TMD factorization beyond the leading power

based on [2109.09771]

University of Vienna

Transverse momentum dependent (TMD) factorization theorems and distributions is vastly expending area of physics.

Theory

It was originated in early 80's, but got a boost in early 2010's (proof of LP factorization theorem) [Collins,2011; SCET 2011]. Nowadays theory is as good as collinear factorization

- Full $\mathrm{N}^{3} \mathrm{LO}$ evolution
- Many coefficient functions at NLO/NNLO/N ${ }^{3} \mathrm{LO}$
- Continue to expand: new processes (jets, heavy quarks,...), lattice, ...

Phenomenology

Phenomenology of TMD is in the process of development

- Many facilities have dedicated TMD program: COMPASS, JLab, RHIC (HERMES)
- Can be also observable at LHC, BaBar, BELLE.
- Significant part of physics programme for future EIC.
- First global extractions [Scimemi,AV,1912.06532]=SV19, [Bacchetta,et al,1912.07550]=Pavia19

Transverse momentum dependent (TMD) factorization theorems and distributions is vastly expending area of physics.

Today's talk

TMD operator expansion

- Novel approach to TMD factorization theorem
- Direct generalization of operator product expansion
- Has common features with high-energy expansion and SCET
- Elegant and "simple" internal structure
- I will demonstrate next-to-leading power (NLP) expression at NLO(!)
- Still in development (based [AV,Moos,Scimemi,2109.09771] [Rodini,AV,2022]...)

Outline

- Introduction to TMD factorization
- Introduction to TMD operator expansion
- Review of results and outlook

Universităt Regensburg

Universitãt Regensburg

Universitãt Regensburg

Selected features of TMD distributions (1)

T	U	L	T
U	f_{1}		$\mathrm{~h}_{1}^{\perp}$
L		g_{1}	$\mathrm{~h}_{1 \mathrm{~L}}^{\perp}$
T	$\mathrm{f}_{1 \mathrm{~T}}^{ \pm}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathrm{~h}_{1} \mathrm{~h}_{1 \mathrm{~T}}^{ \pm}$

Presence of additional vector $\left(k_{T}\right)$ reveals many structures

- 8 TMDPDFs already at LP
- +2 TMDFFs
- Numerous spin-dependent effects are described by LP TMD factorization (while they are of NLP/NNLP in collinear factorization)

$$
F(x, b)=\int \frac{d^{2} k_{T}}{(2 \pi)^{2}} e^{-i(k b)_{T}} F\left(x, k_{T}\right)
$$

\rightarrow TMD factorization is naturally formulated in the position space

- Simple evolution equation

TMDs in k_{T}-space

TMD distributions has two scales and obey a pair of evolution equations

$$
\mu^{2} \frac{d F(x, b ; \mu, \zeta)}{d \mu^{2}}=\gamma_{F}(\mu, \zeta) F(x, b ; \mu, \zeta), \quad \zeta \frac{d F(x, b ; \mu, \zeta)}{d \zeta}=-\mathcal{D}(b, \mu) F(x, b ; \mu, \zeta) .
$$

$\mathcal{D}=-2 K$ is the Collins-Soper kernel. Nonperturbative!
Measures the properties of QCD vacuum [AV,PRL, 2020]

Universitāt Regensburg

Selected features of TMD distributions

$$
F(x, b)=\left[1+\alpha_{s}\left(p(x) \ln \left(b^{2} \mu^{2}\right)+\ldots\right)+\alpha_{s}^{2} \ldots\right] \otimes q(x)+b^{2} \ldots+\ldots
$$

Lead.power OPE

The main processes are

q is momentum of initiating EW-boson

$$
q^{2}= \pm Q^{2}
$$

q_{T}^{μ} transverse component

$$
\left\{\begin{array}{c}
Q^{2} \gg \Lambda_{Q C D}^{2} \\
Q^{2} \gg q_{T}^{2}
\end{array}\right.
$$

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)+\ldots
$$

[Scimemi,AV,1912.06532] = SV19

- $\mathrm{N}^{3} \mathrm{LO}$ perturbative input
- 1039 data points (DY+SIDIS) in fit
- $2<Q<150 \mathrm{GeV}$
- $10^{-4}<x<1$
- ~ 1500 extra points described
- artemide
- Further expansions $\pi \mathrm{DY}, \mathrm{SSA}$

Universitãt Regensburg

Universitãt Regensburg

Factorization regions

$$
\begin{aligned}
q_{T} \lesssim 0.25 Q & \text { TMD factorization } \\
q_{T} \sim Q \gg \Lambda & \text { fixed order computation }
\end{aligned}
$$

Factorization regions

$$
q_{T} \lesssim 0.25 Q \quad \text { TMD factorization } \quad= \begin{cases}q_{T} \lesssim \Lambda & \text { nonpertrubative regime } \\ q_{T} \gg \Lambda & \text { "resummation" regime }\end{cases}
$$

$$
q_{T} \sim Q \gg \Lambda \quad \text { fixed order computation }
$$

Transverse momentum dependent factorization

$$
\frac{d \sigma}{d q_{T}} \simeq \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)
$$

LP term is studied VERY WELL!

