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Transverse momentum dependent (TMD) factorization theorems and distributions is
vastly expending area of physics.

Theory

It was originated in early 80’s, but got a boost in early 2010’s (proof of LP factorization
theorem) [Collins,2011; SCET 2011]. Nowadays theory is as good as collinear factorization

I Full N3LO evolution

I Many coefficient functions at NLO/NNLO/N3LO

I Continue to expand: new processes (jets, heavy quarks,...), lattice, ...

Phenomenology

Phenomenology of TMD is in the process of development

I Many facilities have dedicated TMD program: COMPASS, JLab, RHIC (HERMES)

I Can be also observable at LHC, BaBar, BELLE.

I Significant part of physics programme for future EIC.

I First global extractions [Scimemi,AV,1912.06532]=SV19, [Bacchetta,et
al,1912.07550]=Pavia19
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Transverse momentum dependent (TMD) factorization theorems and distributions is
vastly expending area of physics.

Today’s talk

TMD operator expansion

I Novel approach to TMD factorization theorem

I Direct generalization of operator product expansion

I Has common features with high-energy expansion and SCET

I Elegant and “simple” internal structure

I I will demonstrate next-to-leading power (NLP) expression at NLO(!)

I Still in development (based [AV,Moos,Scimemi,2109.09771] [Rodini,AV,2022]...)

Outline

I Introduction to TMD factorization

I Introduction to TMD operator expansion

I Review of results and outlook
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TMD distributions measure
density of

longitudinal & transverse components
of partons’ momentum
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Selected features of TMD distributions (1)

Presence of additional vector (kT ) re-
veals many structures

I 8 TMDPDFs already at LP

I + 2 TMDFFs

I Numerous spin-dependent effects are
described by LP TMD factorization
(while they are of NLP/NNLP in
collinear factorization)

A.Vladimirov Power for TMD January 14, 2022 4 / 28



Selected features of TMD distributions (2)

F (x, b) =

∫
d2kT

(2π)2
e−i(kb)T F (x, kT )

I TMD factorization is naturally formulated in the position space

I Simple evolution equation

TMDs in b-space
TMDs in kT -space
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Selected features of TMD distributions (3)

TMD distributions has two scales and obey a pair of evolution equations

µ2 dF (x, b;µ, ζ)

dµ2
= γF (µ, ζ)F (x, b;µ, ζ), ζ

dF (x, b;µ, ζ)

dζ
= −D(b, µ)F (x, b;µ, ζ).

D = −2K is the Collins-Soper kernel. Nonperturbative!
Measures the properties of QCD vacuum [AV,PRL,2020]
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Selected features of TMD distributions (4)

TMD factorization ←→ resummation
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1 + αs
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p(x) ln(b2µ2) + ...

)
+ α2

s...
]
⊗ q(x) + b2...+ ...

Lead.power OPE
up N3LO

Higher power OPE
[Moos,AV,2008.01744 ]
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The main processes are

SIDIS Drell-Yan SIA

q is momentum of initiating EW-boson
q2 = ±Q2

qµT transverse component


Q2 � Λ2

QCD

Q2 � q2
T

dσ

dqT
' σ0

∫
d2b

(2π)2
e−i(bqT )|CV (Q)|2F1(x1, b;Q,Q

2)F2(x2, b;Q,Q
2) + ...
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[Scimemi,AV,1912.06532] = SV19

PHENIX
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ATLAS

CMS

ATLAS(116<Q<150)

ATLAS(46<Q<66)

HERMES

COMPASS

Total:
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I N3LO perturbative input

I 1039 data points (DY+SIDIS)
in fit
I 2 < Q < 150GeV
I 10−4 < x < 1

I ∼ 1500 extra points described

I artemide

I Further expansions πDY, SSA
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Factorization regions

qT . 0.25Q TMD factorization =

{
qT . Λ nonpertrubative regime
qT � Λ ”resummation” regime

qT ∼ Q� Λ fixed order computation
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Transverse momentum dependent factorization

dσ

dqT
' σ0

∫
d2b

(2π)2
e−i(bqT )|CV (Q)|2F1(x1, b;Q,Q

2)F2(x2, b;Q,Q
2)

←− LP

LP term is studied VERY WELL!

