

Universität Wien November 16, 2021

New approach to (semi) inclusive DIS with QED & QCD factorization

Wally Melnitchouk — Jefferson Lab —

collaborators: Tianbo Liu (Shandong U) Jianwei Qiu (JLab) Nobuo Sato (JLab) *arXiv:2008.02895, PRD (2021) arXiv:2108.13371, JHEP (2021)*

Outline

- Lepton-hadron scattering and hadron structure
 - → main source of information about quark/gluon (parton) structure of hadrons, via QCD factorization theorems
 - → leptons radiate photons, so QED radiation effects may complicate "Born" level interpretations
 - \rightarrow new factorized approach treats QED+QCD radiation on equal footing
- Inclusive DIS
 - \rightarrow radiative contributions vs. "radiative corrections"
- Semi-inclusive DIS
 - no unique photon-hadron frame for simple TMD interpretation
 mixing of spin asymmetries
- Outlook

Lepton-hadron scattering

The new generation of "Rutherford" experiments for probing hadron structure:

<u>Semi-Inclusive events</u>: $e+p/A \rightarrow e'+h(p,K,p,jet)+X$

Detect the scattered lepton in coincidence with identified hadrons/jets

♦ **Exclusive events:** $e+p/A \rightarrow e'+p'/A'+h(p,K,p,jet)$

Detect every thing including scattered proton/nucleus (or its fragments)

Most information on PDFs obtained from lepton-hadron deep-inelastic scattering (DIS)

structure function given as convolution of hard
 Wilson coefficient with PDF

→ good description of data and extraction of PDFs over several orders of $x & Q^2$!

→ one of great success stories of QCD & QCD factorization!

→ global QCD analysis of DIS and other high-energy scattering data has provided detailed information on momentum (& spin) distributions of partons in the nucleon

Moffat, WM, Rogers, Sato (2021) JAM (Jefferson Lab Angular Momentum) Collaboration

- \rightarrow QED radiation effects important!
- \rightarrow e.g. "HERMES effect"

Phys. Lett. B 475, 386 (2000)

Miller, Brodsky, Karliner Phys. Lett. B 481, 245 (2000)

- \rightarrow QED radiation effects important!
- \rightarrow e.g. "HERMES effect"

Phys. Lett. B 475, 386 (2000)

A-dependent tracking inefficiency of spectrometer, not recognized in original analysis, had significant effect on radiative corrections!

→ effect disappears!

ns/(sr²)] 3.

[bar

in(k) dΩ_e dΩ_k

 $d^5\sigma/d$

In presence of QED radiation (from initial or final leptons), momentum transfer not unique

$$\begin{split} E'\frac{d\sigma}{d^{3}k'} &= \frac{2\alpha_{\rm EM}^{2}}{s}\frac{1}{Q^{4}}L^{\mu\nu}(k,k;q)W_{\mu\nu}(q,P) & E'\frac{d\sigma}{d^{3}k'} &= \frac{2\alpha_{\rm EM}^{2}}{s}\int d^{4}\hat{q}\left(\frac{1}{\hat{q}^{2}}\right)^{2}\tilde{L}^{\mu\nu}(k,k;\hat{q})W_{\mu\nu}(\hat{q},P) \\ \tilde{L}^{\mu\nu}(k,k;\hat{q}) &= \sum_{X_{L}}\int\prod_{i\in X_{L}}\frac{d^{3}k_{i}}{(2\pi)^{3}2E_{i}}\,\delta^{(4)}\left(k-k'-\hat{q}-\sum_{i\in X_{L}}k_{i}\right)\langle k|j^{\mu}(0)|k'X_{L}\rangle\langle k'X_{L}|j^{\nu}(0)|k\rangle \\ &= -\tilde{g}^{\mu\nu}(\hat{q})L_{1} + \frac{\tilde{k}^{\mu}\tilde{k}^{\nu}}{k\cdot k'}L_{2} + \frac{\tilde{k'}^{\mu}\tilde{k'}^{\nu}}{k\cdot k'}L_{3} + \frac{\tilde{k}^{\mu}\tilde{k'}^{\nu}+\tilde{k'}^{\mu}\tilde{k}^{\nu}}{2k\cdot k'}L_{4} & \tilde{g}^{\mu\nu}(\hat{q}) = g^{\mu\nu} - \frac{\hat{q}^{\mu}\hat{q}^{\nu}}{\hat{q}^{2}} \\ &\to 2(k^{\mu}k'^{\nu}+k'^{\mu}k^{\nu}-k\cdot k'g^{\mu\nu})\,\delta^{(4)}(k-k'-\hat{q}) \end{split}$$