This was a very brief review of
LP TMD factorization

Now let's turn to power corrections

Universitãt Regensburg

Transverse momentum dependent factorization

$$
\begin{array}{rlrl}
\frac{d \sigma}{d q_{T}} \simeq & \sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i\left(b q_{T}\right)}\left\{\left|C_{V}(Q)\right|^{2} F_{1}\left(x_{1}, b ; Q, Q^{2}\right) F_{2}\left(x_{2}, b ; Q, Q^{2}\right)\right. & \longleftarrow \mathrm{LP} \\
& +\frac{q_{T}}{Q}\left[C_{2}(Q) \otimes F_{3}\left(x, b ; Q, Q^{2}\right) F_{4}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) & \longleftarrow \text { NLP } \\
& +\frac{q_{T}^{2}}{Q^{2}}\left[C_{3}(Q) \otimes F_{5}\left(x, b ; Q, Q^{2}\right) F_{6}\left(x, b ; Q, Q^{2}\right)\right]\left(x_{1}, x_{2}\right) & \longleftarrow \text { NNLP } \\
& +\ldots & &
\end{array}
$$

Motivation

- Sub-leading power observables

To describe it, one needs TMD factorization at NLP.
- JLab
- LHC
[CLAS, 2101.03544]

Motivation

- Sub-leading power observables

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathbf{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& \left.+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi\right\}
\end{aligned}
$$

To describe it, one needs TMD factorization at NNLP.

- JLab
- LHC

Universitãt Regensburg

Motivation

- Sub-leading power observables
- Increase of applicability domain

LP TMD factorization has limited region of application.

For SIDIS it cuts the most part of the data

Motivation

- Sub-leading power observables
- Increase of applicability domain

Phase space of EIC is centered directly in
the transition region
COMPASS, JLab
have large contribution of power corrections

Motivation

- Sub-leading power observables
- Increase of applicability domain
- Restoration of broken properties

LP TMD factorization breaks EM-gauge invariance

$$
\begin{array}{cc}
W^{\mu \nu}=\int d y e^{i q y}\left\langle J^{\mu}(y) J^{\nu}(0)\right\rangle & W_{\mathrm{LP}}^{\mu \nu}=g_{T}^{\mu \nu}\left|C_{V}\right|^{2} \mathcal{F}\left(F_{1} F_{2}\right) \\
q_{\mu} W^{\mu \nu}=0 & q_{\mu} W_{\mathrm{LP}}^{\mu \nu} \sim q_{T}^{\nu}
\end{array}
$$

- The violation is of the NLP
- Similar problem with frame-dependence (GTMD case)
- The problem is not unique, e.g. collinear factorization for DVCS

Universitãt Regensburg

Sources of power corrections

$$
\frac{d \sigma}{d P . S .}=\sigma_{P S} L_{\mu \nu} W^{\mu \nu}
$$

Phase space PC (exact) $\square \longrightarrow$ Hadronic tensor (e.g. DY)
e.g. SIDIS $\sigma_{P S}=\frac{\pi}{\sqrt{1+\gamma^{2} \frac{\mathbf{p}_{h \perp}^{2}}{z^{2} Q^{2}}}}$

$$
\text { * }(\text { exact })=\text { known at all powers }
$$

$$
W^{\mu \nu}=\int \frac{d^{4} y e^{i(y q)}}{(2 \pi)^{4}}\left\langle p_{1} p_{2}\right| J^{\mu}(y)|X\rangle\langle X| J^{\nu}\left|p_{1} p_{2}\right\rangle
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Leptonic tensor (exact) } \\
\begin{array}{c}
\text { e.g. un.DY with fid.cuts } \\
L^{\mu \nu} \sim\left(l^{\mu} l^{\prime \nu}+l^{\nu} l^{\prime \mu}-g^{\mu \nu}\left(l l^{\prime}\right)\right) \mathcal{P} \\
\bullet l, l^{\prime} \text { with transverse parts } \\
\bullet \mathcal{P} \text { fiducial part }
\end{array} \\
\qquad \begin{array}{c}
\text { Power corrections due to frame choice (exact) } \\
\frac{q_{T}}{q^{+}}, \frac{q_{T}}{q^{-}}
\end{array} \\
p_{1}^{+} \gg p_{1}^{-}, \\
p_{2}^{-} \gg p_{2}^{+} \\
\text {e.g. SIDIS } q_{T}^{2}=\frac{p_{\perp}^{2}}{z^{2}} \frac{1+\gamma^{2}}{1-\gamma^{2} \frac{p_{\perp}^{2}}{z^{2} Q^{2}}}
\end{array} \\
\end{gathered}
$$

Sources of power corrections

There are already computations of TMD factorization at NLP/NNLP

- Small-x-like
- Balitksy [1712.09389],[2012.01588],...
- Nefedov, Saleev, [1810.04061],[1906.08681]
- SCET
- Ebert, et al [2112.07680] tree order
- Inglis-Whalen, et al [2105.09277]
- Beneke, et al, [1712.04416],[1808.04742],... not TMD, but closely related
- Boer, Mulders, Pijlman [hep-ph/0303034]
- ...