This was a very brief review of
LP TMD factorization

Now let’s turn to power corrections
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Transverse momentum dependent factorization

dσ

dqT
' σ0

∫
d2b

(2π)2
e−i(bqT )

{
|CV (Q)|2F1(x1, b;Q,Q

2)F2(x2, b;Q,Q
2) ←− LP

+
qT

Q
[C2(Q)⊗ F3(x, b;Q,Q2)F4(x, b;Q,Q2)](x1, x2) ←− NLP

+
q2
T

Q2
[C3(Q)⊗ F5(x, b;Q,Q2)F6(x, b;Q,Q2)](x1, x2) ←− NNLP

+...
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Motivation

I Sub-leading power observables

by Timothy B. Hayward at QCD-N

To describe it, one needs TMD
factorization at NLP.

I JLab

I LHC

[CLAS, 2101.03544]
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Motivation

I Sub-leading power observables

I Increase of applicability domain
q
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LP TMD factorization has
limited region of application.

For SIDIS it cuts
the most part of the data

[Bacchetta,et al,1901.06916]

EIC

Phase space of EIC is centered
directly in

the transition region

COMPASS, JLab
have large contribution of power corrections
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Motivation

I Sub-leading power observables

I Increase of applicability domain

I Restoration of broken properties

LP TMD factorization breaks EM-gauge invariance

Wµν =

∫
dyeiqy〈Jµ(y)Jν(0)〉

qµW
µν = 0

Wµν
LP = gµνT |CV |

2F(F1F2)

qµW
µν
LP ∼ q

ν
T

I The violation is of the NLP

I Similar problem with frame-dependence (GTMD case)

I The problem is not unique, e.g. collinear factorization for DVCS
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Sources of power corrections

dσ

dP.S.
= σPSLµνW

µν

∗(exact)=known at all powers

Phase space PC (exact)

e.g. SIDIS σPS =
π√

1 + γ2 p2
h⊥

z2Q2

Leptonic tensor (exact)
e.g. un.DY with fid.cuts

Lµν ∼ (lµl′ν + lν l′µ − gµν(ll′))P
• l, l′ with transverse parts

• P fiducial part

Hadronic tensor (e.g. DY)

Wµν=

∫
d4yei(yq)

(2π)4
〈p1p2|Jµ(y)|X〉〈X|Jν |p1p2〉

Factorized in powers of
qT

q+
,
qT

q−

Power corrections due to frame choice (exact)
p+

1 � p−1 , p−2 � p+
2

e.g. SIDIS q2
T =

p2
⊥
z2

1 + γ2

1− γ2 p2⊥
z2Q2

QCD Factorization
(this talk)
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There are already computations of TMD factorization at NLP/NNLP

I Small-x-like
I Balitksy [1712.09389],[2012.01588],...
I Nefedov, Saleev, [1810.04061],[1906.08681]

I SCET
I Ebert, et al [2112.07680] tree order
I Inglis-Whalen, et al [2105.09277]
I Beneke, et al, [1712.04416],[1808.04742],... not TMD, but closely related

I Boer, Mulders, Pijlman [hep-ph/0303034]

I ...

TMD operator expansion

I Based on the experience of higher-twist, and higher power computations in collinear
factorization
I Systematicness of OPE
I Operator level
I Position space [a lot of simplification for beyond leading twist]

I Has common parts with small-x and SCET computations

I Generalization of ordinary background method
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Background field method for parton physics
(in a nutshell)

〈h|T Jµ(z)Jν(0)|h〉 =

∫
[Dq̄DqDA]eiSQCDΨ∗[q̄, q, A]Jµ(z)Jν(0)Ψ[q̄, q, A]

Cannot be integrated since Ψ is unknown

Parton model
Ψ contains only collinear particles

Ψ[q̄, q, A]→ Ψ[q̄n̄, qn̄, An̄]
{∂+, ∂−, ∂T }qn̄ . {1, λ2, λ}qn̄

Integral can be partially computed

Background technique
q = qn̄ + ψ
A = An̄ + B

I qn̄, An̄: background (external field)

I ψ,B: dynamical (to be integrated)

〈h|T Jµ(z)Jν(0)|h〉 =

∫
[Dq̄n̄Dqn̄DAn̄]eiSQCDΨ∗[q̄, q, A]J µνeff [q̄n̄, qn̄, An̄](z)Ψ[q̄, q, A]

J µνeff =

∫
[Dψ̄DψDB]eiSQCD+iSback[q̄,q,A]Jµ[q + ψ](z)Jν [q + ψ](0)

