

Collider Physics at the Precision Frontier: The Higgs sector under scrutiny

Gudrun Heinrich

Institute for Theoretical Physics, Karlsruhe Institute of Technology

Particle Physics Seminar Universität Wien

an artists's view of the Higgs boson Sakkmesterke Shutterstock.com

April 5, 2022

www.kit.edu

Motivation

The Standard Model of Particle Physics is unlikely to be the end of the story

LHCb (CERN)

Motivation

Current high energy frontier

Current high energy frontier

at current energy frontier, no hints of new physics

Overview of CMS cross section results

18 pb⁻¹ - 138 fb⁻¹ (7,8,13 TeV)

Current high energy frontier

at current energy frontier, no hints of new physics

Overview of CMS cross section results

however, this is a question of precision

The need for precise predictions

large spread in theory predictions based on different parton distribution functions

top quark pairs at large invariant mass

best fit includes anomalous couplings

Higgs couplings

Higgs couplings

enormous experimental progress

High-Luminosity LHC

Low-luminosity LHC

Higgs production at HL-LHC: expected precision

Report, ellow 00134 902 $\overline{}$ 뿍 Ξ

Higgs production at HL-LHC: expected precision

Report, ellow 00134 902 $\overline{}$ 뿍 Ξ

Science (no) fiction?

Future collider plans

Higgs couplings at future colliders

European Strategy Physics Briefing Book 1910.11775

Higgs-boson self coupling

Higgs@FC WG September 2019

European Strategy Physics Briefing Book 1910.11775

How to increase the precision of the predictions?

artwork by G.Luisoni

fixed order calculations (production and decay)

reduce scale uncertainties

 μ_r, μ_f -dependence

reduce parametric uncertainties (couplings, masses)

resummation

reduce uncertainties in particular kinematic regions

Perturbation theory

 $\alpha_s(M_Z) \simeq 0.118 \qquad \mathcal{O}(10\%) \qquad \qquad \mathcal{O}(1\%)$

electroweak corrections: $\alpha/\alpha_s \approx 0.1 \Rightarrow$ smaller, but beware of large terms like $\log\left(\frac{M_Z^2}{\hat{c}}\right)$

scale dependence: due to truncation of perturbative series — measure of missing higher orders

$$\sigma = \alpha_s^k(\mu_r) \left(\sigma^{LO}(\mu_f) + \alpha_s(\mu_r) \sigma^{NLO}(\mu_r, \mu_f) + \alpha_s^2(\mu_r) \sigma^{NNLO}(\mu_r, \mu_f) + \ldots \right)$$
renormalisation scale factorisation scale

leading order next-to-leading order next-to-next-to-leading order $\sigma = \alpha_s^k \left(\sigma^{LO} + \alpha_s \sigma^{NLO} + \alpha_s^2 \sigma^{NNLO} + \ldots \right)$

Higher orders in perturbation theory

example pp to 2 jets: subprocess contributing at parton level: gg
ightarrow gg

Higher orders in perturbation theory

2-loop virtual

explicit poles $1/\epsilon^{2L}$ $(D = 4 - 2\epsilon)$

(multi)-loop integrals

Higher orders in perturbation theory

Highlights

colour singlet final state particles (H, Z, W)

Higgs Diff. Threshold App. [Dulat, BM, A. Pelloni, 17]

Higgs, [BM,18]

- Higgs Diff. qT [Cieri, Chen, Gehrmann, Glover, Huss, 18]
- HH (VBF) [Dreyer, Karlberg, 18]
- Higgs (Y approx.) [Dulat, BM, Pelloni, 18]
- bb->H [Dulat, Duhr, BM,19]
- ggF->HH [Chen,Li,Shoa,Wang]
- Drell-Yan [Dulat, Duhr, BM, 20]

```
bbH 4FS+5FS [Dulat, Duhr, Hirschi, BM, 20]
```