TMD operator expansion

- Based on the experience of higher-twist, and higher power computations in collinear factorization
- Systematicness of OPE
- Operator level
- Position space [a lot of simplification for beyond leading twist]
- Has common parts with small-x and SCET computations
- Generalization of ordinary background method

Background field method for parton physics (in a nutshell)

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Cannot be integrated since Ψ is unknown

Universităt Regensburg

Background field method for parton physics (in a nutshell)

$$
\begin{array}{r}
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A] \\
\text { Parton model } \\
\Psi \text { contains only collinear particles } \\
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right] \\
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}
\end{array}
$$

Integral can be partially computed

Universitãt Regensburg

$$
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int[D \bar{q} D q D A] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] J^{\mu}(z) J^{\nu}(0) \Psi[\bar{q}, q, A]
$$

Parton model

$$
\Psi \text { contains only collinear particles }
$$

$$
\Psi[\bar{q}, q, A] \rightarrow \Psi\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right]
$$

Background technique

$$
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q_{\bar{n}} \lesssim\left\{1, \lambda^{2}, \lambda\right\} q_{\bar{n}}
$$

$$
\begin{aligned}
q & =q_{\bar{n}}+\psi \\
A & =A_{\bar{n}}+B
\end{aligned}
$$

- $q_{\bar{n}}, A_{\bar{n}}$: background (external field)
- ψ, B : dynamical (to be integrated)

$$
\begin{gathered}
\langle h| T J^{\mu}(z) J^{\nu}(0)|h\rangle=\int\left[D \bar{q}_{\bar{n}} D q_{\bar{n}} D A_{\bar{n}}\right] e^{i S_{\mathrm{QCD}}} \Psi^{*}[\bar{q}, q, A] \mathcal{J}_{\mathrm{eff}}^{\mu \nu}\left[\bar{q}_{\bar{n}}, q_{\bar{n}}, A_{\bar{n}}\right](z) \Psi[\bar{q}, q, A] \\
\mathcal{J}_{\text {eff }}^{\mu \nu}=\int[D \bar{\psi} D \psi D B] e^{i S_{\mathrm{QCD}}+i S_{\mathrm{back}}[\bar{q}, q, A]} J^{\mu}[q+\psi](z) J^{\nu}[q+\psi](0) \\
\text { Generating function for operator product expansion }
\end{gathered}
$$

Background QCD with 2-component background

$$
q \rightarrow q_{n}+q_{\bar{n}}+\psi \quad A^{\mu} \rightarrow A_{n}^{\mu}+A_{\bar{n}}^{\mu}+B^{\mu}
$$

- Technical note: $S_{Q C D}$ for 2-component background has 1PI vertices!

TMD operator expansion

is conceptually similar to ordinary OPE

The only difference is counting rule for y

$$
\begin{aligned}
W_{\mathrm{DY}}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{-i(y q)} \sum_{X}\left\langle p_{1}, p_{2}\right| J^{\mu \dagger}(y)|X\rangle\langle X| J^{\nu}(0)\left|p_{1}, p_{2}\right\rangle \\
W_{\text {SIDIS }}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\left\langle p_{1}\right| J^{\mu \dagger}(y)\left|p_{2}, X\right\rangle\left\langle p_{2}, X\right| J^{\nu}(0)\left|p_{1}\right\rangle \\
W_{\text {SIA }}^{\mu \nu} & =\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)} \sum_{X}\langle 0| J^{\mu \dagger}(y)\left|p_{1}, p_{2}, X\right\rangle\left\langle p_{1}, p_{2}, X\right| J^{\nu}(0)|0\rangle \\
(q \cdot y) \sim 1 & \Rightarrow \quad\left\{y^{+}, y^{-}, y_{T}\right\} \sim\left\{\frac{1}{q^{-}}, \frac{1}{q^{+}}, \frac{1}{q_{T}}\right\} \sim \frac{1}{Q}\left\{1,1, \lambda^{-1}\right\}
\end{aligned}
$$

To be accounted in operator expansion

$$
z_{T}^{\mu} \partial_{\mu} q \sim \mathrm{NLP}, \quad y_{T}^{\mu} \partial_{\mu} q \sim \mathrm{LP}
$$

TMD operator expansion has different geometry

Two
light-cone operators
\Downarrow
Two
parton distribution function
PDFs \& FFs

TMD operator expansion has different geometry

Four
semi-compact
light-cone operators
\Downarrow
Two
TMD distributions
TMDPDFs \& TMDFFs

TMD operator expansion has different geometry

Four

semi-compact
light-cone operators
\Downarrow
Two
TMD distributions
TMDPDFs \& TMDFFs

TMD-twist

Each light-cone operator must be twist-decomposed

- Geometrical twist $=$ dimension - spin (projected to light-cone)
- Half-integer spin operators
- $\left(\bar{q} \gamma^{+} \gamma^{-}\right)_{i}=$ twist-1 $\left(\frac{3}{2}-\frac{1}{2}\right)$
- $\left(\bar{q} \gamma^{-} \gamma^{+}\right)_{i}=$ twist-indefinite $\Rightarrow \mathrm{EOM} \Rightarrow \underbrace{\left(\bar{q} \gamma^{+} \frac{\overleftarrow{\partial_{T}}}{\overleftarrow{\delta_{+}}}\right)_{i}}_{\begin{array}{c}\text { tot.der. } \\ \text { twist-1 }\end{array}}+\underbrace{\int\left(\bar{q} \gamma^{\mu} F_{\mu+\gamma^{+}}\right)_{i}}_{\text {twist-2 }}$

