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Assumption:

Somewhere, someone will build an e+e− collider

(linear or circular)



Consider the production of a system X at an e+e− collider:

e+(Pe+) + e−(Pe−) −→ X

Its cross section is written as follows:

dΣe+e−(Pe+ , Pe−) =
∑

kl=e+e−γ

∫

dy+dy− Bkl(y+, y−) dσkl(y+Pe+ , y−Pe−)

Here:

� dΣe+e− : the collider-level cross section

� dσkl: the particle-level cross section

� Bkl(y+, y−): describes beam dynamics (including beamstrahlung)

� e+ , e− on the lhs: the beams

� e+ , e− , γ on the rhs: the particles

I’ll mostly be concerned with computing dσkl in the rest of the talk



The particle-level cross section dσ embeds all that is not beam dynamics

It is perturbatively computable, but plagued by log(m/E) terms to all
orders. Fortunately, the dominant classes of these are factorisable:

dσ (log(m/E),m/E) = K (log(m/E))⊗ dσ̂ (m/E)

The idea is to compute dσ̂ to some fixed order in perturbation theory,

and K to all orders (so that logs are resummed)

The definitions of K and of the convolution (⊗) determine unambiguously
how the logs are resummed. Historically (LEP), simulations have been
predominantly done by adopting the YFS formalism



Therefore, two things to be done:

1. Compute dσ̂

2. Compute K to all orders within a definite convolution scheme



Therefore, two things to be done:

1. Compute dσ̂

With the exception of dedicated, high-accuracy computations, the way to go is

automation. With MadGraph5 aMC@NLO, both LO and NLO results can be

obtained for arbitrary processes, for any combination αk
S
αp

(theoretical basis in 1405.0301, 1804.10017)

−→



From 1405.0301; this is NLO in αS



From 1405.0301; this is NLO in αS



From 1804.10017; this is NLO in α; e+e− results can be obtained as easily as these ones,

provided a definite scheme for item 2. above has been chosen (as is now the case)



Therefore, two things to be done:

1. Compute dσ̂

2. Compute K to all orders within a definite convolution scheme

We adopt a collinear-factorisation approach. Comparisons with YFS-based

predictions will help assess theoretical systematics in a comprehensive way

(I’ll concentrate here on ISR. Analogous formulae hold for FSR)



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

PDFs collect (universal) small-angle dynamics



dσkl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) +O

((

m2

s

)p)

where one calculates Γ and dσ̂ to predict dσ

� k , l = e+ , e− , γ on the lhs: the particles that emerge from beamstrahlung

� i , j = e+ , e− , γ on the rhs: the partons

� dσkl: the particle-level (ie observable) cross section

� dσ̂ij : the subtracted parton-level cross section.

Generally with m = 0 =⇒ power-suppressed terms in dσ discarded

� Γi/k: the PDF of parton i inside particle k

� µ: the hard scale, m2 ≪ µ2 ∼ s



Why this approach?

Because it allows one to exploit a significant amount of the

technical knowledge we have acquired in two decades of

LHC physics

[And: to cross-check YFS-based predictions, and to provide meaningful systematics]



Indeed, very similar to QCD, with some notable differences:

� PDFs and power-suppressed terms can be computed perturbatively

� An object (e.g. e−) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not



As I have said, parton-level cross section computations are highly

automated, and can now be carried out at the NLO in both α and αS

with MadGraph5 aMC@NLO

Conversely, until recently PDFs were only available at the LO+LL,
which is insufficient in the context of NLO simulations

=⇒



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

z-space NLO+NLL PDFs (α log(E/m))k + α (α log(E/m))k−1:
−→ 1909.03886, 1911.12040, 2105.06688

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, and γ

◮ both numerical and analytical

Main tool: the solution of PDFs evolution equations



Henceforth, I consider the dominant production mechanism at an e+e−

collider, namely that associated with partons inside an electron⋆

Simplified notation:

Γi(z, µ
2) ≡ Γi/e−(z, µ2)

⋆The case of the positron is identical, at least in QED, and will be understood



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

Γi = Γ
[0]
i +

α

2π
Γ

[1]
i +O(α2)

Results:

Γ
[0]
i (z, µ2

0) = δie−δ(1− z)

Γ
[1]
e−

(z, µ2
0) =

[

1 + z2

1− z

(

log
µ2

0

m2
− 2 log(1− z)− 1

)]