Generating function for operator product expansion
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Background QCD with 2-component background

q → qn + qn̄ + ψ Aµ → Aµn +Aµn̄ +Bµ

I Technical note: SQCD for 2-component background has 1PI vertices!

collinear-fields
(associated with hadron 1)

{∂+, ∂−, ∂T } qn̄ . Q{1, λ2, λ} qn̄,

{∂+, ∂−, ∂T }Aµn̄ . Q{1, λ2, λ}Aµn̄,

anti-collinear-fields
(associated with hadron 2)

{∂+, ∂−, ∂T } qn . Q{λ2, 1, λ} qn,

{∂+, ∂−, ∂T }Aµn . Q{λ2, 1, λ}Aµn.
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TMD operator expansion
is conceptually similar to ordinary OPE

The only difference is counting rule for y

(q · y) ∼ 1 ⇒ {y+, y−, yT } ∼ {
1

q−
,

1

q+
,

1

qT
} ∼

1

Q
{1, 1, λ−1}

To be accounted in operator expansion

zµT ∂µq ∼ NLP, yµT ∂µq ∼ LP
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TMD operator expansion
has different geometry

y

Jµ

Jν

nn̄

q̄

q̄

q

q

Collinear factorization
yµ ∼ Q−1{1, 1, 1}

Two
light-cone operators

⇓
Two

parton distribution function
PDFs & FFs

q̄i(λn)[λn, 0]qj(0)

nn̄ nn̄

q̄

q

TMD factorization
yµ ∼ Q−1{1, 1, λ−1}

Four
semi-compact

light-cone operators
⇓

Two
TMD distributions

TMDPDFs & TMDFFs

yT = b
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TMD-twist

Each light-cone operator must be twist-decomposed

I Geometrical twist = dimension - spin (projected to light-cone)

I Half-integer spin operators

I (q̄γ
+
γ
−

)i = twist-1 ( 3
2 −

1
2 )

I (q̄γ
−
γ
+

)i = twist-indefinite ⇒ EOM ⇒
(
q̄γ

+

←−
6∂T
←−
∂+

)
i︸ ︷︷ ︸

tot.der.
twist-1

+

∫
(q̄γ

µ
Fµ+γ

+
)i︸ ︷︷ ︸

twist-2

Twist of the TMD operator is enumerated by twists of each light-cone
components (N,M) =TMD-twist

e.g. usual TMD operator
twist-1︷ ︸︸ ︷

q̄(λn+ b)[λn+ b,±∞n+ b] γ+

twist-1︷ ︸︸ ︷
[±∞n, 0]q(0)︸ ︷︷ ︸

TMD-twist=(1,1)
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TMD operators of different TMD-twists

(1,1)

O11(z, b) = ξ̄(zn+ b)[...]Γ[...]ξ(0)
Γ = {γ+, γ+γ5, σα+}
⇒ well known 8 TMD distributions

(1,2) & (2,1)

O21(z1,2, b) = ξ̄(z1n+ b)[..]Fµ+(z2 + b)[...]Γ[...]ξ(0)

O12(z1,2, b) = ξ̄(z1n+ b)[...]Γ[...]Fµ+(z2)[..]ξ(0)

I Γ = {γ+, γ+γ5, σα+}
I 16 (?) TMD distributions

I Related by charge-conjugation ⇔
complex/real

(1,3) & (3,1) & (2,2)

O31;1(z1,2,3, b) = ξ̄..Fµ+..Fν+[...]Γ[...]ξ(0)

O22(z1,2,3, b) = ξ̄..Fµ+[...]Γ[...]Fν+..ξ(0)

O31;2(z1,2,3, b) = ξ̄..(ξ̄..Γ2..ξ)[...]Γ[...]ξ(0)

O31;3(z1,2, b) = ξ̄..F−+[...]Γ[...]ξ(0)

...

I Quasi-partonic and non-quasi-partonic
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Operators with different TMD-twists do not mix
renormalization/evolution is independent

independent TMD distributions

Evolution of TMD distribution with TMD-twist=(N,M)

ΦNM (x1, ..., xn, b) =

∫
dz1...dzne

−ip+(x1z1+...+xnzn)〈p|UN ({z1, ...}, b)UM ({..., zk}, 0T )|p〉

I Each light-cone operator U renormalizes independently (because there is a finite yT in-between)

µ
d

dµ
UN ({z1, ...}, b) = γN ⊗ UN ({z1, ...}, b)

I Light-cone operators with different N do not mix (Lorentz invariance!)

