Stefano Frixione

Collinear factorisation for e^+e^- collisions

Based on: 1909.03886 (SF), 1911.12040 (Bertone, Cacciari, SF, Stagnitto) 2105.06688 (SF), and work in progress within MadGraph5_aMC@NLO (2108.10261, SF, Mattelaer, Zaro, Zhao) Vienna, 9/11/2021 Assumption:

Somewhere, someone will build an e^+e^- collider (linear or circular) Consider the production of a system X at an e^+e^- collider:

$$e^+(P_{e^+}) + e^-(P_{e^-}) \longrightarrow X$$

Its cross section is written as follows:

$$d\Sigma_{e^+e^-}(P_{e^+}, P_{e^-}) = \sum_{kl=e^+e^-\gamma} \int dy_+ dy_- \mathcal{B}_{kl}(y_+, y_-) \, d\sigma_{kl}(y_+P_{e^+}, y_-P_{e^-})$$

Here:

- $d\Sigma_{e^+e^-}$: the collider-level cross section
- \blacklozenge $d\sigma_{kl}$: the particle-level cross section
- $\blacklozenge \mathcal{B}_{kl}(y_+, y_-)$: describes beam dynamics (including beamstrahlung)
- \blacklozenge e^+ , e^- on the lhs: the beams
- \blacklozenge e^+ , e^- , γ on the rhs: the particles

I'll mostly be concerned with computing $d\sigma_{kl}$ in the rest of the talk

The particle-level cross section $d\sigma$ embeds all that is not beam dynamics

It is perturbatively computable, but plagued by $\log(m/E)$ terms to all orders. Fortunately, the dominant classes of these are factorisable:

 $d\sigma \left(\log(m/E), m/E \right) = \mathcal{K} \left(\log(m/E) \right) \otimes d\hat{\sigma} \left(m/E \right)$

The idea is to compute $d\hat{\sigma}$ to some fixed order in perturbation theory, and \mathcal{K} to all orders (so that logs are resummed)

The definitions of \mathcal{K} and of the convolution (\otimes) determine unambiguously how the logs are resummed. Historically (LEP), simulations have been predominantly done by adopting the YFS formalism Therefore, two things to be done:

1. Compute $d\hat{\sigma}$

2. Compute ${\mathcal K}$ to all orders within a definite convolution scheme

Therefore, two things to be done:

1. Compute $d\hat{\sigma}$

With the exception of dedicated, high-accuracy computations, the way to go is automation. With MadGraph5_aMC@NLO, both LO and NLO results can be obtained for arbitrary processes, for any combination $\alpha_s^k \alpha^p$ (theoretical basis in 1405.0301, 1804.10017)