+

+Kee(z)

Γ[1]
γ (z, µ2

0) =
1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

+Kγe(z)

Γ
[1]
e+ (z, µ2

0) = 0

Note:

◮ Meaningful only if µ0 ∼ m

◮ In MS, Kij(z) = 0; in general, these functions define a factorisation scheme



NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial
conditions computed previously

∂Γi(z, µ
2)

∂ logµ2
=
α(µ)

2π
[Pij ⊗ Γj ] (z, µ

2) ⇐⇒
∂Γ(z, µ2)

∂ logµ2
=
α(µ)

2π

[

P⊗ Γ
]

(z, µ2) ,

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

� Mellin space: suited to both numerical solution and all-order, large-z

analytical solution (called asymptotic solution). Dominant

� Directly in z space in an integrated form: suited to fixed-order, all-z

analytical solution (called recursive solution). Subleading



Bear in mind that PDFs are fully defined only after adopting a definite

factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

(done by means of the Kij(z) functions)

� 1911.12040 −→ MS

� 2105.06688 −→ a DIS-like scheme (called ∆)



A technicality: owing to the running of α, it is best to evolve in t rather
than in µ, with: (∼ Furmanski, Petronzio)

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+O(α3) , L = log
µ2

µ2
0

.

Note:

◮ t ←→ µ; notation-wise, the dependence on t is equivalent to the dependence on µ

◮ t = 0 ⇐⇒ µ = µ0

◮ L is my “large log”

◮ Tricky: fixed-α expressions are obtained with t = αL/(2π) (and not t = 0)



Mellin space

Introduce the evolution operator EN

ΓN (µ2) = EN (t) Γ0,N , EN (0) = I , Γ0,N ≡ ΓN (µ2
0)

The PDFs evolution equations are then re-expressed by means of an
evolution equation for the evolution operator:

∂E
(K)
N (t)

∂t
= b0α(µ)KN

(

I +
α(µ)

2π
KN

)

−1

E
(K)
N (t)

+
b0α

2(µ)

β(α(µ))

∞
∑

k=0

(

α(µ)

2π

)k

×

(

I +
α(µ)

2π
KN

)

P
[k]
N

(

I +
α(µ)

2π
KN

)

−1

E
(K)
N (t)

◮ Can be solved numerically

◮ Can be solved analytically in a closed form under simplifying assumptions.

Chiefly: large-z is equivalent to large-N



Asymptotic MS solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

{

1 +
α(µ0)

π

[

(

L0 − 1
)

(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+
(

L0 − 1− 2A(ξ1)
)

log(1− z)− log2(1− z)

]}

where L0 = log µ2
0/m

2, and:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)

with:



ξ1 = 2t−
α(µ)

4π2b0

(

1− e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1− e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)

Remember that:

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+O(α3) , L = log
µ2

µ2
0

.



Asymptotic ∆ solution

Non-singlet ≡ singlet; photon is trivial

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

[

(

1 +
3α(µ0)

4π
L0

)

∞
∑

p=0

S1,p(z)−
α(µ0)

π
L0

∞
∑

p=0

S2,p(z)

]

The Si,p(z) functions are increasingly suppressed at z → 1 with growing p.
The dominant behaviour is:

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

[

α(µ)

α(µ0)
+
α(µ)

π
L0

(

A(ξ1) + log(1− z) +
3

4

)]

A vastly different logarithmic behaviour w.r.t. the MS case

However, Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

essentially identical to the LL one



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

essentially identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms

−→



ΓNLL/ΓLL at large z (µ0 = m)
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In MS, significant scale dependence, and significant differences w.r.t.
LL results. This doesn’t happen in ∆ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors:

PDFs are unphysical, and there are huge cancellations with partonic cross sections.

Also, bear in mind that Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



ΓNLL/ΓLL at large z (µ0 = m)
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LL results. This doesn’t happen in ∆ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors:

PDFs are unphysical, and there are huge cancellations with partonic cross sections.

