Stefano Frixione

Collinear factorisation for $e^{+} e^{-}$collisions

Based on: 1909.03886 (SF), 1911.12040 (Bertone, Cacciari, SF, Stagnitto)
2105.06688 (SF), and work in progress within MadGraph5_aMC@NLO (2108.10261, SF, Mattelaer, Zaro, Zhao)
Vienna, 9/11/2021

Assumption:

Somewhere, someone will build an $e^{+} e^{-}$collider

(linear or circular)

Consider the production of a system X at an $e^{+} e^{-}$collider:

$$
e^{+}\left(P_{e^{+}}\right)+e^{-}\left(P_{e^{-}}\right) \longrightarrow X
$$

Its cross section is written as follows:

$$
d \Sigma_{e^{+} e^{-}}\left(P_{e^{+}}, P_{e^{-}}\right)=\sum_{k l=e^{+} e^{-} \gamma} \int d y_{+} d y_{-} \mathcal{B}_{k l}\left(y_{+}, y_{-}\right) d \sigma_{k l}\left(y_{+} P_{e^{+}}, y_{-} P_{e^{-}}\right)
$$

Here:
$\checkmark d \Sigma_{e^{+} e^{-}}$: the collider-level cross section

- $d \sigma_{k l}$: the particle-level cross section
- $\mathcal{B}_{k l}\left(y_{+}, y_{-}\right)$: describes beam dynamics (including beamstrahlung)
$\checkmark e^{+}, e^{-}$on the Ihs: the beams
$\diamond e^{+}, e^{-}, \gamma$ on the rhs: the particles

I'll mostly be concerned with computing $d \sigma_{k l}$ in the rest of the talk

The particle-level cross section $d \sigma$ embeds all that is not beam dynamics

It is perturbatively computable, but plagued by $\log (m / E)$ terms to all orders. Fortunately, the dominant classes of these are factorisable:

$$
d \sigma(\log (m / E), m / E)=\mathcal{K}(\log (m / E)) \otimes d \hat{\sigma}(m / E)
$$

The idea is to compute $d \hat{\sigma}$ to some fixed order in perturbation theory, and \mathcal{K} to all orders (so that logs are resummed)

The definitions of \mathcal{K} and of the convolution (\otimes) determine unambiguously how the logs are resummed. Historically (LEP), simulations have been predominantly done by adopting the YFS formalism

Therefore, two things to be done:

1. Compute $d \hat{\sigma}$
2. Compute \mathcal{K} to all orders within a definite convolution scheme

Therefore, two things to be done:

1. Compute $d \hat{\sigma}$

With the exception of dedicated, high-accuracy computations, the way to go is automation. With MadGraph5_aMC@NLO, both LO and NLO results can be obtained for arbitrary processes, for any combination $\alpha_{S}^{k} \alpha^{p}$ (theoretical basis in 1405.0301, 1804.10017)
\qquad

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& cess \& \multirow[t]{2}{*}{Syntax} \& \multicolumn{4}{|c|}{Cross section (pb)}

\hline \multicolumn{2}{|l|}{Heavy quarks and jets} \& \& LO 1 TeV \& \& NLO 1 TeV \&

\hline i. 1 \& $e^{+} e^{-} \rightarrow j j$ \& $日^{+} \theta^{-\gg j} \mathrm{j}$ \& $6.223 \pm 0.005 \cdot 10^{-1}$ \& $$
\begin{aligned}
& +0.0 \% \\
& -0.0 \%
\end{aligned}
$$ \& $6.389 \pm 0.013 \cdot 10^{-1}$ \& $$
\begin{aligned}
& +0.2 \% \\
& { }_{-0.2 \%}
\end{aligned}
$$

\hline 1. 2 \& $e^{+} e^{-} \rightarrow j j j$ \& $\theta^{+} \theta^{-\gg j} \mathrm{j} j$ \& $3.401 \pm 0.002 \cdot 10^{-1}$ \& $+9.6 \%$
-8.0% \& $3.166 \pm 0.019 \cdot 10^{-1}$ \& $+0.2 \%$
-2.1%

\hline i. 3 \& $e^{+} e^{-} \rightarrow j j j j j$ \& $\theta^{+} \theta^{-} \gg j \mathrm{j} j \mathrm{j}$ \& $1.047 \pm 0.001 \cdot 10^{-1}$ \& $+20.0 \%$

+ \& $1.090 \pm 0.006 \cdot 10^{-1}$ \& $+0.0 \%$
$+2.8 \%$

\hline 1. 4 \& $e^{+} e^{-} \rightarrow j j j j j j$ \& $\theta^{+} \theta^{-}>\mathrm{j} j \mathrm{j} j \mathrm{j}$ \& $2.211 \pm 0.006 \cdot 10^{-2}$ \& \[
$$
\begin{aligned}
& -31.4 \% \\
& +31.4 \% \\
& -22.0 \%
\end{aligned}
$$

\] \& $2.771 \pm 0.021 \cdot 10^{-2}$ \& \[

$$
\begin{array}{r}
-2.8 \% \\
+4.4 \% \\
-8.6 \% \\
\hline
\end{array}
$$
\]

\hline i. 5 \& $e^{+} e^{-} \rightarrow t \bar{t}$ \& $\theta^{+} \mathrm{e}^{-}>\mathrm{t}$ t \& $1.662 \pm 0.002 \cdot 10^{-1}$ \& $+0.0 \%$
-0.0% \& $1.745 \pm 0.006 \cdot 10^{-1}$ \& $+0.4 \%$
-0.4%

\hline i. 6 \& $e^{+} e^{-} \rightarrow t \bar{t} j$ \& $\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim j$ \& $4.813 \pm 0.005 \cdot 10^{-2}$ \& +9.3\%
$+7.8 \%$
+7.8 \& $5.276 \pm 0.022 \cdot 10^{-2}$ \& +
$+1.3 \%$
-2.1%

\hline i.7* \& $e^{+} e^{-} \rightarrow t \bar{t} j j$ \& $\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim j \mathrm{j}$ \& $8.614 \pm 0.009 \cdot 10^{-3}$ \& ${ }^{+19.4 \%}$ \& $1.094 \pm 0.005 \cdot 10^{-2}$ \& $+5.0 \%$
$+6.3 \%$

\hline i. 8^{*} \& $e^{+} e^{-} \rightarrow t \bar{t} j j j$ \& $\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{j}$ j j \& $1.044 \pm 0.002 \cdot 10^{-3}$ \& $$
\begin{aligned}
& -15.47 \% \\
& +30.5 \% \\
& -21.6 \%
\end{aligned}
$$ \& $1.546 \pm 0.010 \cdot 10^{-3}$ \& $+10.6 \%$