4 Lepton structure functions! Small lpha leads to $\,\hat{q}_T^2 \ll \widehat{Q}^2\,$ in lepton back-to-back frame!

Apply collinear factorization (with one-photon exchange approximation)

- QED radiation prevents a well-defined "photon-hadron" frame
- Radiation is IR sensitive as $m_e/Q
 ightarrow 0$, into LDFs & LFFs
- Hadron is probed by $(x_B,Q^2)
 ightarrow (\hat{x}_B,\widehat{Q}^2)$

$$x_B \to \hat{x}_B \in [x_B, 1]$$
 $\widehat{Q}^2_{\min} = Q^2 \frac{(1-y)}{(1-x_B y)}$ $\widehat{Q}^2_{\max} = Q^2 \frac{1}{(1-y+x_B y)}$

Apply collinear factorization (with one-photon exchange approximation)

- QED radiation prevents a well-defined "photon-hadron" frame
- Radiation is IR sensitive as $m_e/Q
 ightarrow 0$, into LDFs & LFFs
- Hadron is probed by $(x_B,Q^2) o (\hat{x}_B,\widehat{Q}^2)$

■ Apply collinear factorization (with one-photon exchange approximation)

Iepton distribution function (LDF) & lepton fragmentation function (LFF) do not decouple from parton distribution!

Lepton evolution

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} f_{e/e}(\xi, \mu^{2}) = \int_{\xi}^{1} \frac{\mathrm{d}\xi'}{\xi'} P_{ee}\left(\frac{\xi}{\xi'}, \alpha\right) f_{e/e}(\xi', \mu^{2})$$

Lepton fragmentation function (LFF)

$$D_{e/e}^{(1)}(\zeta,\mu) = \frac{\alpha}{2\pi} \left[\frac{1+\zeta^2}{1-\zeta} \ln \frac{\zeta^2 \mu^2}{(1-\zeta)^2 m_e^2} \right]_+$$

- \rightarrow compare with existing calculations
- \rightarrow RC depends on input PDF!

QED radiative corrections vs. radiative contributions

QED radiative corrections:

$$\sigma_{
m obs}(x_B,Q^2) \
otag \ R_{
m QED}(x_B,Q^2;x_{B,
m true},Q^2_{
m true}) imes \sigma_{
m Born}(x_{B,
m true},Q^2_{
m true}) + \sigma_X(x_B,Q^2),$$

- The correction factors R_{QED} and σ_x should not depend on the hadron structure that we wish to extract, and they can be systematically calculated in QED to high precision;
- The effective scale Q²_{true} for the Born cross section σ_{Born} should be large enough to keep the "true" scattering within the DIS regime.
- Extraction of $\sigma_{
 m Born}$ is an inverse problem

QED radiative contributions:

$$\sigma_{
m obs}(x_{\!\scriptscriptstyle B},Q^2) = \sigma_{
m lep}^{
m univ}(\mu^2;m_e^2)\otimes\sigma_{
m had}^{
m univ}(\mu^2;\Lambda_{
m QCD}^2)\otimes\widehat{\sigma}_{
m IR-safe}(\hat{x}_{\!\scriptscriptstyle B},\widehat{Q}^2,\mu^2) + \mathcal{O}\left(rac{\Lambda_{
m QCD}^2}{Q^2},rac{m_e^2}{Q^2}
ight)$$

- Infrared sensitive QED contributions divergent as $m_e/Q
 ightarrow 0$, are absorbed to universal LDFs and LFFs
- Infrared safe QED contributions finite as $m_e/Q
 ightarrow 0$, are calculated order-by-order in power of lpha
- Power suppressed contributions as $m_e/Q
 ightarrow 0$, are neglected

Predictive power: Universality of LDFs and LFFs, their evolution, calculable hard parts Neglect power corrections