I Evolution of TMD distribution

µ
d

dµ
ΦNM (x1, ..., xn, b) = (γN + γM )⊗ ΦNM (x1, ..., xn, b)
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Evolution of a twist-2 semi-compact operator at LO

UV anomalous dimension of a semi-compact operator has two parts

Compart part
σ < zmax

Reproduces elementry evolution kernel
Bukhvostov-Frolov-Lipatov-Kuraev for QP operator

Braun-Manashov-Rohrwild for non-QP operators

Non-Compart part
zmax < σ

Collinearly divergent (UV/collinear overlap)

Needs a regulator to compute (can-

celed by UV part of rap.divergence)
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Rapidity divergences
appears due to overlap of the fields in the soft region

collinear-fields & anti-collinear
are the same at

{∂+, ∂−, ∂T } q . Q{λ2, λ2, λ} q,

{∂+, ∂−, ∂T }Aµ . Q{λ2, λ2, λ}Aµ,

I (or) Introduce separating-scale

I (or) Subtract by soft-factor

I (or) ...
⇒ multiplicative renormalization

[AV,1707.07606] ⇒ evolution equation with ζ

ζ
d

dζ
ΦNM ({z1, ...}, b) = −D(b)ΦNM ({z1, ...}, b)
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Rapidity divergence arise from the interaction with the far end of neighbour Wilson line

General facts
I Independent on the “type” of another operator

I Multiplicatively renormalizable (*)

I Same for all operators (up to color-representation) at
LP, NLP, NNLP(!)
* End-point divergences and derivatives of R cancel!
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Evolution for quasi-partonic TMD operators (distributions)

µ2 dΦNM

dµ2
(µ, ζ) = (γN (µ, ζ) + γM (µ, ζ))⊗ ΦNM (µ, ζ)

ζ
dΦNM

dζ
(µ, ζ) = −D(b, µ)⊗ ΦNM (µ, ζ)

I γ1 known up to NNLO

I γ2 known up to LO

I γ3 could be reconstructed at LO (if ever needed)

I D = −K/2 is CS-kernel (non-perturbative)
I Same for all QP operators!
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Computing TMD factorization

Details & examples
in [2109.09711]J (+)µ(y)J (−)ν(0)

Keldysh thechnique
to deal with

causality structure

(power) Expand in background fields
sort operators by TMD-twist

q̄n̄(y−n+ yT )γµT qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ψ̄n̄(y)γµT qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

+nµq̄n̄(y−n+ yT )γ−qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

+y+q̄n̄(y−n+ yT )
←−
∂−γ

−qn(y+n̄+ yT )q̄n(0)γνT qn̄(0) + ...

(loop) Integrate over fast components
with 2-bcg.QCD action

at least NLO is needed
to confirm factorization

(WL direction,
pole-cancelation)

Coincides with [Boer,Mulders,Pijlman,03]
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NLO computation

Main check of factorization: pole cancellation

finite︷ ︸︸ ︷
F1[⊗Z1R]⊗ [Z−1

1 R−1]⊗H ⊗ [Z−1
2 R−1]︸ ︷︷ ︸

finite

⊗
finite︷ ︸︸ ︷

[Z2R]⊗ F2
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NLO computation

Extra facts

I At LP and NLP one Sudakov form factor is needed (exchange diagrams are NNLP)

I Computation for Sudakov is done for LP and NLP both at NLO
I Position space
I LP is well known (up to N3LO) and coincides
I Twist-(1,1) part of NLP is the same as LP

I Required by EM gauge invariance Non-trivial check

I Twist-(1,2) part is totally new

I The UV and rapidity divergences of NLP operators computed independently
I (position space) BFLK part coincide with [Braun,Manashov,09]
I (momentum space) “Coincides” with [Beneke, et al, 17] (up to missed channels)

I Checks
I Pole parts of hard coefficient and operators cancel very non-trivial check
I Some diagrams are computed in momentum space check
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Final expression: TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

I Operators of (1, 1)× (1, 1) (ordinary TMDs)

Oij11(x, b) = p+

∫
dλ

2π
e−ixλp+ q̄j [λn+ b,±∞n+ b][±∞n, 0]qi

I Contains LP and NLP (total derivatives)

