
Dispersion relations in four-point kinematics
Application to HLbL

- write dispersion relations for Π_i (overcomplete generating set free of kinematic singularities) in s, t, u for fixed q_i^2

- single out lightest states in unitarity relations in each channel
 \rightarrow imaginary parts given in terms of (simpler) sub-processes

- allows model-independent definition of individual contributions

- use experimental data on sub-processes to evaluate contributions to a_{μ}^{HLbL} due to light intermediate states
 \rightarrow reliable uncertainty estimate for each contribution
Dispersion relations in four-point kinematics

Topologies

• focus on 1 and 2 particle intermediates states

\[\begin{array}{c}
\begin{array}{c}
q_1 \quad \text{\emph{\parbox{1.2in}{\centering \includegraphics[width=1.2in]{diagram1}}}} \\
q_2 \quad q_3 \\
\end{array}
= \begin{array}{c}
\begin{array}{c}
q_1 \quad \text{\emph{\parbox{1.2in}{\centering \includegraphics[width=1.2in]{diagram2}}}} \\
q_2 \quad q_3 \\
\end{array}
+ \begin{array}{c}
\begin{array}{c}
q_1 \quad \text{\emph{\parbox{1.2in}{\centering \includegraphics[width=1.2in]{diagram3}}}} \\
q_2 \quad q_3 \\
\end{array}
+ \begin{array}{c}
\begin{array}{c}
q_1 \quad \text{\emph{\parbox{1.2in}{\centering \includegraphics[width=1.2in]{diagram4}}}} \\
q_2 \quad q_3 \\
\end{array}
+ \ldots
\end{array}
\end{array}
\end{array}
\right]

• crossed diagrams not shown

• s-channel \(\pi^0 \) pole contributes to only 1 scalar function

\[
\Pi_1^{\pi^0 - \text{pole}} = \frac{F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2)F_{\pi^0 \gamma^* \gamma^*}(q_3^2, q_4^2)}{s - m_{\pi}^2}
\]

\[
\begin{align*}
q_4 \to 0 \quad & F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2)F_{\pi^0 \gamma^* \gamma^*}(q_3^2, 0) \\
& \to \frac{F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2)}{q_3^2 - m_{\pi}^2}
\end{align*}
\]
Dispersion relations in four-point kinematics

Results and current status

• contributions of 1 and 2 pseudoscalar states under **good control**
 ▶ pseudoscalar poles: $93.8(4.0) \times 10^{-11}$
 ▶ π- and K-loops: $-16.4(2) \times 10^{-11}$
 - CHPS, JHEP 2017, WP 2020
 ▶ S-wave $\pi\pi$ rescattering: $-8(1) \times 10^{-11}$
 - CHPS, JHEP 2017
 ▶ huge improvement in **precision** and **reliability** compared to earlier (model) estimates

• full description of 3 particle and higher intermediate states very challenging
 → describe through resonances in **narrow width approximation**

• but: data very **scarce** → only rough estimates possible, mostly based on models

• at high energies pQCD and OPE used to constrain the Π_i
Dispersion relations in four-point kinematics
Singly on-shell basis and sum rules

• sufficient to consider $q_4^2 = 0$

• in this limit a Lorentz basis free of kinematic singularities in s, t, u exists ($\check{\Pi}_i$)

• $\check{\Pi}_i$ have different mass dimensions
 → $\check{\Pi}_i$ with lower mass dimension fall off faster at high energies
 → implies sum rules of form $\int ds' \text{Im}\check{\Pi}_i(s') = 0$

• sum rules guarantee basis independence of a^HLbL_μ

• but: sum rules only fulfilled for (infinite) sum over intermediate states
 → individual contributions basis dependent

• exception: pseudoscalar poles and loops fulfill sum rules individually
Dispersion relations in four-point kinematics

Current limitations due to singularities in photon virtualities

• in addition: $\tilde{\Pi}_i$ have singularities in q_i^2
 \rightarrow residues vanish due to sum rules for (infinite) sum over intermediate states

• poles lead to non-convergent master formula integrals for individual contributions
 \rightarrow must subtract poles using same prescription for all contributions
 \rightarrow additional ambiguity

• in original basis this affects contributions with spin ≥ 1

• by basis change it can be avoided for axial-vector mesons

• without additional sum rules singularities are unavoidable for intermediate states with spin ≥ 2

Colangelo et al., EPJC 2021
How can we overcome this limitation?