Twist of the TMD operator is enumerated by twists of each light-cone components (N, M) = TMD-twist

TMD operators of different TMD-twists

$(1,1)$

$$
\begin{equation*}
O_{11}(z, b)=\bar{\xi}(z n+b)[\ldots] \Gamma[\ldots] \xi(0) \tag{1,2}
\end{equation*}
$$

$$
\begin{aligned}
& \Gamma=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{\alpha+}\right\} \\
& \Rightarrow \text { well known } 8 \text { TMD distributions }
\end{aligned}
$$

$\triangleright \Gamma=\left\{\gamma^{+}, \gamma^{+} \gamma^{5}, \sigma^{\alpha+}\right\}$

$$
\begin{aligned}
O_{21}\left(z_{1,2}, b\right) & =\bar{\xi}\left(z_{1} n+b\right)[. .] F_{\mu+}\left(z_{2}+b\right)[\ldots] \Gamma[\ldots] \xi(0) \\
O_{12}\left(z_{1,2}, b\right) & =\bar{\xi}\left(z_{1} n+b\right)[\ldots] \Gamma[\ldots] F_{\mu+}\left(z_{2}\right)[. .] \xi(0)
\end{aligned}
$$

$$
16 \text { (?) TMD distributions }
$$

- Related by charge-conjugation \Leftrightarrow complex/real

$$
\begin{aligned}
O_{31 ; 1}\left(z_{1,2,3}, b\right) & =\bar{\xi} . . F_{\mu+}+. F_{\nu+}[\ldots] \Gamma[\ldots] \xi(0) \\
O_{22}\left(z_{1,2,3}, b\right) & =\bar{\xi} . . F_{\mu+}[\ldots] \Gamma[\ldots] F_{\nu+\ldots} \xi(0) \\
O_{31 ; 2}\left(z_{1,2,3}, b\right) & =\bar{\xi} . .\left(\bar{\xi} . . \Gamma_{2} . . \xi\right)[\ldots] \Gamma[\ldots] \xi(0) \\
O_{31 ; 3}\left(z_{1,2}, b\right) & =\bar{\xi} . . F_{-+}[\ldots] \Gamma[\ldots] \xi(0)
\end{aligned}
$$

- Quasi-partonic and non-quasi-partonic

Operators with different TMD-twists do not mix

renormalization/evolution is independent independent TMD distributions

Evolution of TMD distribution with TMD-twist $=(\mathrm{N}, \mathrm{M})$

$$
\Phi_{N M}\left(x_{1}, \ldots, x_{n}, b\right)=\int d z_{1} \ldots d z_{n} e^{-i p_{+}\left(x_{1} z_{1}+\ldots+x_{n} z_{n}\right)}\langle p| \bar{U}_{N}\left(\left\{z_{1}, \ldots\right\}, b\right) U_{M}\left(\left\{\ldots, z_{k}\right\}, 0_{T}\right)|p\rangle
$$

- Each light-cone operator U renormalizes independently (because there is a finite y_{T} in-between)

$$
\mu \frac{d}{d \mu} U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)=\gamma_{N} \otimes U_{N}\left(\left\{z_{1}, \ldots\right\}, b\right)
$$

- Light-cone operators with different N do not mix (Lorentz invariance!)
- Evolution of TMD distribution

$$
\mu \frac{d}{d \mu} \Phi_{N M}\left(x_{1}, \ldots, x_{n}, b\right)=\left(\bar{\gamma}_{N}+\gamma_{M}\right) \otimes \Phi_{N M}\left(x_{1}, \ldots, x_{n}, b\right)
$$

Evolution of a twist-2 semi-compact operator at LO

UV anomalous dimension of a semi-compact operator has two parts

Compart part

$\sigma<z_{\max }$
Reproduces elementry evolution kernel Bukhvostov-Frolov-Lipatov-Kuraev for QP operator Braun-Manashov-Rohrwild for non-QP operators

Non-Compart part

Collinearly divergent (UV/collinear overlap) Needs a regulator to compute (canceled by UV part of rap.divergence)

$$
\begin{aligned}
\gamma_{2}(\mu, \zeta)=a_{s}\{ & 2 \mathbb{H}_{1}+\left[C_{F}\left(\frac{3}{2}+\ln \left(\frac{\mu^{2}}{\zeta}\right)\right)\right. \\
& \left.\left.+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{\hat{p}_{\xi}^{+}}\right)+C_{A} \ln \left(\frac{q^{+}}{\hat{p}_{A}^{+}}\right)\right]\right\}+O\left(a_{s}^{2}\right)
\end{aligned}
$$

Rapidity divergences
 appears due to overlap of the fields in the soft region

collinear-fields \& anti-collinear are the same at

$$
\begin{aligned}
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} q & \lesssim Q\left\{\lambda^{2}, \lambda^{2}, \lambda\right\} q, \\
\left\{\partial_{+}, \partial_{-}, \partial_{T}\right\} A^{\mu} & \lesssim Q\left\{\lambda^{2}, \lambda^{2}, \lambda\right\} A^{\mu},
\end{aligned}
$$