-11.6%

\hline 1. 9^{*} \& $e^{+} e^{-} \rightarrow t \bar{t} t \bar{t}$ \& $\theta^{+} \theta^{-}>\mathrm{t}$ t~ t t \& $6.456 \pm 0.016 \cdot 10^{-7}$ \& -
$+19.1 \%$

$+14.8 \%$ \& $1.221 \pm 0.005 \cdot 10^{-6}$ \& | ${ }^{+}+13.6 \%$ |
| :--- |
| $+11.2 \%$ |
| |
| 1 |

\hline i. 10^{*} \& $e^{+} e^{-} \rightarrow t \bar{t} t \bar{t} j$ \& $\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{t}$ t $\sim \mathrm{j}$ \& $2.719 \pm 0.005 \cdot 10^{-8}$ \& \[
$$
\begin{array}{r}
14.8 \% \\
+29.9 \% \\
-21.3 \%
\end{array}
$$

\] \& $5.338 \pm 0.027 \cdot 10^{-8}$ \& \[

$$
\begin{aligned}
& -11.2 \% \\
& +18.3 \% \\
& -15.4 \%
\end{aligned}
$$
\]

\hline i. 11 \& $e^{+} e^{-} \rightarrow b \bar{b}(4 \mathrm{f})$ \& $\mathrm{e}^{+} \mathrm{e}^{-}>\mathrm{b}$ b~ \& $9.198 \pm 0.004 \cdot 10^{-2}$ \& ${ }^{+0.0 \%}$ \& $9.282 \pm 0.031 \cdot 10^{-2}$ \& ${ }_{-0.0 \%}^{+0.0 \%}$

\hline i. 12 \& $e^{+} e^{-} \rightarrow b \bar{b} j$ (4f) \& $\theta^{+} \theta^{-}>\mathrm{b} b \sim j$ \& $5.029 \pm 0.003 \cdot 10^{-2}$ \& ${ }^{+9.5 \%}$ \& $4.826 \pm 0.026 \cdot 10^{-2}$ \& $+0.5 \%$
-2.5%

\hline i.13* \& $e^{+} e^{-} \rightarrow b \bar{b} j j(4 \mathrm{f})$ \& $e^{+} \theta^{-}>b \mathrm{~b} \sim \mathrm{j}$ j \& $1.621 \pm 0.001 \cdot 10^{-2}$ \& ${ }^{+20.0 \%}$ \& $1.817 \pm 0.009 \cdot 10^{-2}$ \& $+0.0 \%$
-3.1%

\hline i.14* \& $e^{+} e^{-} \rightarrow b \bar{b} j j j j$ (4f) \& $\theta^{+} \theta^{-}>b b \sim \sim j 0 j$ \& $3.641 \pm 0.009 \cdot 10^{-3}$ \& \[
$$
\begin{aligned}
& +31.4 \% \\
& +22.1 \%
\end{aligned}
$$

\] \& $4.936 \pm 0.038 \cdot 10^{-3}$ \& \[

$$
\begin{aligned}
& +.1 .8 \% \\
& +-8.9 \%
\end{aligned}
$$
\]

\hline i.15* \& $e^{+} e^{-} \rightarrow b \bar{b} b \bar{b}(4 \mathrm{f})$ \& $\mathrm{e}^{+} \mathrm{e}^{-}>\mathrm{b}$ b $\sim \mathrm{b}$ b \sim \& $1.644 \pm 0.003 \cdot 10^{-4}$ \& \[
$$
\begin{aligned}
& -15.1 \% \\
& +15.9 \% \\
& -15.3 \%
\end{aligned}
$$

\] \& $3.601 \pm 0.017 \cdot 10^{-4}$ \& \[

$$
\begin{aligned}
& +15.2 \% \\
& { }_{-12.5 \%}
\end{aligned}
$$
\]

\hline i. 16^{*} \& $e^{+} e^{-} \rightarrow b \bar{b} b \bar{b} j$ (4f) \& $\theta^{+} \theta^{-}>b \mathrm{~b} \sim \mathrm{~b}$ b $\sim \mathrm{j}$ \& $7.660 \pm 0.022 \cdot 10^{-5}$ \& \[
$$
\begin{aligned}
& +31.3 \% \\
& { }_{-22.0 \%}^{+3 \%}
\end{aligned}
$$

\] \& $1.537 \pm 0.011 \cdot 10^{-4}$ \& \[

$$
\begin{aligned}
& +17.9 \% \\
& { }_{-15.3 \%}
\end{aligned}
$$
\]

\hline i. 17^{*} \& $e^{+} e^{-} \rightarrow t \bar{t} b \bar{b}(4 \mathrm{f})$ \& $\mathrm{e}^{+} \mathrm{e}^{-}>\mathrm{t}$ t $\sim \mathrm{b}$ b \sim \& $1.819 \pm 0.003 \cdot 10^{-4}$ \& \[
$$
\begin{aligned}
& +19.5 \% \\
& -15.0 \%
\end{aligned}
$$

\] \& $2.923 \pm 0.011 \cdot 10^{-4}$ \& \[

$$
\begin{aligned}
& +9.2 \% \\
& { }_{-8.9 \%}
\end{aligned}
$$
\]

\hline i.18* \& $e^{+} e^{-} \rightarrow t \bar{t} b \bar{b} j$ (4f) \& $\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{b}$ b $\sim \mathrm{j}$ \& \[
4.045 \pm 0.011 \cdot 10^{-5}

\] \& \[

$$
\begin{aligned}
& +30.5 \% \\
& -21.6 \% \\
& \hline
\end{aligned}
$$

\] \& \[

7.049 \pm 0.052 \cdot 10^{-5}

\] \& \[

$$
\begin{aligned}
& +13.7 \% \\
& -13.1 \% \\
& \hline
\end{aligned}
$$
\]