■ Differential cross section involves 18 structure functions

$$\frac{d\sigma}{dx_{B} dy d\phi_{S} dz d\phi_{h} dP_{h\perp}^{2}} = \frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_{h} F_{UU}^{\cos \phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{\varepsilon} \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_{h} F_{LU}^{\sin \phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UU}^{\sin 2\phi_{h}} \right] \\ + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{\varepsilon} \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_{h} F_{UL}^{\sin \phi_{h}} \\ + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_{h} F_{UL}^{\sin \phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin 2\phi_{h}} \right] \\ + S_{\parallel} \lambda_{\varepsilon} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{h} F_{LL}^{\cos \phi_{h}} \right] \\ + |S_{\perp}| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(3\phi_{h} - \phi_{S})} \right) \right] \\ + \varepsilon \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \\ + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_{S} F_{UT}^{\sin \phi_{S}} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{S} F_{UT}^{\cos \phi_{S}} \\ + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \right\}$$

Goal to extract from SIDIS structure functions the transverse momentum dependent (TMD) distribution and fragmentation functions

Quark TMDs with polarization

		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	υ	$f_1(x,k_T^2)$ •		$h_1^{\perp}(x,k_T^2)$ Boer-Mulders
	L		$g_1(x, k_T^2) \xrightarrow[Helicity]{} \xrightarrow{Helicity} $	$h_{1L}^{\perp}(x,k_T^2) \xrightarrow{P}_{Long-Transversity}$
	т	$f_1^{\perp}(x,k_T^2)$ $f_1^{\perp}(x,k_T^2)$ $f_1^{\perp}(x,k_T^2)$ $f_1^{\perp}(x,k_T^2)$ $f_1^{\perp}(x,k_T^2)$ $f_1^{\perp}(x,k_T^2)$	$g_{1T}(x,k_T^2) \stackrel{\uparrow}{\bullet} - \stackrel{\downarrow}{\bullet}$ Trans-Helicity	$h_{1}(x,k_{T}^{2}) \underbrace{\downarrow}_{Transversity} - \underbrace{\uparrow}_{Transversity} h_{1T}^{\perp}(x,k_{T}^{2}) \underbrace{\downarrow}_{Pretzelosity} - \underbrace{\downarrow}_{Pretzelosity} - $

Polarized SIDIS:

In photon-hadron frame:

$$\begin{split} A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{split}$$

Do we need to consider lepton TMDs?

→ use "hybrid" framework, with TMD factorization for hadrons, collinear factorization for leptons

QED factorization of collision induced radiation – collinear:

$$E_{\ell'}E_{P_h}\frac{\mathrm{d}^6\sigma_{\ell(\lambda_\ell)P(S)\to\ell'P_hX}}{\mathrm{d}^3\ell'\,\mathrm{d}^3P_h}\approx\sum_{ij\lambda_k}\int_{\zeta_{\min}}^1\frac{\mathrm{d}\zeta}{\zeta^2}\,D_{e/j}(\zeta)\int_{\xi_{\min}}^1\mathrm{d}\xi\,f_{i(\lambda_k)/e(\lambda_\ell)}(\xi)\left[E_{k'}E_{P_h}\frac{\mathrm{d}^6\hat{\sigma}_{k(\lambda_k)P(S)\to k'P_hX}}{\mathrm{d}^3k'\,\mathrm{d}^3P_h}\right]_{k=\xi\ell,k'=\ell'/\zeta}+\mathcal{O}(\frac{m_e^n}{Q^n})$$

- Leading power IR sensitive contribution is universal, as $m_e/Q \rightarrow 0$, factorized into LDFs and LFFs
- **IR** safe contributions are calculated order-by-order in powers of α
- Neglect m_e/Q power suppressed contributions

□ "One photon"-approximation:

-> Apply a (ξ, ζ) -dependent Lorentz transformation:

$$\{\hat{q}, P, \hat{P}_h\}$$
 $\{q, P, P_h\}$
 (ξ, ζ) In a frame to compare with exp. measurements

Case study F_{UU} :

$$\frac{d\sigma_{\text{SIDIS}}^{h}}{dx_{B}dy\,dz\,dP_{hT}^{2}} = \int_{\zeta_{\min}}^{1} d\zeta \int_{\xi_{\min}(\zeta)}^{1} d\xi \, D_{e/e}(\zeta) \, f_{e/e}(\xi) \times \left[\frac{\hat{x}_{B}}{x_{B}\,\xi\zeta}\right] \left[\frac{(2\pi)^{2}\,\alpha}{\hat{x}_{B}\,\hat{y}\,\hat{Q}^{2}} \frac{\hat{y}^{2}}{2(1-\hat{\varepsilon})} F_{UU}^{h}(\hat{x}_{B},\hat{Q}^{2},\hat{z},\hat{P}_{hT})\right]$$