- (or) Introduce separating-scale
- (or) Subtract by soft-factor
- (or) ...
\Rightarrow multiplicative renormalization
[AV,1707.07606] \Rightarrow evolution equation with ζ $\zeta \frac{d}{d \zeta} \Phi_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)=-\mathcal{D}(b) \Phi_{N M}\left(\left\{z_{1}, \ldots\right\}, b\right)$

$$
\widetilde{R}\left(b^{2}, \frac{\delta^{+}}{\nu^{+}}\right)=1-4 a_{s} C_{F} \Gamma(-\epsilon)\left(-\frac{b^{2} \mu^{2}}{4 e^{-\gamma_{E}}}\right)^{\epsilon} \ln \left(\frac{\delta^{+}}{\nu^{+}}\right)+O\left(a_{s}^{2}\right) .
$$

Rapidity divergence arise from the interaction with the far end of neighbour Wilson line

General facts

- Independent on the "type" of another operator
- Multiplicatively renormalizable (*)
- Same for all operators (up to color-representation) at LP, NLP, NNLP(!)
* End-point divergences and derivatives of R cancel!

Evolution for quasi-partonic TMD operators (distributions)

$$
\begin{aligned}
\mu^{2} \frac{d \Phi_{N M}}{d \mu^{2}}(\mu, \zeta) & =\left(\bar{\gamma}_{N}(\mu, \zeta)+\gamma_{M}(\mu, \zeta)\right) \otimes \Phi_{N M}(\mu, \zeta) \\
\zeta \frac{d \Phi_{N M}}{d \zeta}(\mu, \zeta) & =-\mathcal{D}(b, \mu) \otimes \Phi_{N M}(\mu, \zeta)
\end{aligned}
$$

- γ_{1} known up to NNLO
- γ_{2} known up to LO
- γ_{3} could be reconstructed at LO (if ever needed)
- $\mathcal{D}=-K / 2$ is CS-kernel (non-perturbative)
- Same for all QP operators!

Universitãt Regensburg

Computing TMD factorization

Keldysh thechnique
to deal with
causality structure $\longrightarrow J^{(+) \mu}(y) J^{(-) \nu}(0)$

Details \& examples in [2109.09711]

Computing TMD factorization

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples in [2109.09711]
(power) Expand in background fields sort operators by TMD-twist

$$
\begin{aligned}
& \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& +n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& \quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \check{\partial}_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{aligned}
$$

Universităt Regensburg

Computing TMD factorization

$$
\frac{J^{(+) \mu}(y) J^{(-) \nu}(0)}{1}
$$

Details \& examples
in [2109.09711]
(power) Expand in background fields sort operators by TMD-twist

$$
\begin{aligned}
& \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\bar{\psi}_{\bar{n}}(y) \gamma_{T}^{\mu} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& +n^{\mu} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots \\
& \quad+y^{+} \bar{q}_{\bar{n}}\left(y^{-} n+y_{T}\right) \check{\partial}_{-} \gamma^{-} q_{n}\left(y^{+} \bar{n}+y_{T}\right) \bar{q}_{n}(0) \gamma_{T}^{\nu} q_{\bar{n}}(0)+\ldots
\end{aligned}
$$

(loop) Integrate over fast components with 2-bcg.QCD action
at least NLO is needed to confirm factorization (WL direction, pole-cancelation)

Coincides with [Boer,Mulders,Pijlman,03]
Universitāt Regensburg

NLO computation

Main check of factorization: pole cancellation

$$
\overbrace{F_{1}\left[\otimes Z_{1} R\right]}^{\text {finite }} \otimes \underbrace{\left[Z_{1}^{-1} R^{-1}\right] \otimes H \otimes\left[Z_{2}^{-1} R^{-1}\right]}_{\text {finite }} \otimes \overbrace{\left[Z_{2} R\right] \otimes F_{2}}^{\text {finite }}
$$

NLO computation

Extra facts

- At LP and NLP one Sudakov form factor is needed (exchange diagrams are NNLP)
- Computation for Sudakov is done for LP and NLP both at NLO
- Position space
- LP is well known (up to $\mathrm{N}^{3} \mathrm{LO}$) and coincides
- Twist-(1,1) part of NLP is the same as LP
- Required by EM gauge invariance Non-trivial check
- Twist-(1,2) part is totally new
- The UV and rapidity divergences of NLP operators computed independently
- (position space) BFLK part coincide with [Braun,Manashov,09]
- (momentum space) "Coincides" with [Beneke, et al, 17] (up to missed channels)
- Checks
- Pole parts of hard coefficient and operators cancel very non-trivial check
- Some diagrams are computed in momentum space check

Universitãt Regensburg

Final expression: TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
&+ \int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2,3}\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&+ \int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \times\left(C_{1}^{*} C_{2}\left(\tilde{x}_{2,3}\right) \delta\left(\tilde{x}_{1}-\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1112}^{\mu \nu}(x, \tilde{x}, b)+C_{2}^{*}\left(\tilde{x}_{1,2}\right) C_{1} \delta\left(\tilde{x}_{3}+\frac{q^{-}}{p_{2}^{-}}\right) \mathcal{J}_{1121}^{\mu \nu}(x, \tilde{x}, b)\right) \\
&\quad+\ldots\}
\end{align*}
$$