\hline
\end{tabular}

From 1405.0301; this is NLO in α_{S}

Process		Syntax	Cross section (pb)			
Top quarks + bosons			LO 1 TeV		NLO 1 TeV	
j. 1	$e^{+} e^{-} \rightarrow t \bar{t} H$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{h}$	$2.018 \pm 0.003 \cdot 10^{-3}$	${ }_{-0.0 \%}^{+0.0 \%}$	$1.911 \pm 0.006 \cdot 10^{-3}$	${ }_{-0.5 \%}^{+0.4 \%}$
j. 2 *	$e^{+} e^{-} \rightarrow t \bar{t} H j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{h} j$	$2.533 \pm 0.003 \cdot 10^{-4}$	${ }_{-7.8 \%}^{+9.2 \%}$	$2.658 \pm 0.009 \cdot 10^{-4}$	${ }_{-1.5 \%}^{+0.5 \%}$
j. 3 *	$e^{+} e^{-} \rightarrow t \bar{t} H j j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{h} j \mathrm{j}$	$2.663 \pm 0.004 \cdot 10^{-5}$	$\begin{aligned} & +19.3 \% \\ & { }_{-14.9 \%} \end{aligned}$	$3.278 \pm 0.017 \cdot 10^{-5}$	${ }_{-5.7 \%}^{+4.0 \%}$
j. 4^{*}	$e^{+} e^{-} \rightarrow t \bar{t} \gamma$	- +	$1.270 \pm 0.002 \cdot 10^{-2}$	${ }^{\text {co. }}$	$1.335 \pm 0.004 \cdot 10^{-2}$	${ }_{-0.4 \%}^{+0.5 \%}$
j. 5 *	$e^{+} e^{-} \rightarrow t \bar{t} \gamma j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t \sim a j	$2.355 \pm 0.002 \cdot 10^{-3}$	${ }_{-7.9 \%}^{+9.3 \%}$	$2.617 \pm 0.010 \cdot 10^{-3}$	${ }_{-2.4 \%}^{+1.6 \%}$
j. 6^{*}	$e^{+} e^{-} \rightarrow t \bar{t} \gamma j j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t \sim a $\mathrm{j} j$	$3.103 \pm 0.005 \cdot 10^{-4}$	$\begin{aligned} & +19.5 \% \\ & { }_{-15.0 \%}^{+5} \end{aligned}$	$4.002 \pm 0.021 \cdot 10^{-4}$	${ }_{-6.6 \%}^{+5.4 \%}$
j. 7^{*}	$e^{+} e^{-} \rightarrow t \bar{t} Z$	$\theta^{+} \theta^{-}>\mathrm{t}$ t~ z	$4.642 \pm 0.006 \cdot 10^{-3}$	${ }_{-0.0 \%}^{+0.0 \%}$	$4.949 \pm 0.014 \cdot 10^{-3}$	${ }_{-0.5 \%}^{+0.6 \%}$
j. 8^{*}	$e^{+} e^{-} \rightarrow t \bar{t} Z j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{z} \mathrm{j}$	$6.059 \pm 0.006 \cdot 10^{-4}$	$\begin{aligned} & -9.3 \% \\ & { }_{-7.8 \%}^{+9} \end{aligned}$	$6.940 \pm 0.028 \cdot 10^{-4}$	${ }_{-2.6 \%}^{+2.0 \%}$
j. 9^{*}	$e^{+} e^{-} \rightarrow t \bar{t} Z j j j$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{z} j \mathrm{j}$	$6.351 \pm 0.028 \cdot 10^{-5}$	$\begin{aligned} & { }_{-15.0 \%}^{+19.4 \%} \end{aligned}$	$8.439 \pm 0.051 \cdot 10^{-5}$	${ }_{-6.8 \%}^{+5.8 \%}$
j. 10^{*}	$e^{+} e^{-} \rightarrow t \bar{t} W^{ \pm} j j$	e+ $\mathrm{e}^{->} \mathrm{t}$ t \sim wpm j j	$2.400 \pm 0.004 \cdot 10^{-7}$	$\begin{array}{r} +19.3 \% \\ -14.9 \% \\ \hline \end{array}$	$3.723 \pm 0.012 \cdot 10^{-7}$	$\begin{aligned} & -9.6 \% \\ & { }_{-9.1 \%} \end{aligned}$
j.11*	$e^{+} e^{-} \rightarrow t \bar{t} H Z$	$e^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{hz}$	$3.600 \pm 0.006 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.0 \%}$	$3.579 \pm 0.013 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.1 \%}$
j.12*	$e^{+} e^{-} \rightarrow t \bar{t} \gamma Z$	$\theta^{+} \theta^{-}>\mathrm{t}$ t \sim a z	$2.212 \pm 0.003 \cdot 10^{-4}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \end{aligned}$	$2.364 \pm 0.006 \cdot 10^{-4}$	${ }_{-0.5 \%}^{+0.6 \%}$
j. 13^{*}	$e^{+} e^{-} \rightarrow t \bar{t} \gamma H$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{ah}$	$9.756 \pm 0.016 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.0 \%}$	$9.423 \pm 0.032 \cdot 10^{-5}$	${ }_{-0.4 \%}^{+0.3 \%}$
j.14*	$e^{+} e^{-} \rightarrow t \bar{t} \gamma \gamma$	$\theta^{+} \theta^{-}>\mathrm{t}$ t \sim a a	$3.650 \pm 0.008 \cdot 10^{-4}$	${ }_{-0.0 \%}^{+0.0 \%}$	$3.833 \pm 0.013 \cdot 10^{-4}$	${ }_{-0.4 \%}^{+0.4 \%}$
j. 15 *	$e^{+} e^{-} \rightarrow t \bar{t} Z Z$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{z} \mathrm{z}$	$3.788 \pm 0.004 \cdot 10^{-5}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \end{aligned}$	$4.007 \pm 0.013 \cdot 10^{-5}$	${ }_{-0.5 \%}^{+0.5 \%}$
j. $16{ }^{*}$	$e^{+} e^{-} \rightarrow t \bar{t} H H$	$\theta^{+} \theta^{-}>\mathrm{t}$ t $\sim \mathrm{h} \mathrm{h}$	$1.358 \pm 0.001 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.0 \%}$	$1.206 \pm 0.003 \cdot 10^{-5}$	${ }_{-1.1 \%}^{+0.9 \%}$
j. $17 *$	$e^{+} e^{-} \rightarrow t \bar{t} W^{+} W^{-}$	$\theta^{+} \mathrm{e}^{-}>\mathrm{t}$ t $\sim \mathrm{w}^{+} \mathrm{w}^{-}$	$1.372 \pm 0.003 \cdot 10^{-4}$	$\begin{gathered} +0.0 \% \\ \\ \\ \hline 0.00 \% \end{gathered}$	$1.540 \pm 0.006 \cdot 10^{-4}$	$\stackrel{{ }_{-0.9 \%}^{+1.0 \%}}{ }$