Process		Syntax	Cross section (pb)				
Heavy quarks and jets		LO 1 TeV			NLO 1 TeV		
i.1	$e^+e^- \rightarrow jj$	e+e->jj	$6.223 \pm 0.005 \cdot 10^{-1}$	+0.0% -0.0%	$6.389 \pm 0.013 \cdot 10^{-1}$	$^{+0.2\%}_{-0.2\%}$	
i.2	$e^+e^- \rightarrow jjj$	e+e->jjj	$3.401 \pm 0.002 \cdot 10^{-1}$	+9.6% -8.0%	$3.166 \pm 0.019 \cdot 10^{-1}$	+0.2% -2.1%	
i.3	$e^+e^- \rightarrow jjjjj$	e+e->jjjj	$1.047 \pm 0.001 \cdot 10^{-1}$	+20.0% -15.3%	$1.090 \pm 0.006 \cdot 10^{-1}$	+0.0% -2.8%	
i.4	$e^+e^- \mathop{\rightarrow} jjjjjj$	e+e->jjjjj	$2.211 \pm 0.006 \cdot 10^{-2}$	$^{+31.4\%}_{-22.0\%}$	$2.771 \pm 0.021 \cdot 10^{-2}$	$^{+4.4\%}_{-8.6\%}$	
i.5	$e^+e^- \mathop{\rightarrow} t\bar{t}$	e+ e- > t t∼	$1.662 \pm 0.002 \cdot 10^{-1}$	+0.0% -0.0%	$1.745 \pm 0.006 \cdot 10^{-1}$	$^{+0.4\%}_{-0.4\%}$	
i.6	$e^+e^- \rightarrow t\bar{t}j$	e+e->tt~j	$4.813 \pm 0.005 \cdot 10^{-2}$	+9.3% -7.8%	$5.276 \pm 0.022 \cdot 10^{-2}$	$^{+1.3\%}_{-2.1\%}$	
$i.7^{*}$	$e^+e^- \rightarrow t\bar{t}jj$	e+e->tt∼jj	$8.614 \pm 0.009 \cdot 10^{-3}$	+19.4% -15.0%	$1.094 \pm 0.005 \cdot 10^{-2}$	+5.0% -6.3%	
$i.8^{*}$	$e^+e^- \rightarrow t\bar{t}jjj$	e+e->tt~jjj	$1.044 \pm 0.002 \cdot 10^{-3}$	+30.5% -21.6%	$1.546 \pm 0.010 \cdot 10^{-3}$	+10.6% -11.6%	
i.9*	$e^+e^- \rightarrow t\bar{t}t\bar{t}$	e+ e- > t t∼ t t∼	$6.456 \pm 0.016 \cdot 10^{-7}$	$^{+19.1\%}_{-14.8\%}$	$1.221 \pm 0.005 \cdot 10^{-6}$	+13.2% -11.2%	
$i.10^{*}$	$e^+e^- \rightarrow t\bar{t}t\bar{t}j$	e+e->tt~tt~j	$2.719 \pm 0.005 \cdot 10^{-8}$	$^{+29.9\%}_{-21.3\%}$	$5.338 \pm 0.027 \cdot 10^{-8}$	$^{+18.3\%}_{-15.4\%}$	
i.11	$e^+e^- \mathop{\rightarrow} b\bar{b}~(\rm 4f)$	e+ e− > b b∼	$9.198 \pm 0.004 \cdot 10^{-2}$	+0.0% -0.0%	$9.282 \pm 0.031 \cdot 10^{-2}$	+0.0% -0.0%	
i.12	$e^+e^- \rightarrow b\bar{b}j$ (4f)	e+e->bb~j	$5.029 \pm 0.003 \cdot 10^{-2}$	+9.5% -8.0%	$4.826 \pm 0.026 \cdot 10^{-2}$	+0.5% -2.5%	
i.13*	$e^+e^- \rightarrow b\bar{b}jj$ (4f)	e+e->bb~jj	$1.621 \pm 0.001 \cdot 10^{-2}$	+20.0% -15.3%	$1.817 \pm 0.009 \cdot 10^{-2}$	+0.0% -3.1%	
i.14*	$e^+e^- \rightarrow b\bar{b}jjj$ (4f)	e+e->bb~jjj	$3.641 \pm 0.009 \cdot 10^{-3}$	+31.4% -22.1%	$4.936 \pm 0.038 \cdot 10^{-3}$	$^{+4.8\%}_{-8.9\%}$	
i.15*	$e^+e^- \rightarrow b\bar{b}b\bar{b}$ (4f)	e+e->bb~bb~	$1.644 \pm 0.003 \cdot 10^{-4}$	$^{+19.9\%}_{-15.3\%}$	$3.601 \pm 0.017 \cdot 10^{-4}$	+15.2% -12.5%	
i.16*	$e^+e^- \rightarrow b\bar{b}b\bar{b}j$ (4f)	e+e->bb∼bb~j	$7.660 \pm 0.022 \cdot 10^{-5}$	$^{+31.3\%}_{-22.0\%}$	$1.537 \pm 0.011 \cdot 10^{-4}$	$^{+17.9\%}_{-15.3\%}$	
i.17*	$e^+e^- \rightarrow t\bar{t}b\bar{b}$ (4f)	e+e->tt~bb~	$1.819 \pm 0.003 \cdot 10^{-4}$	$^{+19.5\%}_{-15.0\%}$	$2.923 \pm 0.011 \cdot 10^{-4}$	$^{+9.2\%}_{-8.9\%}$	
i.18*	$e^+e^- \rightarrow t\bar{t}b\bar{b}j$ (4f)	e+e->t t∼ b b~ j	$4.045\pm 0.011\cdot 10^{-5}$	+30.5% -21.6%	$7.049 \pm 0.052 \cdot 10^{-5}$	$^{+13.7\%}_{-13.1\%}$	