Final expression: TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\left.\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \right\rvert\, C_{1} \sqrt{\mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)}\right. \tag{6.17}\\
& \quad+\int[d x] d x \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)
\end{align*}
$$

$$
\begin{aligned}
& \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)=\frac{\gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\nu}}{N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& \quad+i \frac{n^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+n^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{+} N_{c}}\left(\partial_{\rho} \mathcal{O}_{11, \bar{n}}^{l i}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\partial_{\rho} \overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right) \\
& \quad+i \frac{\bar{n}^{\mu} \gamma_{T, i j}^{\rho} \gamma_{T, k l}^{\nu}+\bar{n}^{\nu} \gamma_{T, i j}^{\mu} \gamma_{T, k l}^{\rho}}{q^{-} N_{c}}\left(\mathcal{O}_{11, \bar{n}}^{l i}(x, b) \partial_{\rho} \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)+\overline{\mathcal{O}}_{11, \bar{n}}^{j k}(x, b) \partial_{\rho} \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right),
\end{aligned}
$$

- Operators of $(1,1) \times(1,1)$ (ordinary TMDs)

$$
\mathcal{O}_{11}^{i j}(x, b)=p_{+} \int \frac{d \lambda}{2 \pi} e^{-i x \lambda p_{+}} \bar{q}_{j}[\lambda n+b, \pm \infty n+b][\pm \infty n, 0] q_{i}
$$

- Contains LP and NLP (total derivatives)
- Restores EM gauge invariance up to λ^{3}

$$
q_{\mu} J_{1111}^{\mu \nu} \quad \sim\left(p_{1}^{-} q_{T}+p_{2}^{+} q_{T}\right) J_{1111}
$$

Final expression: TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde{x} \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right)\left|C_{1}\right|^{2} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right. \tag{6.17}\\
& \quad+\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \quad \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{*} C_{2}\left(x_{2},\right) \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)-\delta\left(x_{3}+\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{2}^{*}\left(x_{1,2}\right) C_{1} \mathcal{J}_{2111}^{\mu \nu}(x, \tilde{x}, b)\right) \\
& \quad+\int d x[d \tilde{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& \\
& \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)= \\
& \frac{i g}{x_{2}}\left(\frac{\bar{n}^{\nu}}{q^{-}}-\frac{n^{\nu}}{q^{+}}\right) \frac{\gamma_{T, i j}^{\mu} \delta_{k l}}{N_{c}}\left(\mathcal{O}_{12, \bar{n}}^{j k}(x, b) \overline{\mathcal{O}}_{11, n}^{j k}(\tilde{x}, b)-\overline{\mathcal{O}}_{12, \bar{n}}^{j k}(x, b) \mathcal{O}_{11, n}^{l i}(\tilde{x}, b)\right)
\end{align*}
$$

- Operators of $(1,2) \times(1,1)$
$\mathcal{O}_{12}^{i j}\left(x_{1,2,3}, b\right)=p_{+}^{2} \int \frac{d z_{1,2,3}}{2 \pi} e^{-i x^{i} z_{i} p_{+}} \bar{q}_{j}\left[z_{1} n+b, \pm \infty n+b\right]\left[\pm \infty n, z_{2} n\right] \gamma^{\mu} F_{\mu+}\left[z_{2} n, z_{3} n\right] q_{i}$
- EM gauge invarint only up to NNLP

$$
q_{\mu} J_{1211}^{\mu \nu} \quad \sim\left(p_{1}^{-}+p_{2}^{+}\right) J_{1211}
$$

Final expression: TMD factorization at NLP

Effective operator for any process (DY, SIDIS, SIA)

$$
\begin{align*}
& \mathcal{J}_{\text {eff }}^{\mu \nu}(q)=\int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i(q b)}\left\{\int d x d \tilde { x } \delta (x - \frac { q ^ { + } } { p _ { 1 } ^ { + } }) \delta \left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\left|C_{1}\right|^{\mu} \mathcal{J}_{1111}^{\mu \nu}(x, \tilde{x}, b)\right.\right. \tag{6.17}\\
& +\int[d x] d \tilde{x} \delta\left(\tilde{x}-\frac{q^{-}}{p_{2}^{-}}\right) \\
& \times\left(\delta\left(x_{1}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) C_{1}^{\left(C_{2}^{*} C_{2}\left(x_{2,3}\right)\right.} \mathcal{J}_{1211}^{\mu \nu}(x, \tilde{x}, b)+\delta\left(x_{3}-\frac{q_{1}^{+}}{p_{1}^{+}}\right) \frac{\left.q_{2}^{*}\left(x_{1,2}\right) C_{1} J_{2111}^{\mu \nu}(x, \tilde{x}, b)\right)}{q^{+}}\right. \\
& +\int d x[d \hat{x}] \delta\left(x-\frac{q^{+}}{p_{1}^{+}}\right) \\
& C_{1}=1+a_{s} C_{F}\left(-\mathbf{L}_{Q}^{2}+3 \mathbf{L}_{Q}-8+\frac{\pi^{2}}{6}\right)+O\left(a_{s}\right), \\
& C_{2}\left(x_{1,2}\right)=1+a_{s}\left[C_{F}\left(-\mathbf{L}_{Q}^{2}+\mathbf{L}_{Q}-3+\frac{\pi^{2}}{6}\right)+C_{A} \frac{x_{1}+x_{2}}{x_{1}} \ln \left(\frac{x_{1}+x_{2}}{x_{2}}\right)\right. \\
& \left.+\left(C_{F}-\frac{C_{A}}{2}\right) \frac{x_{1}+x_{2}}{x_{2}} \ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)\left(2 \mathbf{L}_{Q}-\ln \left(\frac{x_{1}+x_{2}}{x_{1}}\right)-4\right)\right]
\end{align*}
$$