From 1405.0301; this is NLO in α_{S}

Prooess	Syntax	Cross section (in pb)		Correction (in \%)
		LO	NLO	
$p \rightarrow e^{+} \nu_{e}$	PP>ot ve QCD=0 GED-2 [QED]	$5.2498 \pm 0.0005 \cdot 10^{3}$	$5.2113 \pm 0.0000+10^{3}$	-0.73 ± 0.01
$p \rightarrow e^{+} v l^{\prime}$	$P \mathrm{P}>\mathrm{e}+\mathrm{ve}] \mathrm{QCD}=1$ QED-2 [QED]	$9.1468 \pm 0.0012 \cdot 10^{2}$	$9.0449 \pm 0.0014+10^{2}$	-1.11 ± 0.02
$m \rightarrow e^{+} v_{e} D$	$P P>e+v e j$ ¢ $Q C D-2$ QED-2 [QED]	$3.1562 \pm 0.0003 \cdot 10^{2}$	$3.0985 \pm 0.0005 \cdot 10^{2}$	-1.83 ± 0.02
$p \rightarrow e^{+} e^{-}$	$P \mathrm{P}>0+\mathrm{e}-\mathrm{QCD}-0$ QDD-2 [QED]	$7.5367 \pm 0.0008 \cdot 10^{7}$	$7.4907 \pm 0.6010 \cdot 10^{2}$	-0.49 ± 0.08
$p \rightarrow e^{+} e^{-} j$		$1.5059 \pm 0.0001 \cdot 10^{2}$	$1.4000 \pm 0.0002 \cdot 10^{2}$	-1.00 ± 0.02
$p \rightarrow e^{+} e^{-} j 2$	$P \mathrm{P}>\mathrm{e}+\mathrm{e}=1$] QCD-2 QED-2 [QED]	$5.1424 \pm 0.0004 \cdot 10^{1}$	$5.0410 \pm 0.0007+10^{1}$	-1.97 ± 0.02
$p \rightarrow e^{+} e^{-} \mu^{+} \mu^{-}$	$P \mathrm{P}>$ et e- $\mathrm{mm}+\mathrm{mu}-\mathrm{QCD}=0 . \mathrm{QED}=4$ [QED]	$1.270 \pm 0.0000 \cdot 10^{-2}$	$1.2083 \pm 0.0001 \cdot 10^{-2}$	-5.23 ± 0.01
w $\quad \rightarrow e^{+} \nu_{\mu^{\prime}}-\nu_{\mu}$		$5.1144 \pm 0.0007 \cdot 10^{-1}$	$5.3019 \pm 0.0009+10^{-1}$	$+3.67 \pm 0.02$
$p \rightarrow \mathrm{He}^{+} \nu_{e}$	P P > i et ve QCD 0 O QED-S [GED]	$6.7043 \pm 0.0001 \cdot 10^{-2}$	$6.4914 \pm 0.0012+10^{-2}$	-4.03 ± 0.02
$m \rightarrow H e^{+} e^{-}$	$P \mathrm{P}>$ h et $\mathrm{e}=\mathrm{QCD}-0$ QED-3 [QED]	$1.4554 \pm 0.0001 \cdot 10^{-2}$	$1.3700 \pm 0.0002+10^{-2}$	-5.87 ± 0.02
$\bar{W} \rightarrow H j$	$P P>h j J$ GCD-Q QED-3 [GED]	$2.8268 \pm 0.0008 \cdot 10$	$2.707 \pm 0.0003 \cdot 109$	-4.22 ± 0.01
$p \rightarrow W^{+} W^{-} W^{+}$		$8.2874 \pm 0.0004 \cdot 10^{-2}$	$8.8017 \pm 0.0012 \cdot 10^{-2}$	$+6.21 \pm 0.02$
$p \rightarrow Z Z W^{+}$	$\mathrm{PP}>2=\mathrm{B}+\mathrm{QCD}-0$ QED-3 [QED]	$1.9874 \pm 0.0001 \cdot 10^{-2}$	$2.0189 \pm 0.0003+10^{-2}$	$+1.58 \pm 0.02$
$w \rightarrow Z Z Z$	$P \mathrm{P}>2 \mathrm{z}$ z GCD-0 QED-3 [QED]	$1.0701 \pm 0.0001 \cdot 10^{-2}$	$0.9741 \pm 0.0001 \cdot 10^{-2}$	-9.47 ± 0.08
$p \rightarrow H Z Z$	$P \mathrm{P}>\mathrm{h} z \mathrm{z}$ QCD=0 QED-3 [QED]	$2.1005 \pm 0.0008 \cdot 10^{-5}$	$1.9155 \pm 0.0008 \cdot 10^{-8}$	-8.81 ± 0.08
$p \mathrm{H} \rightarrow \mathrm{HZW}{ }^{+}$	P P $>$ h 2 + QCD=0 GED-3 [QED]	$2.4408 \pm 0.0000 \cdot 10^{-3}$	$2.4800 \pm 0.0005 \cdot 10^{-3}$	$+1.64 \pm 0.02$
$\mathrm{W} \rightarrow \mathrm{HH} W^{+}$		$2.7827 \pm 0.0001 \cdot 10^{-4}$	$2.4259 \pm 0.0027+10^{-4}$	-12.82 ± 0.10
$w \rightarrow H H Z$	$P \mathrm{P}>\mathrm{h} \mathrm{h} \mathrm{z} \mathrm{QCD=0} \mathrm{QED=3} \mathrm{[QED]}$	$2.6914 \pm 0.0003 \cdot 10^{-4}$	$2.3926 \pm 0.0008 \cdot 10^{-4}$	-11.10 ± 0.02
$s p \rightarrow t W^{+}$	$\mathrm{PP}>\mathrm{t} \mathrm{E}^{-} \mathrm{w}+\mathrm{QCD}-2 \mathrm{QED}-1$ [GED]	$2.4119 \pm 0.0003 \cdot 10^{-1}$	$2.3025 \pm 0.0003 \cdot 10^{-1}$	-4.54 ± 0.02
$p \rightarrow t \bar{Z}$	$P \mathrm{P}>\mathrm{t} \mathrm{t}^{*} \mathrm{z}$ QCD-2 QED-1 [QED]	$5.0450 \pm 0.0006 \cdot 10^{-1}$	$5.0033 \pm 0.0007+10^{-1}$	-0.84 ± 0.02
$p \rightarrow t \bar{H}$	$\mathrm{PP}>\mathrm{t} \mathrm{t}^{-} \mathrm{L}$ QCD-2 $\mathrm{QED}=1$ [QED]	$3.4480 \pm 0.0004 \cdot 10^{-1}$	$3.5102 \pm 0.0005+10^{-1}$	$+1.81 \pm 0.02$
$D \rightarrow t \bar{j}$	$P P>t \mathrm{f}$] GCD-3 QED=9 [QED]	$3.0277 \pm 0.0000 \cdot 10$	$2.9683 \pm 0.0004 \cdot 10^{\circ}$	-1.90 ± 0.08
$p w \rightarrow j j 3$	$P P>j 1$ j QCD=3 QED $=0$ [QED]	$7.0639 \pm 0.0010 \cdot 10^{6}$	$7.9472 \pm 0.0011+10^{6}$	-0.21 ± 0.02
$p \rightarrow t$	$\mathrm{PP}>\mathrm{t}$ j QCD-0 $\mathrm{QED}-2$ [QED]	$1.0613 \pm 0.0001 \cdot 10^{2}$	$1.0539 \pm 0.0001+10^{2}$	-0.70 ± 0.02