Also, bear in mind that Γ
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(∆)
NLL = O(α2)



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

essentially identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms

� Owing to the integrable singularity, it is essential to have large-z

analytical results: the PDFs convoluted with cross sections are obtained

by matching the small- and intermediate-z numerical solution with the

large-z analytical one

Analytical recursive solutions are used as cross-checks



A look at the photon:

Γ(MS)
γ (z, µ2)

z→1
−→

tα(µ0)
2

α(µ)

3

2πξ1
log(1− z)−

tα(µ0)
3

α(µ)

1

2π2ξ1
log3(1− z)

Γ(∆)
γ (z, µ2)

z→1
−→

1

2π

α2(µ0)

α(µ)

1 + (1− z)2

z
L0 +

1

2πξ1

t α2(µ0)

α(µ)
L0

−
t α(µ)

2πξ1

e−γEξ1eξ̂1

Γ (1 + ξ1)
(1− z)ξ1 L0 .

MS vs ∆ exhibits the same pattern as for (non-)singlet: logarithmic

terms dominate at z → 1 in MS, but are absent in ∆



MS results

e− vs γ vs e+. Note that e− in the right-hand panel is strongly damped
As expected, electron dominance, but photons may play a role in the production of

very massive objects



Cross sections

The results for these are not yet public; we are double-checking them.

Some preliminary findings are the following:

◮ The inclusion of NLL contributions into the electron PDF has an impact

between 0.1% and 0.5% (on average: results are expected to be observable

dependent)

◮ This estimate does not include the effects of the photon PDF

◮ The comparison between MS- and ∆-based results shows differences

compatible with non-zero O(α2) effects, as expected



Conclusions

� We have computed all NLO initial conditions for PDFs and FFs

(1909.03886), unpolarised

� We have NLL-evolved those relevant to the electron PDFs

(1911.12040, 2105.06688), both analytically and numerically

� We have released the first version of MadGraph5 aMC@NLO

(2108.10261) that includes both e± PDFs and beamstrahlung effects

Many results are based on establishing a “dictionary” QCD −→ QED,

which works at any order in αS and α



Being done/to be done

� Present results for physical cross sections

� Add the resummation of soft non-collinear logarithms

� Fragmentation functions (also relevant to hadron colliders)

� Polarisations?

� Higher logarithmic accuracy?



EXTRA SLIDES



z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

F(z, t) =

∫ 1

0

dyΘ(y − z) Γ(y, µ2) =⇒ Γ(z, µ2) = −
∂

∂z
F(z, t)

in terms of which the formal solution of the evolution equation is:

F(z, t) = F(z, 0) +

∫ t

0

du
b0α

2(u)

β(α(u))
[P⊗F ] (z, u)

By inserting the representation:

F(z, t) =
∞
∑

k=0

tk

k!

(

J LL

k (z) +
α(t)

2π
J NLL

k (z)

)

on both sides of the solution, one obtains recursive equations, whereby a
Jk is determined by all Jp with p < k. The recursion starts from J0,
which are the integrated initial conditions



For the record, the recursive equations are:

J LL

k = P
[0]⊗J LL

k−1

J NLL

k = (−)k(2πb0)
kF [1](µ2

0)

+

k−1
∑

p=0

(−)p(2πb0)
p

(

P
[0]⊗J NLL

k−1−p + P
[1]⊗J LL

k−1−p

−
2πb1
b0

P
[0]⊗J LL

k−1−p

)

We have computed these for k ≤ 3 (J LL) and k ≤ 2 (J NLL), ie to O(α3)

Results in 1911.12040 and its ancillary files



Large-z singlet and photon

As for the non-singlet, start from the asymptotic AP kernel expressions:

PS,N
N→∞

−→





−2 log N̄ + 2λ0 0

0 − 2
3 nF





+
α

2π





20
9 nF log N̄ + λ1 0

0 −nF



+O(1/N) +O(α2)

This implies

(EN )SS = EN

M−1
[

(EN )γγ

]

=
α(µ0)

α(µ)
δ(1− z)

⇒ Singlet ≡ non-singlet

Photon ≡ initial condition + α(0) scheme



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α

But: vastly different from the numerical (exact) solution

→ 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the δ-like peak of the electron initial-condition



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α

But: vastly different from the numerical (exact) solution

→ 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the δ-like peak of the electron initial-condition

By solving the 2× 2 system e.g. in MS:

Γ(MS)
γ (z, µ2)

z→1
−→

tα(µ0)
2

α(µ)

3

2πξ1
log(1− z)−

tα(µ0)
3

α(µ)

1

2π2ξ1
log3(1− z)



A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

logq(1− z)

1− z
singlet, non− singlet

logq(1− z) photon

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at z → 1) in the AP kernels