- Fully differential Higgs -> 2Photons [Chen, BM, et al. 21]

Bernhard Mistlberger, Amplitudes 2021

Gudrun Heinrich

going more and more differential

ggH@N3LO fiducial

Loop integrals: status 2-loop 5-point

massless:

 $pp \rightarrow \gamma \gamma \gamma$

 $pp \rightarrow \gamma \gamma \gamma$

 $qq \rightarrow \gamma \gamma q$

 $pp \rightarrow jjji$

- Kallweit, Sotnikov, Wiesemann '20 (leading color, full xs)
- Chawdry, Czakon, Mitov, Poncelet '21 (leading color, full xs) Agarwal, Buccioni, Manteuffel, Tancredi '21 (full color, amplitudes)
- Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto '21 (amp) Badger, Gehrmann, Marcoli, Moodie '21 (full xs)
- Abreu, Febres Cordero, Ita, Page, Sotnikov '21 (leading color amp) Czakon, Mitov, Poncelet '21 (full xs)

- Abreu, Page, Pascual, Sotnikov '20 (leading color amplitudes)
- Chawdry, Czakon, Mitov, Poncelet '20 (leading color, full xs)

Loop integrals: status 2-loop 5-point

massless:

 $pp \rightarrow \gamma \gamma \gamma$

 $pp \rightarrow \gamma \gamma \gamma$

 $qq \rightarrow \gamma \gamma q$

 $pp \rightarrow jjji$

- Abreu, Page, Pascual, Sotnikov '20 (leading color amplitudes)
- Chawdry, Czakon, Mitov, Poncelet '20 (leading color, full xs)
- Kallweit, Sotnikov, Wiesemann '20 (leading color, full xs)
- Chawdry, Czakon, Mitov, Poncelet '21 (leading color, full xs) Agarwal, Buccioni, Manteuffel, Tancredi '21 (full color, amplitudes)
- Badger, Brønnum-Hansen, Chicherin, Gehrmann, Hartanto '21 (amp) Badger, Gehrmann, Marcoli, Moodie '21 (full xs)

Czakon, Mitov, Poncelet '21 (full xs)

important tool: pentagon functions in C++ Chicherin, Sotnikov '21

- Abreu, Febres Cordero, Ita, Page, Sotnikov '21 (leading color amp)

3-jet production at NNLO

Collider Physics at the Precision Frontier

3-jet/2-jet ratio

Czakon, Mitov, Poncelet '21

2-loop 5-point (one off-shell leg)

W + 4 partons $ud \to W^+ b\overline{b}$ $\rightarrow bbH$ ppAbreu, Ita, Page, Tschernov '21 non-planar: Liu, Ma '21

- Abreu, Ita, Moriello, Page, Tschernow '20 (planar)
- Canko, Papadopoulos, Syrrakos '21 (planar, analytic)

- Badger, Brønnum-Hansen, Hartanto, Peraro '19 (planar, num. unitarity) Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '21 (leading color)
- Badger, Hartanto, Zoia '21 (planar, analytic)
- Badger, Hartanto, Krys, Zoia '21 (leading colour)

3-loop 4-point $pp \rightarrow \gamma \gamma$ Caola, Manteuffel, Tancredi '20 $q\bar{q} \rightarrow q\bar{q}$ Caola, Chakraborti, Gambuti, Manteuffel, Tancredi '21 4-loop 3-point 0000 $H \rightarrow \gamma \gamma$ Davies, Herren '21 (large mt-expansion) form factors, e.g. $\gamma^* \rightarrow q\bar{q}$ Agarwal, Manteuffel, Panzer, Schabinger '21 Lee, Manteuffel, Schabinger, Smirnov^2 '21, ... **3-loop 3-point with** *massive* **propagators** $qq \rightarrow H$ Czakon, Harlander, Klappert, Niggetiedt '21 (full cross section)

semi-numerically

2-loop 4-point with massive propagators

numerically:

$pp \to t\bar{t}$
$pp \rightarrow HH$
$pp \rightarrow Hj$
$pp \rightarrow W^+W^-$
$pp \to HZ$
$pp \to ZZ$

- Czakon, Mitov '13
- Borowka, Greiner, GH, Jones, Kerner, Schlenk, Schubert, Zirke '16 Baglio, Campanario, Glaus, Mühlleitner, Spira '18
- Jones, Kerner, Luisoni '18
- Brønnum-Hansen, Wang '20
- Chen, GH, Jones, Kerner, Klappert, Schlenk '20
- Agarwal, Jones, Manteuffel '20

2-loop 4-point with massive propagators

- **analytically:** H + j full set of master integrals *Frellesvig et al.* '19
 - mixed QCD-EW corrections to Higgs production Bechetti et al. '20
 - mixed QCD-EW corrections to Drell-Yan

- 2-loop 4-fermion scattering in QED
 - •
 - •
 - •

Collider Physics at the Precision Frontier

- Heller, von Manteuffel et al. '19, '20 Bonciani et al. '21
- Buccioni, Caola, Chawdhry et al. '22
- Bonciani et al. '21 Banerjee et al. '20, '21

Pro's and con's analytic/numerical

numerical analytic

pole	cancellation	exact
•		

fast evaluation mostly

control of integrable singularities

extension to more scales/loops

analytic continuation less straightforward

difficult

automation difficult

Collider Physics at the Precision Frontier

with numerical uncertainty

depends

promising

less difficult

Pro's and con's analytic/numerical

analytic

pole cancellation

exact

fast evaluation

mostly

control of integrable singularities

extension to more scales/loops

analytic continuation less straightforward

difficult

automation

difficult

Collider Physics at the Precision Frontier

numerical

with numerical uncertainty

depends

promising

less difficult

Pro's and con's analytic/numerical

analytic

pole cancellation

exact

fast evaluation

mostly

control of integrable singularities

extension to more scales/loops

analytic continuation

difficult

automation

difficult

Collider Physics at the Precision Frontier

less difficult

The Next Challenges

- scale uncertainties: how well do they estimate missing higher orders? depends on choice of central scales, modes of variation, contributing partonic
 - channels, ...
- electroweak corrections, mixed QCD-EW
- **PDFs**
- quark mass-related uncertainties: neglected masses, different renormalisation schemes
- need for resummation in certain kinematic regions
- parton shower uncertainties
- Effective Field Theories: truncation uncertainties, validity range

Scale uncertainties: Higgs production in gluon fusion

B. Mistlberger '18

Scale uncertainties: Drell-Yan (W-production)

Scale uncertainties: Drell-Yan (W-production)

NNLO μ_F -scale uncertainty bands do not properly reflect the uncertainty

Duhr, Dulat, Mistlberger '20

Mass effects, parton shower uncertainties

WH production at NNLO + decay $H \rightarrow b\bar{b}$ with massive b-quarks Behring, Bizon, Caola, Melnikov, Röntsch 2003.08321

significant differences between massive and massless case and NNLO vs NLO+PS

Collider Physics at the Precision Frontier

Exploring the Higgs potential

description of unknown interactions at high energies through Effective Field Theory Standard Model: $c_{tt} = 0, c_{ggh} = 0, c_{gghh} = 0$

N3LO: Chen, Li, Shao, Wang '19 (HTL with top mass effects)

NNLO: De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

 $NNLO_{FTapprox}$

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$

NLO full m_t

Borowka, Greiner, GH, Jones, Kerner, Schlenk et al. '16 Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

N3LO: Chen, Li, Shao, Wang '19 (HTL with top mass effects)

De Florian, Mazzitelli '13 NNLO: Grigo, Melnikov, Steinhauser '14

 $NNLO_{FTapprox}$

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

inclusion of top quark mass dependence except in virtual $\mathcal{O}(\alpha_s^3)$