From 1804.10017; this is NLO in $\alpha ; e^{+} e^{-}$results can be obtained as easily as these ones, provided a definite scheme for item 2. above has been chosen (as is now the case)

Therefore, two things to be done:

1. Compute $d \hat{\sigma}$
2. Compute \mathcal{K} to all orders within a definite convolution scheme

We adopt a collinear-factorisation approach. Comparisons with YFS-based predictions will help assess theoretical systematics in a comprehensive way
(I'll concentrate here on ISR. Analogous formulae hold for FSR)

Collinear factorisation

$$
d \sigma=\mathrm{PDF} \star \mathrm{PDF} \star d \hat{\sigma}
$$

PDFs collect (universal) small-angle dynamics

$$
\begin{array}{r}
d \sigma_{k l}\left(p_{k}, p_{l}\right)=\sum_{i j=e^{+}, e^{-}, \gamma} \int d z_{+} d z_{-} \Gamma_{i / k}\left(z_{+}, \mu^{2}, m^{2}\right) \Gamma_{j / l}\left(z_{-}, \mu^{2}, m^{2}\right) \\
\times d \hat{\sigma}_{i j}\left(z_{+} p_{k}, z_{-} p_{l}, \mu^{2}\right)+\mathcal{O}\left(\left(\frac{m^{2}}{s}\right)^{p}\right)
\end{array}
$$

where one calculates Γ and $d \hat{\sigma}$ to predict $d \sigma$

- $k, l=e^{+}, e^{-}, \gamma$ on the Ihs: the particles that emerge from beamstrahlung
- $i, j=e^{+}, e^{-}, \gamma$ on the rhs: the partons
- $d \sigma_{k l}$: the particle-level (ie observable) cross section
- $d \hat{\sigma}_{i j}$: the subtracted parton-level cross section.

Generally with $m=0 \Longrightarrow$ power-suppressed terms in $d \sigma$ discarded

- $\Gamma_{i / k}$: the PDF of parton i inside particle k
- μ : the hard scale, $m^{2} \ll \mu^{2} \sim s$

Why this approach?

Because it allows one to exploit a significant amount of the technical knowledge we have acquired in two decades of LHC physics
[And: to cross-check YFS-based predictions, and to provide meaningful systematics]

Indeed, very similar to QCD, with some notable differences:

- PDFs and power-suppressed terms can be computed perturbatively
\checkmark An object (e.g. e^{-}) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not

As I have said, parton-level cross section computations are highly automated, and can now be carried out at the NLO in both α and α_{S} with MadGraph5_aMC@NLO

Conversely, until recently PDFs were only available at the LO+LL, which is insufficient in the context of NLO simulations

z-space LO + LL PDFs $(\alpha \log (E / m))^{k}$:
1992

- $0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- $0 \leq k \leq 3$ for $z<1$ (skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
- matching between these two regimes
z-space LO + LL PDFs $(\alpha \log (E / m))^{k}$:
~ 1992
- $0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- $0 \leq k \leq 3$ for $z<1$ (Skrrypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
- matching between these two regimes
z-space $\mathrm{NLO}+\mathrm{NLL}$ PDFs $(\alpha \log (E / m))^{k}+\alpha(\alpha \log (E / m))^{k-1}$:
\longrightarrow 1909.03886, 1911.12040, 2105.06688
- $0 \leq k \leq \infty$ for $z \simeq 1$
- $0 \leq k \leq 3$ for $z<1 \Longleftrightarrow \mathcal{O}\left(\alpha^{3}\right)$
- matching between these two regimes
- for e^{+}, e^{-}, and γ
- both numerical and analytical

Main tool: the solution of PDFs evolution equations

Henceforth, I consider the dominant production mechanism at an $e^{+} e^{-}$ collider, namely that associated with partons inside an electron*

Simplified notation:

$$
\Gamma_{i}\left(z, \mu^{2}\right) \equiv \Gamma_{i / e^{-}}\left(z, \mu^{2}\right)
$$

NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

$$
\Gamma_{i}=\Gamma_{i}^{[0]}+\frac{\alpha}{2 \pi} \Gamma_{i}^{[1]}+\mathcal{O}\left(\alpha^{2}\right)
$$

Results:

$$
\begin{aligned}
\Gamma_{i}^{[0]}\left(z, \mu_{0}^{2}\right) & =\delta_{i e^{-}} \delta(1-z) \\
\Gamma_{e^{-}}^{[1]}\left(z, \mu_{0}^{2}\right) & =\left[\frac{1+z^{2}}{1-z}\left(\log \frac{\mu_{0}^{2}}{m^{2}}-2 \log (1-z)-1\right)\right]_{+}+K_{e e}(z) \\
\Gamma_{\gamma}^{[1]}\left(z, \mu_{0}^{2}\right) & =\frac{1+(1-z)^{2}}{z}\left(\log \frac{\mu_{0}^{2}}{m^{2}}-2 \log z-1\right)+K_{\gamma e}(z) \\
\Gamma_{e^{+}}^{[1]}\left(z, \mu_{0}^{2}\right) & =0
\end{aligned}
$$

Note:

- Meaningful only if $\mu_{0} \sim m$
- In $\overline{\mathrm{MS}}, K_{i j}(z)=0$; in general, these functions define a factorisation scheme

NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial conditions computed previously

$$
\frac{\partial \Gamma_{i}\left(z, \mu^{2}\right)}{\partial \log \mu^{2}}=\frac{\alpha(\mu)}{2 \pi}\left[P_{i j} \otimes \Gamma_{j}\right]\left(z, \mu^{2}\right) \Longleftrightarrow \frac{\partial \Gamma\left(z, \mu^{2}\right)}{\partial \log \mu^{2}}=\frac{\alpha(\mu)}{2 \pi}[\mathbb{P} \otimes \Gamma]\left(z, \mu^{2}\right)
$$

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

- Mellin space: suited to both numerical solution and all-order, large-z analytical solution (called asymptotic solution). Dominant
- Directly in z space in an integrated form: suited to fixed-order, all- z analytical solution (called recursive solution). Subleading