I Restores EM gauge invariance up to λ3

qµJ
µν
1111 ∼ (p−1 qT + p+

2 qT )J1111

I Operators of (1, 2)× (1, 1)

Oij12(x1,2,3, b) = p2
+

∫
dz1,2,3

2π
e−ix

izip+ q̄j [z1n+ b,±∞n+ b][±∞n, z2n]γµFµ+[z2n, z3n]qi

I EM gauge invarint only up to NNLP

qµJ
µν
1211 ∼ (p−1 + p+

2 )J1211

I Coefficient functions up to NLO

I C1 is know up to N3LO

I C1 is same for LP, NLP, ... parts of operator Jµν1111
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Conclusion

What I have not told:

I Process dependence and Wilson lines

I Cancellation between end-point divergences and derivatives of soft-factor

I Systematization of NLP TMD distributions, and expression for cross-section in these
terms

I Matching to collinear factorization

I Application for different objects (lattice)

Roadmap for power corrections in TMD

I NLP/NLO (done) [2109.09771]

I NNLP (done)/NLO (in progress)

I Summation of descendants of LP ⇒ restoration of EM gauge invariance (in progress)

I Phenomenology ...

TMD operator expansion – an efficient approach to TMD factorization beyond LP

I Operator level / Position space / All processes

I Strict & intuitive rules for operator sorting (TMD-twist)
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Thank you for attention!
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The most efficient way to study power corrections: OPE + background formalism

I Many results (so far) unreachable by other methods
I Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
I Coefficient function for various observables (e.g. quasi-PDFs at twist-3

[Braun,Ji,AV,20-21])
I All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections

to TMDs [Moos,AV,20])

I Clear and strict formulation ⇒ Simple computation

I Twist-decomposition

DVCS

Jµ(z)Jν(0)
OPE−−−−−→

∞∑
n=0

zn[Cµνn ⊗On](z+)

Leading power ⇒ GPDs

violates EM Ward identities
and translation invariance

power operators

0

1

2

...

q̄[..]q

q̄[..]q

q̄[..]q

q̄Fµ+[..]q

q̄Fµ+[..]q q̄Fµ+Fν+[..]q
q̄[..]qq̄[..]q
q̄Fµ+[..]γ−q

tw2 tw3 tw4

All properties restored

All properties restored

...

Independent
Do not mix

TMD factorization
has same structure
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(LO) UV anomalous dimension of a semi-compact operator has two parts

Compart part
σ < zmax

Reproduce elementry evolution kernel
Bukhvostov-Frolov-Lipatov-
Kuraev for QP operator

Braun-Manshov-Rohrwild for non-QP operators

Non-Compart part
zmax < σ

Collinearly divergent
(UV/collinear overlap)

Needs a regulator to compute (can-
celed by UV part of rap.divergence)

I Confirmed by direct computation

I Same structure for QP operators of higher twists

I Non-QP operator different... (in progress)
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Process dependence

The background can be taken in any gauge (since it is gauge invariant)

I Light-cone gauge kills operators with A+,n̄ and A−,n (∼ 1 in power counting).

I Convenient choice of gauges
I Collinear field A+ = 0
I Anti-Collinear field A− = 0
I Dynamical field: Feynman gauge

I However one needs to specify boundary condition. The result depends on it.

Aµn̄(z) = −g
∫ 0

−∞
dσFµ+

n̄ (z + nσ) vs. Aµn̄(z) = −g
∫ 0

+∞
dσFµ+

n̄ (z + nσ)

q̄[z, z −∞n] vs. q̄[z, z +∞n]
etc.

To specify boundary and WL direction, we should go to NLO
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NLO expression in position space

K(s, t) = ξ̄n̄(sz−n) /An̄,T (tz−n)ξn(z+n̄)

Depends on
boundary
conditions

I =

∫ ∞
−∞

dz+dz−
fn̄(z−)fn(z+)

[−2z+z− + i0]α

f ’s are TMDPDFs or TMDFFs

z
+>0

z
+<0

z
-

I =

∫ 0

−∞
dz+ fn(z+)

(−2z+)α
(I0 + I1 + I2 + I∞) , IC =

∫
C

fn̄(z−)

(z−)α

Fields at ∞
(= interaction with transverse link)

0

Reproduce ordinary rules!
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