NLO full m_t

Borowka, Greiner, GH, Jones, Kerner, Schlenk et al. '16 Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

N3LO: Chen, Li, Shao, Wang '19 (HTL with top mass effects)

NNLO: De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

 $NNLO_{FTapprox}$

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

inclusion of top quark mass dependence except inevirtual $O(\alpha_s^3)$ NLO full m_t Borowka Groiner OIL Lind top mass Borowka, Greiner, GH, Sines, Kerner, Schlenk et al. '16 Baglio, Carginario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

top quark mass scheme uncertainties: pole mass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira '18, '20

N3LO: Chen, Li, Shao, Wang '19 (HTL with top mass effects)

NNLO: De Florian, Mazzitelli '13 Grigo, Melnikov, Steinhauser '14

 $NNLO_{FTapprox}$

Grazzini, Kallweit, GH, Jones, Kerner, Lindert, Mazzitelli '18

inclusion of top quark mass dependence except inevirtual $O(\alpha_s^3)$ NLO full m_t Borowka Groiper Old Lind top mass Borowka, Greiner, GH stines, Kerner, Schlenk et al. '16 Baglio, Carginario, Glaus, Mühlleitner, Spira, Streicher '18 Davies, GH, Jones, Kerner, Mishima, Steinhauser, Wellmann '19

top quark mass scheme uncertainties: polecinass versus MS mass Baglio, Campanario, Glaus, Mühlleitner, Ropol, Spira '18, '20 due Collider Physics at the Precision

Top quark mass renormalisation scheme uncertainties

relation between pole mass and MS mass

Baglio, Campanario, Glaus Mühlleitner, Ronca, Spira 2003.03227, 2008.11626

also present in other heavy quark loop induced processes

Effective Field Theory expansion schemes

SMEFT (Standard Model Effective Field Theory):

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{\text{dim6}} + \mathcal{O}(\frac{1}{\Lambda^{3}})$$

canonical dimension counting

HEFT (Higgs Effective Field Theory):

$$\mathcal{L}_{HEFT} = \mathcal{L}_0 + \sum_{L=1}^{\infty} \sum_{i} \left(\frac{1}{16\pi^2} \right)^L c_i^{(L)} O_i^{(L)}$$

counting of loop orders, expansion paramet (similar to chiral perturbation theory)

ter:
$$f^2/\Lambda^2 \approx 1/(16\pi^2)$$

HEFT:

SMEFT:

$$\mathcal{L} \supset -m_t \left(\frac{c_t}{v} \frac{h}{v} + \frac{h^2}{v^2} \right) \bar{t} t - \frac{c_{hhh}}{2v} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(\frac{c_{ggh}}{v} \frac{h}{v} + \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$$

Lagrangians relevant for HH production

 $\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\Box}}{\Lambda^2} (\phi^{\dagger}\phi) \Box (\phi^{\dagger}\phi) + \frac{C_{HD}}{\Lambda^2} (\phi^{\dagger}D_{\mu}\phi)^* (\phi^{\dagger}D^{\mu}\phi) + \frac{C_H}{\Lambda^2} (\phi^{\dagger}\phi)^3$

 $+\left(\frac{C_{uH}}{\Lambda^2}\phi^{\dagger}\phi\bar{q}_L\phi^c t_R + h.c.\right) + \frac{C_{HG}}{\Lambda^2}\phi^{\dagger}\phi G^a_{\mu\nu}G^{\mu\nu,a}$

(Warsaw basis)

Grzadkowski et al. 1008.4884

Buchalla et al. '13, '18

Lagrangians relevant for HH production

coupling relations at Lagrangian level:

HEFT	Warsaw
c_{hhh}	$1 - 2 \frac{v^2}{\Lambda^2} \frac{v^2}{m_h^2} C_H + C_H$
c_t	$1 + \frac{v^2}{\Lambda^2} C_{H,\mathrm{kin}} - \frac{v^2}{\Lambda^2}$
c_{tt}	$-\frac{v^2}{\Lambda^2}\frac{3v}{2\sqrt{2}m_t}C_{uH}+$
c_{ggh}	$\left \frac{v^2}{\Lambda^2} \frac{8\pi}{lpha_s} C_{H0} \right $
c_{gghh}	$\frac{v^2}{\Lambda^2} \frac{4\pi}{\alpha_s} C_{H0}$

$$C_{H,\mathrm{kin}} = C_{H,\Box} - \frac{1}{4} C_H$$

SMEFT double operator insertions

 $= \mathcal{M}_{SM} + \mathcal{M}_{dim6} + \mathcal{M}_{dim6^2}$

terms $\sim 1/\Lambda^4$ same order as dim 8 operators (which are not included)

Collider Physics at the Precision Frontier

SMEFT at amplitude squared level

4 possibilities:

(a): "linearised dim 6" (first order of expansion in $1/\Lambda^2$ at cross section level)

- (b): "quadratic dim 6" (first order of expansion in $1/\Lambda^2$ at amplitude level)
- (c): include all terms $O(1/\Lambda^4)$ coming from dim6^2 and double operator insertions (d): would correspond to HEFT except for treatment of α_s

- $\sigma \simeq \begin{cases} \sigma_{\rm SM} + \sigma_{\rm SM \times dim6} & (a) \\ \sigma_{(\rm SM+dim6) \times (\rm SM+dim6)} & (b) \\ \sigma_{(\rm SM+dim6) \times (\rm SM+dim6)} + \sigma_{\rm SM \times dim6^2} & (c) \\ \sigma_{(\rm SM+dim6+dim6^2) \times (\rm SM+dim6+dim6^2)} & (d) \end{cases}$

Total HH cross section

flat directions very different in linear versus quadratic dim 6

figures: Jannis Lang

benchmark (* = modified)	c_{hhh}	c_t	c_{tt}	c_{ggh}	c_{gghh}
SM	1	1	0	0	0
1*	3.94	0.94	$-\frac{1}{3}$	0.5	0.25^{*}
6*	5.68	0.83	$\frac{1}{3}$	-0.5	-0.25^{*}

figures: Jannis Lang

figures: Jannis Lang

Summary & Outlook

- Indirect signs of New Physics: precision is the key
- Increasing the precision at the percent level has many facets: missing higher orders (QCD/EW), parton shower uncertainties, PDFs, heavy quark mass effects/scheme dependence, non-perturbative effects, ...
- Testable hypotheses of New Physics: Concrete models -> model dependence Effective field theories -> dependence on counting scheme, truncation, unitarity

Summary & Outlook

- Indirect signs of New Physics: precision is the key
- Increasing the precision at the percent level has many facets: missing higher orders (QCD/EW), parton shower uncertainties, PDFs, heavy quark mass effects/scheme dependence, non-perturbative effects, ...
- Testable hypotheses of New Physics: Concrete models -> model dependence

joint efforts needed to work on all the different aspects!

efinger-consulting.de

Effective field theories -> dependence on counting scheme, truncation, unitarity

bbH

Drell-Yan (NC)

Duhr, Dulat, Mistlberger

Highest perturbative orders (SM)

Lindert, Kerner, Jones, Kallweit, GH, . 1803.02463 Mazzitelli Grazzini

Counting schemes HEFT (EWChL): "loop expansion" based on chiral dimension $d_{\chi} = 2L + 2$ L: "Loop" with $d_{\chi}(A_{\mu},\varphi,h)=0, \ d_{\chi}(\partial,\bar{\psi}\psi,g,y)=1$ $\xi^{(d-4)/2}$ d ξ^3 10expansion in canonical ξ^2 8 dimension $1/\Lambda^2$ ξ 6 SMEFT 1 $\xi = v^2 / f^2$ 0

Factorisation

non-perturbative

perturbative