Bear in mind that PDFs are fully defined only after adopting a definite factorisation scheme, which is the choice of the finite terms associated with the subtraction of the collinear poles
(done by means of the $K_{i j}(z)$ functions)

- $1911.12040 \longrightarrow \overline{\mathrm{MS}}$
$\checkmark 2105.06688 \longrightarrow$ a DIS-like scheme $($ called $\Delta)$

A technicality: owing to the running of α, it is best to evolve in t rather than in μ, with: (\sim Furmanski, Petronzio)

$$
\begin{aligned}
t & =\frac{1}{2 \pi b_{0}} \log \frac{\alpha(\mu)}{\alpha\left(\mu_{0}\right)} \\
& =\frac{\alpha(\mu)}{2 \pi} L-\frac{\alpha^{2}(\mu)}{4 \pi}\left(b_{0} L^{2}-\frac{2 b_{1}}{b_{0}} L\right)+\mathcal{O}\left(\alpha^{3}\right), \quad L=\log \frac{\mu^{2}}{\mu_{0}^{2}}
\end{aligned}
$$

Note:
$t t \longleftrightarrow \mu$; notation-wise, the dependence on t is equivalent to the dependence on μ

- $t=0 \Longleftrightarrow \mu=\mu_{0}$
- L is my "large log"
- Tricky: fixed- α expressions are obtained with $t=\alpha L /(2 \pi)$ (and not $t=0$)

Mellin space

Introduce the evolution operator \mathbb{E}_{N}

$$
\Gamma_{N}\left(\mu^{2}\right)=\mathbb{E}_{N}(t) \Gamma_{0, N}, \quad \mathbb{E}_{N}(0)=I, \quad \Gamma_{0, N} \equiv \Gamma_{N}\left(\mu_{0}^{2}\right)
$$

The PDFs evolution equations are then re-expressed by means of an evolution equation for the evolution operator:

$$
\begin{aligned}
\frac{\partial \mathbb{E}_{N}^{(K)}(t)}{\partial t}= & b_{0} \alpha(\mu) \mathbb{K}_{N}\left(I+\frac{\alpha(\mu)}{2 \pi} \mathbb{K}_{N}\right)^{-1} \mathbb{E}_{N}^{(K)}(t) \\
+ & \frac{b_{0} \alpha^{2}(\mu)}{\beta(\alpha(\mu))} \sum_{k=0}^{\infty}\left(\frac{\alpha(\mu)}{2 \pi}\right)^{k} \\
& \times\left(I+\frac{\alpha(\mu)}{2 \pi} \mathbb{K}_{N}\right) \mathbb{P}_{N}^{[k]}\left(I+\frac{\alpha(\mu)}{2 \pi} \mathbb{K}_{N}\right)^{-1} \mathbb{E}_{N}^{(K)}(t)
\end{aligned}
$$

- Can be solved numerically
- Can be solved analytically in a closed form under simplifying assumptions. Chiefly: large- z is equivalent to large- N

Asymptotic $\overline{\mathrm{MS}}$ solution

Non-singlet \equiv singlet; photon is more complicated

$$
\begin{aligned}
& \Gamma_{\mathrm{NLL}}\left(z, \mu^{2}\right) \xrightarrow{z \rightarrow 1} \frac{e^{-\gamma_{\mathrm{E}} \xi_{1}} e^{\hat{\xi}_{1}}}{\Gamma\left(1+\xi_{1}\right)} \xi_{1}(1-z)^{-1+\xi_{1}} \\
& \quad \times\left\{1+\frac{\alpha\left(\mu_{0}\right)}{\pi}\left[\left(L_{0}-1\right)\left(A\left(\xi_{1}\right)+\frac{3}{4}\right)-2 B\left(\xi_{1}\right)+\frac{7}{4}\right.\right. \\
& \left.\left.\quad+\left(L_{0}-1-2 A\left(\xi_{1}\right)\right) \log (1-z)-\log ^{2}(1-z)\right]\right\}
\end{aligned}
$$

where $L_{0}=\log \mu_{0}^{2} / m^{2}$, and:

$$
\begin{aligned}
A(\kappa) & =-\gamma_{\mathrm{E}}-\psi_{0}(\kappa) \\
B(\kappa) & =\frac{1}{2} \gamma_{\mathrm{E}}^{2}+\frac{\pi^{2}}{12}+\gamma_{\mathrm{E}} \psi_{0}(\kappa)+\frac{1}{2} \psi_{0}(\kappa)^{2}-\frac{1}{2} \psi_{1}(\kappa)
\end{aligned}
$$

with:

$$
\begin{aligned}
\xi_{1} & =2 t-\frac{\alpha(\mu)}{4 \pi^{2} b_{0}}\left(1-e^{-2 \pi b_{0} t}\right)\left(\frac{20}{9} n_{F}+\frac{4 \pi b_{1}}{b_{0}}\right) \\
& =2 t+\mathcal{O}(\alpha t)=\eta_{0}+\ldots \\
\hat{\xi}_{1} & =\frac{3}{2} t+\frac{\alpha(\mu)}{4 \pi^{2} b_{0}}\left(1-e^{-2 \pi b_{0} t}\right)\left(\lambda_{1}-\frac{3 \pi b_{1}}{b_{0}}\right) \\
& =\frac{3}{2} t+\mathcal{O}(\alpha t)=\lambda_{0} \eta_{0}+\ldots \\
\lambda_{1} & =\frac{3}{8}-\frac{\pi^{2}}{2}+6 \zeta_{3}-\frac{n_{F}}{18}\left(3+4 \pi^{2}\right)
\end{aligned}
$$

Remember that:

$$
\begin{aligned}
t & =\frac{1}{2 \pi b_{0}} \log \frac{\alpha(\mu)}{\alpha\left(\mu_{0}\right)} \\
& =\frac{\alpha(\mu)}{2 \pi} L-\frac{\alpha^{2}(\mu)}{4 \pi}\left(b_{0} L^{2}-\frac{2 b_{1}}{b_{0}} L\right)+\mathcal{O}\left(\alpha^{3}\right), \quad L=\log \frac{\mu^{2}}{\mu_{0}^{2}} .
\end{aligned}
$$

Asymptotic Δ solution

Non-singlet \equiv singlet; photon is trivial

$$
\begin{aligned}
\Gamma_{\mathrm{NLL}}\left(z, \mu^{2}\right) \stackrel{z \rightarrow 1}{\longrightarrow} & \frac{e^{-\gamma_{\mathrm{E}} \xi_{1}} e^{\hat{\xi}_{1}}}{\Gamma\left(1+\xi_{1}\right)} \xi_{1}(1-z)^{-1+\xi_{1}} \\
& \times\left[\left(1+\frac{3 \alpha\left(\mu_{0}\right)}{4 \pi} L_{0}\right) \sum_{p=0}^{\infty} \mathcal{S}_{1, p}(z)-\frac{\alpha\left(\mu_{0}\right)}{\pi} L_{0} \sum_{p=0}^{\infty} \mathcal{S}_{2, p}(z)\right]
\end{aligned}
$$