- Coefficient functions up to NLO
- C_{1} is know up to $\mathrm{N}^{3} \mathrm{LO}$
- C_{1} is same for LP, NLP, \ldots parts of operator $J_{1111}^{\mu \nu}$

Conclusion

What I have not told:

- Process dependence and Wilson lines
- Cancellation between end-point divergences and derivatives of soft-factor
- Systematization of NLP TMD distributions, and expression for cross-section in these terms
- Matching to collinear factorization
- Application for different objects (lattice)

Roadmap for power corrections in TMD

- NLP/NLO (done) [2109.09771]
- NNLP (done)/NLO (in progress)
- Summation of descendants of LP \Rightarrow restoration of EM gauge invariance (in progress)
- Phenomenology ...

TMD operator expansion - an efficient approach to TMD factorization beyond LP

- Operator level / Position space / All processes
- Strict \& intuitive rules for operator sorting (TMD-twist)

Thank you for attention!

Universitãt Regensburg

- Many results (so far) unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos, AV, 20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

DVCS
$J^{\mu}(z) J^{\nu}(0) \xrightarrow{\text { OPE }} \sum_{n=0}^{\infty} z^{n}\left[C_{n}^{\mu \nu} \otimes O_{n}\right]\left(z^{+}\right)$

Leading power \Rightarrow GPDs
violates EM Ward identities and translation invariance

- Many results (so far) unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos, AV, 20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

DVCS
$J^{\mu}(z) J^{\nu}(0) \xrightarrow{\text { OPE }} \sum_{n=0}^{\infty} z^{n}\left[C_{n}^{\mu \nu} \otimes O_{n}\right]\left(z^{+}\right)$

power	operators		
0	$\bar{q}[.] q$.		
1	$\bar{q}[.] q$.	$\bar{q} F_{\mu+[. .] q}$	
2	$\bar{q}[.] q$.	$\bar{q} F_{\mu+[. .] q}$	$\bar{q} F_{\mu+} F_{\nu+}[.] q$. $\bar{q}[.]. q \bar{q}[.] q$. $\bar{q} F_{\mu+}[..] \gamma^{-} q$
\ldots	$\operatorname{tw} 2$	$\operatorname{tw} 3$	$\operatorname{tw} 4$

The most efficient way to study power corrections: OPE + background formalism

- Many results (so far) unreachable by other methods
- Twist-3, twist-4 evolution kernels [Braun,Manashov,08-09]
- Coefficient function for various observables (e.g. quasi-PDFs at twist-3 [Braun,Ji,AV,20-21])
- All-Power corrections (DVCS [Braun,Manashov,17-21], target-mass corrections to TMDs [Moos, AV, 20])
- Clear and strict formulation \Rightarrow Simple computation
- Twist-decomposition

(LO) UV anomalous dimension of a semi-compact operator has two parts

Compart part

$\sigma<z_{\text {max }}$

Reproduce elementry evolution kernel
Bukhvostov-Frolov-LipatovKuraev for QP operator

Braun-Manshov-Rohrwild for non-QP operators

Non-Compart part

$$
z_{\max }<\sigma
$$

Collinearly divergent
(UV/collinear overlap)
Needs a regulator to compute (canceled by UV part of rap.divergence)

$$
U_{2, \bar{n}}^{\mu}\left(\left\{z_{1}, z_{2}\right\}, b\right)=g\left[L n+b, z_{1} n+b\right] F_{\bar{n}}^{\mu+}\left[z_{1} n+b, z_{2} n+b\right] \xi_{\bar{n}}\left(z_{2} n+b\right),
$$

$$
\begin{aligned}
& \operatorname{diag}_{u 2}+\ldots+\operatorname{diag}_{u 10}=\frac{a_{s}}{\epsilon}\left\{\gamma_{T}^{\mu} \gamma_{T}^{\nu} \mathbb{H}_{1} U_{2, \bar{n}}^{\nu}+\gamma_{T}^{\nu} \gamma_{T}^{\mu} \mathbb{H}_{2} U_{2, \bar{n}}^{\nu}\right. \\
& \left.\quad+\left[C_{F}\left(2+2 \ln \left(\frac{\delta^{+}}{q^{+}}\right)\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{i s \hat{p}_{\xi}^{+}}\right)+C_{A} \ln \left(\frac{q^{+}}{i s \hat{p}_{A}^{+}}\right)\right] U_{2, \bar{n}}^{\mu}\right\}
\end{aligned}
$$

－Confirmed by direct computation
－Same structure for QP operators of higher twists
－Non－QP operator different．．．（in progress）