→ Dispersion relations at $q_4 = 0$
Dispersion relations in triangle kinematics

General idea and advantages

- has been realized that dispersion relations can also be written at $q_4 \to 0$

- at $q_4 \to 0$, all **ambiguities disappear** and a Lorentz basis free of kinematic singularities ($\hat{\Pi}_i$) exists

- dispersion relations for them **avoid ambiguities** coming from subtraction of spurious poles

- will allow to include D-wave $\pi\pi$ rescattering, tensor-meson poles, ...
Dispersion relations in triangle kinematics

Addition of cuts

- suppress additional arguments and use simplified notation

\[\hat{\Pi}_i(q_3^2) = \lim_{s \to q_3^2} \check{\Pi}_i(s, q_3^2) \text{ with } s = (q_3 + q_4)^2 \]

\[
\text{Im} \hat{\Pi}_i(q_3^2) = \lim_{s \to q_3^2} \left[\text{Im}_s \check{\Pi}_i(s, q_3^2 + i\epsilon) + \text{Im}_3 \check{\Pi}_i(s + i\epsilon, q_3^2)^\ast \right]
\]

\[
\text{Im}
\begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{bmatrix}
= \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{bmatrix}
+ \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4
\end{bmatrix}^\ast
\]

→ s- and q_3^2-channel cuts have to be added
Dispersion relations in triangle kinematics

Topologies and sub-processes

• s- and q^2_3-channel cuts with 1 and 2 pion intermediate states

\[q_1 \quad = \quad q_1 + q_2 + q_3 + q_4 \]

→ all sub-processes except for $\gamma^* \gamma^* \rightarrow \pi\pi\gamma$ well-known
→ cancellation of infrared divergences in $\pi^+\pi^-$ intermediate states between s- and q^2_3-cuts demonstrated

• s-channel resonance contributions given in terms of transition form factors (including axials and tensor mesons . . .)
Dispersion relations in triangle kinematics

Topologies and sub-processes

• s- and q_3^2-channel cuts with 1 and 2 pion intermediate states

→ all sub-processes except for $\gamma^*\gamma^* \rightarrow \pi\pi\gamma$ well-known

• again 2 different (s-channel) cuts

→ all sub-processes except for $\pi\pi \rightarrow \pi\pi\gamma$ well-known
The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

- derivation of dispersive description to be inserted into HLbL in triangle kinematics

- shares many features with $\gamma^*\gamma^* \rightarrow \pi\pi\gamma$ and HLbL

- Lorentz structure much simpler

→ focus on this for the rest of the talk
The sub-process $\pi \pi \rightarrow \gamma \pi \pi$

Kinematics and Lorentz decomposition

- amplitude $M(\pi^0 \pi^0 \rightarrow \pi^+ \pi^- \gamma) = \epsilon^{*}_\mu M^\mu$

- charged channel $(\pi^+ \pi^- \rightarrow \pi^+ \pi^- \gamma)$ also needed, but related to mixed channel through isospin symmetry

 Kuhn 1999, Ecker & Unterdorfer 2002

- **BTT decomposition** $M^\mu = \sum_{i=1}^{6} \hat{T}^\mu_i M_i$ leads 3 Tarrach redundancies

 \[
 \begin{align*}
 \hat{T}^\mu_1 &= p^\mu_2 (p_3 \cdot q) - p^\mu_3 (p_2 \cdot q), & \hat{T}^\mu_2 &= p^\mu_3 (p_1 \cdot q) - p^\mu_1 (p_3 \cdot q), \\
 \hat{T}^\mu_3 &= p^\mu_1 (p_2 \cdot q) - p^\mu_2 (p_1 \cdot q), & \hat{T}^\mu_4 &= q^\mu (p_1 \cdot q) - p^\mu_1 q^2, \\
 \hat{T}^\mu_5 &= q^\mu (p_2 \cdot q) - p^\mu_2 q^2, & \hat{T}^\mu_6 &= q^\mu (p_3 \cdot q) - p^\mu_3 q^2
 \end{align*}
 \]

- 5-particle process has 10 kinematic invariants, 5 fixed by on-shell conditions
The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

Soft-photon limit and singularities

- in principle only $\lim_{q \rightarrow 0} \frac{\partial}{\partial q_{\nu}} M^\mu$ needed
- Tarrach redundancies drop out in this limit and a 2D basis exists
- **but:** limit *does not exist* due to
 \[p_1 \quad q \quad p_3 \]
 \[p_2 \quad p_4 \]

 \[\rightarrow \textbf{split} \quad M^\mu = M^\mu_{\text{sing}} + M^\mu_{\text{reg}} \]