The $\mathcal{S}_{i, p}(z)$ functions are increasingly suppressed at $z \rightarrow 1$ with growing p. The dominant behaviour is:

$$
\begin{aligned}
\Gamma_{\mathrm{NLL}}\left(z, \mu^{2}\right) \xrightarrow{z \rightarrow 1} & \frac{e^{-\gamma_{\mathrm{E}} \xi_{1}} e^{\hat{\xi}_{1}}}{\Gamma\left(1+\xi_{1}\right)} \xi_{1}(1-z)^{-1+\xi_{1}} \\
& \quad \times\left[\frac{\alpha(\mu)}{\alpha\left(\mu_{0}\right)}+\frac{\alpha(\mu)}{\pi} L_{0}\left(A\left(\xi_{1}\right)+\log (1-z)+\frac{3}{4}\right)\right]
\end{aligned}
$$

\square A vastly different logarithmic behaviour w.r.t. the $\overline{\mathrm{MS}}$ case However, $\Gamma_{\mathrm{NLL}}^{(\overline{\mathrm{MS}})}-\Gamma_{\mathrm{NLL}}^{(\Delta)}=\mathcal{O}\left(\alpha^{2}\right)$

Key facts

Both $\overline{\mathrm{MS}}$ and Δ results feature an integrable singularity at $z \rightarrow 1$, essentially identical to the LL one

Key facts

Both $\overline{\mathrm{MS}}$ and Δ results feature an integrable singularity at $z \rightarrow 1$, essentially identical to the LL one

- In addition to that, in $\overline{\mathrm{MS}}$ there are single and double logarithmic terms \longrightarrow

$\Gamma_{\mathrm{NLL}} / \Gamma_{\mathrm{LL}}$ at large $z\left(\mu_{0}=m\right)$

$\overline{\mathrm{MS}}$ scheme

Δ scheme

In $\overline{\mathrm{MS}}$, significant scale dependence, and significant differences w.r.t. LL results. This doesn't happen in Δ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors: PDFs are unphysical, and there are huge cancellations with partonic cross sections. Also, bear in mind that $\Gamma_{\mathrm{NLL}}^{(\overline{\mathrm{MS}})}-\Gamma_{\mathrm{NLL}}^{(\Delta)}=\mathcal{O}\left(\alpha^{2}\right)$

$\Gamma_{\mathrm{NLL}} / \Gamma_{\mathrm{LL}}$ at large $z\left(\mu_{0}=m\right)$

$\overline{\mathrm{MS}}$ scheme

Δ scheme

In $\overline{\mathrm{MS}}$, significant scale dependence, and significant differences w.r.t. LL results. This doesn't happen in Δ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors: PDFs are unphysical, and there are huge cancellations with partonic cross sections. Also, bear in mind that $\Gamma_{\mathrm{NLL}}^{(\overline{\mathrm{MS}})}-\Gamma_{\mathrm{NLL}}^{(\Delta)}=\mathcal{O}\left(\alpha^{2}\right)$

Key facts

Both $\overline{\mathrm{MS}}$ and Δ results feature an integrable singularity at $z \rightarrow 1$, essentially identical to the LL one

- In addition to that, in $\overline{\mathrm{MS}}$ there are single and double logarithmic terms
- Owing to the integrable singularity, it is essential to have large-z analytical results: the PDFs convoluted with cross sections are obtained by matching the small- and intermediate- z numerical solution with the large- z analytical one

Analytical recursive solutions are used as cross-checks

A look at the photon:

$$
\begin{aligned}
\Gamma_{\gamma}^{(\overline{\mathrm{MS}})}\left(z, \mu^{2}\right) \xrightarrow{z \rightarrow 1} & \frac{t \alpha\left(\mu_{0}\right)^{2}}{\alpha(\mu)} \frac{3}{2 \pi \xi_{1}} \log (1-z)-\frac{t \alpha\left(\mu_{0}\right)^{3}}{\alpha(\mu)} \frac{1}{2 \pi^{2} \xi_{1}} \log ^{3}(1-z) \\
\Gamma_{\gamma}^{(\Delta)}\left(z, \mu^{2}\right) \xrightarrow{z \rightarrow 1} & \frac{1}{2 \pi} \frac{\alpha^{2}\left(\mu_{0}\right)}{\alpha(\mu)} \frac{1+(1-z)^{2}}{z} L_{0}+\frac{1}{2 \pi \xi_{1}} \frac{t \alpha^{2}\left(\mu_{0}\right)}{\alpha(\mu)} L_{0} \\
& -\frac{t \alpha(\mu)}{2 \pi \xi_{1}} \frac{e^{-\gamma_{\mathrm{E}} \xi_{1}} e^{\hat{\xi}_{1}}}{\Gamma\left(1+\xi_{1}\right)}(1-z)^{\xi_{1}} L_{0} .
\end{aligned}
$$

$\square \overline{\mathrm{MS}}$ vs Δ exhibits the same pattern as for (non-)singlet: logarithmic terms dominate at $z \rightarrow 1$ in $\overline{\mathrm{MS}}$, but are absent in Δ

$\overline{\mathrm{MS}}$ results

e^{-}vs γ vs e^{+}. Note that e^{-}in the right-hand panel is strongly damped As expected, electron dominance, but photons may play a role in the production of very massive objects

Cross sections

The results for these are not yet public; we are double-checking them. Some preliminary findings are the following:

- The inclusion of NLL contributions into the electron PDF has an impact between 0.1% and 0.5% (on average: results are expected to be observable dependent)
- This estimate does not include the effects of the photon PDF
- The comparison between $\overline{\mathrm{MS}}$ - and Δ-based results shows differences compatible with non-zero $\mathcal{O}\left(\alpha^{2}\right)$ effects, as expected

Conclusions

- We have computed all NLO initial conditions for PDFs and FFs (1909.03886), unpolarised
- We have NLL-evolved those relevant to the electron PDFs (1911.12040, 2105.06688), both analytically and numerically
- We have released the first version of MadGraph5_aMC@NLO (2108.10261) that includes both $e^{ \pm}$PDFs and beamstrahlung effects

Many results are based on establishing a "dictionary" QCD \longrightarrow QED, which works at any order in α_{S} and α

Being done/to be done

- Present results for physical cross sections
- Add the resummation of soft non-collinear logarithms
- Fragmentation functions (also relevant to hadron colliders)
- Polarisations?
- Higher logarithmic accuracy?