Evaluated in a "virtual photon-hadron" frame

Unpolarized structure function:

$$F_{UU}^{h} = x_{B} \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \, \delta^{(2)} \left(\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{q}_{T} \right) \times f_{q/N}(x_{B}, \boldsymbol{p}_{T}^{2}) \, D_{h/q}(z, \boldsymbol{k}_{T}^{2}) \qquad \boldsymbol{q}_{T} = \boldsymbol{P}_{hT}/z$$

 (ξ, ζ) - Dependent Lorentz transformation Effectively, a rotation in hadron-rest frame

→ QED radiative effect depends strongly on hadronic input!

□ Case study – single transverse spin asymmetry:

$$\frac{d\sigma}{dx_{B} dy d\phi_{S} dz d\phi_{h} dP_{h\perp}^{2}} = \frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_{h} F_{UU}^{\cos \phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_{h} F_{LU}^{\sin \phi_{h}} + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos 2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_{h} F_{LU}^{\sin \phi_{h}} + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_{h} F_{UL}^{\sin \phi_{h}} + \varepsilon \sin(2\phi_{h}) F_{UL}^{\sin 2\phi_{h}} \right] + S_{\parallel} \lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{h} F_{UL}^{\cos \phi_{h}} \right]$$

$$+ \left| S_{\perp} \right| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \right] + \varepsilon \sin(\phi_{h} + \phi_{S}) \left(F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right) \right]$$

$$+ \left| S_{\perp} \left| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{S} F_{LT}^{\cos \phi_{S}} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_{S} F_{LT}^{\cos \phi_{S}} \right] \right]$$

Case study – single transverse spin asymmetry:

e.g., for Sivers function, $sin(\phi_h - \phi_S)$ modulation would be obtained from

$$F_{UT,T}^{\sin(\phi_h - \phi_S)} \stackrel{\text{no QED}}{=} \int \mathrm{d}\phi_h \,\mathrm{d}\phi_S \,\sin(\phi_h - \phi_S) \bigg[\sin(\phi_h - \phi_S) F_{UT,T}^{\sin(\phi_h - \phi_S)} \\ + \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \bigg]$$

since
$$\int d\phi_h d\phi_S \sin(\phi_h - \phi_S) \sin(\phi_h + \phi_S) = 0$$

with QED radiation, projecting phases are no longer orthonormal

$$\int \mathrm{d}\phi_h \,\mathrm{d}\phi_S \,\sin(\phi_h - \phi_S)\sin(\hat{\phi}_h + \hat{\phi}_S) \neq 0$$

QED radiative corrections:

Radiative Effects in the Processes of Hadron Electroproduction

I.Akushevich, N.Shumeiko, A.Soroko

National Center of Particle and High Energy Physics, 220040 Minsk, Belarus

Received: date / Revised version: date

Abstract. An approach to calculate radiative corrections to unpolarized cross section of semi-inclusive electroproduction is developed. An explicit formulae for the lowest order QED radiative correction are presented. Detailed numerical analysis is performed for the kinematics of experiments at the fixed targets.

 $p_t/p_t max$

23

Outlook

- Factorized approach treats QED & QCD radiation on equal footing
 - → QED radiation integral part of production cross section, not universal "correction factor"
 - → all QED & QCD hard parts IR safe; IR sensitivity included in universal lepton distribution and fragmentation functions
- More important for less inclusive processes, such as SIDIS
 - \rightarrow no well-defined photon-hadron frame in presence of radiation
 - \rightarrow radiative effects more pronounced at high momentum transfer — new paradigm for future data analyses at EIC energies

Outlook

- Factorized approach treats QED & QCD radiation on equal footing
 - → QED radiation integral part of production cross section, not universal "correction factor"
 - → all QED & QCD hard parts IR safe; IR sensitivity included in universal lepton distribution and fragmentation functions
- More important for less inclusive processes, such as SIDIS
 - \rightarrow no well-defined photon-hadron frame in presence of radiation
 - → radiative effects more pronounced at high momentum transfer — new paradigm for future data analyses at EIC energies

Danke!