- ambiguity to shift finite terms between M^μ_{sing} and M^μ_{reg}
- for M^μ_{reg} the limit can be performed and the problem reduces to
 4-point kinematics \[\rightarrow \text{Mandelstam variables} \]
- singularities cancel when plugged into HLbL
- need gauge-invariant non-perturbative definition of M^μ_{sing}
The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

Definition of $\mathcal{M}_{\text{sing}}^\mu$

- **Low's theorem**: terms of order q^{-1} obtainable from

 with scalar QED vertex for soft photon,

 terms of order q^0 fixed by imposing Ward identity

 \rightarrow terms up to order q^0 given in terms of $\pi\pi \rightarrow \pi\pi$

- but: $\lim_{q \rightarrow 0} \frac{\partial}{\partial q^\nu} (\mathcal{M}^\mu - \mathcal{M}_{\text{sing}}^\mu)$ still does **not exist** due to terms like
 $q^\mu \frac{p_i \cdot q}{p_j \cdot q}$ (of order q^1, but limit depends on **direction** of q)

 \rightarrow need definition of $\mathcal{M}_{\text{sing}}^\mu$ that includes **all** singular terms

- achieved from **unitarity** with a single-pion intermediate state

 \rightarrow also only depends on $\pi\pi \rightarrow \pi\pi$ amplitude \mathcal{T}

\[
\mathcal{M}_{\text{sing}}^\mu = F_V^\pi(q^2) \left(\frac{(2p_3 + q)^\mu}{(p_3 + q)^2 - m_\pi^2} \mathcal{T}(s, \tilde{t} - u) - \frac{(2p_4 + q)^\mu}{(p_4 + q)^2 - m_\pi^2} \mathcal{T}(s, t - \tilde{u}) - 2(p_1 - p_2)^\mu \Delta \mathcal{T} \right)
\]

\[
\Delta \mathcal{T} = \frac{\mathcal{T}(s, \tilde{t} - u) - \mathcal{T}(s, t - \tilde{u})}{\tilde{t} - u - t + \tilde{u}}
\]
The sub-process $\pi\pi \to \gamma\pi\pi$

Unitarity relation and Cancellation of singularities

- two-pion intermediate states in unitarity relations involve $\pi\pi \to \gamma\pi\pi$ as a \textbf{sub-process} (similarly in t- and u-channels)

\[p_1 \quad q \quad p_3 \]
\[p_2 \quad p_4 \]
\[p_1 \quad q \quad p_3 \]
\[p_2 \quad p_4 \]

\[= \]

\[p_1 \quad q \quad p_3 \]
\[p_2 \quad p_4 \]
\[p_1 \quad q \quad p_3 \]
\[p_2 \quad p_4 \]

\[= \quad + \quad \ldots \]

\[\to \] contains the \textbf{soft-singular} piece $\mathcal{M}^\mu_{\text{sing}}$

- checked that \textbf{sum of cuts} reproduces the singularities of $\text{Im}\pi\pi\mathcal{M}^\mu_{\text{sing}}$ \to \textbf{finite difference} is $\text{Im}\pi\pi\mathcal{M}^\mu_{\text{reg}}$ and can be projected onto basis Lorentz structures in limit $q \to 0$
The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

Imaginary parts

- t-channel imaginary part of 1 scalar function

\[
\text{Im}_{t}^{\pi-\pi^0} \tilde{M}_1 = \frac{1}{8} \sqrt{1 - \frac{4m_{\pi}^2}{t}} \Re \sum_l (2l + 1) \int d\Omega_l(t_1^1(t) + t_2^2(t)) P_l(z'_t) \\
\times \left[\left(2 \frac{z'_t - z''_t}{1 - z_t} + \frac{z'_t + z''_t}{1 + z_t} - 5 \right) \tilde{M}_1(t, z''_t) + \left(\frac{z'_t + z''_t}{1 + z_t} - 1 \right) \tilde{M}_2(t, z''_t) \right] \\
+ \Delta_1
\]

- Δ_1 finite remainder of terms involving M_{sing}^μ \\
 \rightarrow only depends on $\pi\pi \rightarrow \pi\pi$ partial waves t_i^j

- s-channel imaginary parts depend on both s- and t-channel amplitudes

- have checked imaginary parts at one loop in χ^PT
The sub-process $\pi\pi \rightarrow \gamma\pi\pi$