EXTRA SLIDES

z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

$$
\mathcal{F}(z, t)=\int_{0}^{1} d y \Theta(y-z) \Gamma\left(y, \mu^{2}\right) \quad \Longrightarrow \quad \Gamma\left(z, \mu^{2}\right)=-\frac{\partial}{\partial z} \mathcal{F}(z, t)
$$

in terms of which the formal solution of the evolution equation is:

$$
\mathcal{F}(z, t)=\mathcal{F}(z, 0)+\int_{0}^{t} d u \frac{b_{0} \alpha^{2}(u)}{\beta(\alpha(u))}[\mathbb{P} \bar{\otimes} \mathcal{F}](z, u)
$$

By inserting the representation:

$$
\mathcal{F}(z, t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(\mathcal{J}_{k}^{\mathrm{LL}}(z)+\frac{\alpha(t)}{2 \pi} \mathcal{J}_{k}^{\mathrm{NLL}}(z)\right)
$$

on both sides of the solution, one obtains recursive equations, whereby a \mathcal{J}_{k} is determined by all \mathcal{J}_{p} with $p<k$. The recursion starts from \mathcal{J}_{0}, which are the integrated initial conditions

For the record, the recursive equations are:

$$
\begin{aligned}
\mathcal{J}_{k}^{\mathrm{LL}}= & \mathbb{P}^{[0]} \bar{\otimes} \mathcal{J}_{k-1}^{\mathrm{LL}} \\
\mathcal{J}_{k}^{\mathrm{NLL}}= & (-)^{k}\left(2 \pi b_{0}\right)^{k} \mathcal{F}^{[1]}\left(\mu_{0}^{2}\right) \\
& +\sum_{p=0}^{k-1}(-)^{p}\left(2 \pi b_{0}\right)^{p}\left(\mathbb{P}^{[0]} \bar{\otimes} \mathcal{J}_{k-1-p}^{\mathrm{NLL}}+\mathbb{P}^{[1]} \bar{\otimes} \mathcal{J}_{k-1-p}^{\mathrm{LL}}\right. \\
& \\
& \left.\quad-\frac{2 \pi b_{1}}{b_{0}} \mathbb{P}^{[0]} \bar{\otimes} \mathcal{J}_{k-1-p}^{\mathrm{LL}}\right)
\end{aligned}
$$

We have computed these for $k \leq 3\left(\mathcal{J}^{\mathrm{LL}}\right)$ and $k \leq 2\left(\mathcal{J}^{\mathrm{NLL}}\right)$, ie to $\mathcal{O}\left(\alpha^{3}\right)$ Results in 1911.12040 and its ancillary files

Large- z singlet and photon

As for the non-singlet, start from the asymptotic AP kernel expressions:

$$
\begin{aligned}
\mathbb{P}_{\mathrm{S}, N} & \xrightarrow{N \rightarrow \infty}\left(\begin{array}{cc}
-2 \log \bar{N}+2 \lambda_{0} & 0 \\
0 & -\frac{2}{3} n_{F}
\end{array}\right) \\
& +\frac{\alpha}{2 \pi}\left(\begin{array}{cc}
\frac{20}{9} n_{F} \log \bar{N}+\lambda_{1} & 0 \\
0 & -n_{F}
\end{array}\right)+\mathcal{O}(1 / N)+\mathcal{O}\left(\alpha^{2}\right)
\end{aligned}
$$

This implies

$$
\begin{aligned}
\left(\mathbb{E}_{N}\right)_{S S} & =E_{N} \\
M^{-1}\left[\left(\mathbb{E}_{N}\right)_{\gamma \gamma}\right] & =\frac{\alpha\left(\mu_{0}\right)}{\alpha(\mu)} \delta(1-z)
\end{aligned}
$$

\Rightarrow Singlet \equiv non-singlet
Photon \equiv initial condition $+\alpha(0)$ scheme

Photon \equiv initial condition $+\alpha(0)$ scheme \Longrightarrow

$$
\Gamma_{\gamma}\left(z, \mu^{2}\right)=\frac{1}{2 \pi} \frac{\alpha\left(\mu_{0}\right)^{2}}{\alpha(\mu)} \frac{1+(1-z)^{2}}{z}\left(\log \frac{\mu_{0}^{2}}{m^{2}}-2 \log z-1\right) .
$$

Or: \sim Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

Photon \equiv initial condition $+\alpha(0)$ scheme \Longrightarrow

$$
\Gamma_{\gamma}\left(z, \mu^{2}\right)=\frac{1}{2 \pi} \frac{\alpha\left(\mu_{0}\right)^{2}}{\alpha(\mu)} \frac{1+(1-z)^{2}}{z}\left(\log \frac{\mu_{0}^{2}}{m^{2}}-2 \log z-1\right)
$$

Or: ~Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

But: vastly different from the numerical (exact) solution
$\rightarrow 1 / N$ suppression of off-diagonal terms in the evolution operator is over-compensated by the δ-like peak of the electron initial-condition

Photon \equiv initial condition $+\alpha(0)$ scheme \Longrightarrow

$$
\Gamma_{\gamma}\left(z, \mu^{2}\right)=\frac{1}{2 \pi} \frac{\alpha\left(\mu_{0}\right)^{2}}{\alpha(\mu)} \frac{1+(1-z)^{2}}{z}\left(\log \frac{\mu_{0}^{2}}{m^{2}}-2 \log z-1\right)
$$

Or: ~Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

But: vastly different from the numerical (exact) solution
$\rightarrow 1 / N$ suppression of off-diagonal terms in the evolution operator is over-compensated by the δ-like peak of the electron initial-condition

By solving the 2×2 system e.g. in $\overline{\mathrm{MS}}$:

$$
\Gamma_{\gamma}^{(\overline{\mathrm{MS}})}\left(z, \mu^{2}\right) \quad \xrightarrow{z \rightarrow 1} \quad \frac{t \alpha\left(\mu_{0}\right)^{2}}{\alpha(\mu)} \frac{3}{2 \pi \xi_{1}} \log (1-z)-\frac{t \alpha\left(\mu_{0}\right)^{3}}{\alpha(\mu)} \frac{1}{2 \pi^{2} \xi_{1}} \log ^{3}(1-z)
$$

A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

$$
\begin{array}{ll}
\frac{\log ^{q}(1-z)}{1-z} & \text { singlet, non }- \text { singlet } \\
\log ^{q}(1-z) & \text { photon }
\end{array}
$$

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at $z \rightarrow 1$) in the AP kernels