$\operatorname{diag}_{u 2}+\ldots+\operatorname{diag}_{u 10}=\frac{a_{s}}{\epsilon}\left\{\gamma_{T}^{\mu} \gamma_{T}^{\nu} \mathbb{H}_{1} U_{2, \bar{n}}^{\nu}+\gamma_{T}^{\nu} \gamma_{T}^{\mu} \mathbb{H}_{2} U_{2, \bar{n}}^{\nu}\right.$

$$
\left.+\left[C_{F}\left(2+2 \ln \left(\frac{\delta^{+}}{q^{+}}\right)\right)+2\left(C_{F}-\frac{C_{A}}{2}\right) \ln \left(\frac{q^{+}}{i s \hat{p}_{\xi}^{+}}\right)+C_{A} \ln \left(\frac{q^{+}}{i s \hat{p}_{A}^{+}}\right)\right] U_{2, \bar{n}}^{\mu}\right\}
$$

$$
\begin{align*}
2 \mathrm{H}_{1} U\left(x_{1}, x_{2}\right)= & C_{A} \delta_{x_{1}} U\left(0, x_{2}\right)+\int d v\left\{C_{A}\left(\theta\left(v, x_{1}\right)-\theta\left(-v,-x_{1}\right)\right) \frac{x_{1}}{x_{1}+v}[\right. \tag{C.6}\\
& \left.\frac{U\left(x_{1}, x_{2}\right)-U\left(x_{1}+v, x_{2}-v\right)}{v}+\left(\frac{x_{2}}{x_{1}+v}-\frac{x_{1}}{x_{1}+x_{2}}\right) \frac{U\left(x_{1}+v, x_{2}-v\right)}{x_{1}+x_{2}}\right] \\
& +C_{A}\left(\theta\left(v, x_{2}\right)-\theta\left(-v,-x_{2}\right)\right) \frac{x_{2}}{x_{2}+v}[\\
& \left.\frac{U\left(x_{1}, x_{2}\right)-U\left(x_{1}-v, x_{2}+v\right)}{v}-\frac{2 x_{1}+x_{2}}{\left(x_{1}+x_{2}\right)^{2}} U\left(x_{1}-v, x_{2}+v\right)\right] \\
& +2\left(C_{F}-\frac{C_{A}}{2}\right)^{1} \frac{1}{x_{1}+v}\left[\frac{-x_{1}^{2}}{\left(x_{1}+x_{2}\right)^{2}}\left(\theta\left(v, x_{1}\right)-\theta\left(-v,-x_{1}\right)\right)\right. \\
& \left.\left.+\left(\left(\frac{x_{1}}{x_{1}+x_{2}}\right)^{2}-\left(\frac{v}{x_{2}-v}\right)^{2}\right)\left(\theta\left(v,-x_{2}\right)-\theta\left(-v, x_{2}\right)\right)\right] U\left(x_{2}-v, x_{1}+v\right)\right\}
\end{align*}
$$

Process dependence

The background can be taken in any gauge (since it is gauge invariant)

- Light-cone gauge kills operators with $A_{+, \bar{n}}$ and $A_{-, n}$ (~ 1 in power counting).
- Convenient choice of gauges
- Collinear field $A_{+}=0$
- Anti-Collinear field $A_{-}=0$
- Dynamical field: Feynman gauge
- However one needs to specify boundary condition. The result depends on it.

$$
\begin{array}{rll}
A_{\bar{n}}^{\mu}(z)=-g \int_{-\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) & \text { vs. } & A_{\bar{n}}^{\mu}(z)=-g \int_{+\infty}^{0} d \sigma F_{\bar{n}}^{\mu+}(z+n \sigma) \\
\bar{q}[z, z-\infty n] & \text { vs. } & \bar{q}[z, z+\infty n]
\end{array}
$$

To specify boundary and WL direction, we should go to NLO

Universităt Regensburg

NLO expression in position space

NLO expression in position space

NLO expression in position space

$$
\begin{gathered}
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}} \\
f \text { f's are TMDPDFs or TMDFFs }
\end{gathered}
$$

Universitãt Regensburg

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

$$
I=\int_{-\infty}^{0} d z^{+} \frac{f_{n}\left(z^{+}\right)}{\left(-2 z^{+}\right)^{\alpha}}\left(I_{0}+I_{1}+I_{2}+I_{\infty}\right), \quad I_{C}=\int_{C} \frac{f_{\bar{n}\left(z^{-}\right)}^{\left(z^{-}\right)^{\alpha}}}{\left(z^{2}\right.}
$$

Universităt Regensburg

NLO expression in position space

$$
I=\int_{-\infty}^{\infty} d z^{+} d z^{-} \frac{f_{\bar{n}}\left(z^{-}\right) f_{n}\left(z^{+}\right)}{\left[-2 z^{+} z^{-}+i 0\right]^{\alpha}}
$$

		for DY	for SIDIS	for SIA	
f 's are TMDPDFs or TMDFFs	$f_{\bar{n}}\left(z^{-}\right)$is analytical in $f_{n}\left(z^{+}\right)$is analytical in	$\begin{aligned} & \text { lower } \\ & \text { lower } \end{aligned}$	$\begin{aligned} & \text { lower } \\ & \text { upper } \end{aligned}$	$\begin{aligned} & \text { upper } \\ & \text { upper } \end{aligned}$	half-plane half-plane