Dispersion relations

- from **fixed-s dispersion relations** for \bar{M}_i, make ansatz for **partial-wave expansion** in t-channel: $\bar{M}_i(t, z_t) = \sum_{l=0}^{\infty} (2l + 1)g^i_l(t)P_l(z_t)$

 - allows to perform angular integral
 - considering $\pi\pi$ scattering only up to D-waves truncates tower of g^i_l

- **project** dispersion relation onto partial waves to obtain **coupled integral equations** for $g^i_l(t) \rightarrow$ Roy–Steiner equations

\[
g^i_l(t) = \sum_{j', l} \sum_{i'=1}^{2} \frac{1}{\pi} \int_{4m^2_\pi}^{\infty} dt' K_{jj'}^{ii'}(t, t') \text{Re}[(t^1_{i'}(t') + t^2_{i'}(t')) g^j_{i'}(t')] + \Delta^i_l(t)
\]

- **similar** equations exist for s-channel partial waves (include integrals over t-channel partial waves g^i_l)

- solving this will complete the dispersive reconstruction of the sub-process $\pi\pi \rightarrow \gamma\pi\pi$
Conclusions

• **discrepancy** between measurement and Standard Model prediction of \(a_\mu\) could be due to **New Physics**: higher precision needed

• established dispersive formalism for HLbL **very successful** for most important contributions

• complementary dispersive approach **promises** to overcome roadblocks in inclusion of higher-spin intermediate states

• important steps towards complete calculation in new approach **already achieved**:
 - unitarity relations
 - cancellation of infrared divergences
 - new dispersion relations for \(\pi \pi \rightarrow \gamma \pi \pi\)
Outlook

• solution of Roy–Steiner equations will **complete** study of $\pi\pi \rightarrow \gamma\pi\pi$

• with $\pi\pi \rightarrow \gamma\pi\pi$ as input, **similar study** possible for $\gamma^*\gamma^* \rightarrow \pi\pi\gamma$
 ▶ more complicated Lorentz structure
 ▶ but: **many similarities** concerning kinematics, cancellation of IR singularities, phase-space integrals, ... expected

• this will allow for a complete treatment of all 1- and 2-particle intermediate states in HLbL with **arbitrary angular momenta**

• study in detail **reshuffling** of contributions between the 2 dispersive approaches to HLbL
 ▶ learn how to combine them to include as many contributions as possible

• study dispersive representation of pQCD quark loop to **incorporate short-distance constraints**
 → Michael’s work
Thank you for your attention!
Backup
Addition of cuts

- suppress additional arguments and use simplified notation

\[\text{Im} \hat{\Pi}_i(q_3^2) = \lim_{s \to q_3^2} \tilde{\Pi}_i(s, q_3^2) \]

\[\text{Im} \hat{\Pi}_i(s) = \lim_{q_3^2 \to s} \frac{\tilde{\Pi}_i(s + i \epsilon, q_3^2 + i \epsilon) - \tilde{\Pi}_i(s - i \epsilon, q_3^2 - i \epsilon)}{2i} \]

\[= \lim_{q_3^2 \to s} \left[\frac{\tilde{\Pi}_i(s + i \epsilon, q_3^2 + i \epsilon) - \tilde{\Pi}_i(s - i \epsilon, q_3^2 + i \epsilon)}{2i} \right. \]

\[+ \left. \frac{\tilde{\Pi}_i(s - i \epsilon, q_3^2 + i \epsilon) - \tilde{\Pi}_i(s - i \epsilon, q_3^2 - i \epsilon)}{2i} \right] \]

\[= \lim_{q_3^2 \to s} \left[\frac{\tilde{\Pi}_i(s + i \epsilon, q_3^2 + i \epsilon) - \tilde{\Pi}_i(s - i \epsilon, q_3^2 + i \epsilon)}{2i} \right. \]

\[+ \left. \left(\frac{\tilde{\Pi}_i(s + i \epsilon, q_3^2 + i \epsilon) - \tilde{\Pi}_i(s + i \epsilon, q_3^2 - i \epsilon)}{2i} \right)^* \right] \]

\[=: \lim_{q_3^2 \to s} \left[\text{Im}_s \tilde{\Pi}_i(s, q_3^2 + i \epsilon) + \text{Im}_3 \tilde{\Pi}_i(s + i \epsilon, q_3^2)^* \right] \]