From 1405.0301; this is NLO in $\alpha_{\rm S}$

Process		Syntax	Cross section (pb)				
Top quarks +bosons			LO 1 TeV NLO 1 TeV				
j.1	$e^+e^- \rightarrow t\bar{t}H$	e+ e- > t t \sim h	$2.018 \pm 0.003 \cdot 10^{-3} {}^+$	$^{+0.0\%}_{-0.0\%}$ 1.911 $\pm 0.006 \cdot 10^{-3}$ $^{+0.4\%}_{-0.5\%}$			
$j.2^{*}$	$e^+e^- \rightarrow t\bar{t}Hj$	e+e->tt~hj	$2.533 \pm 0.003 \cdot 10^{-4}$ $^+$	$^{+9.2\%}_{-7.8\%}$ 2.658 \pm 0.009 \cdot 10 ⁻⁴ $^{+0.5\%}_{-1.5\%}$			
j.3*	$e^+e^- \rightarrow t\bar{t}Hjj$	e+e->tt∼hjj	$2.663 \pm 0.004 \cdot 10^{-5}$ +	$^{+19.3\%}_{-14.9\%}$ 3.278 \pm 0.017 \cdot 10 ⁻⁵ $^{+4.0\%}_{-5.7\%}$			
$j.4^*$	$e^+e^- \rightarrow t\bar{t}\gamma$	e+e->tt \sim a	$1.270 \pm 0.002 \cdot 10^{-2}$ +	$1.335 \pm 0.004 \cdot 10^{-2}$ $^{+0.5\%}_{-0.4\%}$			
$j.5^*$	$e^+e^- \rightarrow t\bar{t}\gamma j$	e+e->tt~aj	$2.355 \pm 0.002 \cdot 10^{-3}$ +	$^{+9.3\%}_{-7.9\%}$ 2.617 ± 0.010 · 10 ⁻³ $^{+1.6\%}_{-2.4\%}$			
j.6*	$e^+e^- \rightarrow t\bar{t}\gamma jj$	e+e->tt∼ajj	$3.103 \pm 0.005 \cdot 10^{-4}$ $^+$	$^{+19.5\%}_{-15.0\%}$ $4.002 \pm 0.021 \cdot 10^{-4}$ $^{+5.4\%}_{-6.6\%}$			
j.7*	$e^+e^- \rightarrow t\bar{t}Z$	e+e->tt \sim z	$4.642 \pm 0.006 \cdot 10^{-3} +$	0.0% 4.949 ± 0.014 · 10 ⁻³ +0.6% -0.0% -0.5%			
$j.8^*$	$e^+e^- \rightarrow t\bar{t}Zj$	e+e->tt∼zj	$6.059 \pm 0.006 \cdot 10^{-4}$ $^+$	$^{+9.3\%}_{-7.8\%}$ 6.940 ± 0.028 \cdot 10 ⁻⁴ $^{+2.0\%}_{-2.6\%}$			
j.9*	$e^+e^- \rightarrow t\bar{t}Zjj$	e+e->tt~zjj	$6.351 \pm 0.028 \cdot 10^{-5}$ $^+$	$^{+19.4\%}_{-15.0\%}$ 8.439 \pm 0.051 \cdot 10 ⁻⁵ $^{+5.8\%}_{-6.8\%}$			
j.10*	$e^+e^- \rightarrow t\bar{t}W^{\pm}jj$	e+e-≻tt~ wpm j j	$2.400 \pm 0.004 \cdot 10^{-7} \stackrel{+}{-}$	$^{-19.3\%}_{-14.9\%}$ 3.723 $\pm 0.012 \cdot 10^{-7}$ $^{+9.6\%}_{-9.1\%}$			
j.11*	$e^+e^- \rightarrow t\bar{t}HZ$	e+e->tt \sim hz	$3.600 \pm 0.006 \cdot 10^{-5} {}^+$	${}^{+0.0\%}_{-0.0\%}$ 3.579 $\pm 0.013 \cdot 10^{-5}$ ${}^{+0.1\%}_{-0.0\%}$			
$j.12^{*}$	$e^+e^- \rightarrow t\bar{t}\gamma Z$	e+e->tt∼az	$2.212 \pm 0.003 \cdot 10^{-4}$ +	$^{+0.0\%}_{-0.0\%}$ 2.364 ± 0.006 \cdot 10 ⁻⁴ +0.6% -0.0% -0.5%			
j.13*	$e^+e^- \rightarrow t\bar{t}\gamma H$	e+e->tt \sim ah	$9.756 \pm 0.016 \cdot 10^{-5}$ $^+$	0.0% $9.423 \pm 0.032 \cdot 10^{-5}$ $^{+0.3\%}_{-0.4\%}$			
$j.14^{*}$	$e^+e^- \rightarrow t\bar{t}\gamma\gamma$	e+e->tt∼aa	$3.650 \pm 0.008 \cdot 10^{-4}$ $^+$	$\begin{array}{ccc} 0.0\% \\ 0.0\% \end{array}$ 3.833 $\pm 0.013 \cdot 10^{-4} \begin{array}{c} +0.4\% \\ -0.4\% \end{array}$			
$j.15^{*}$	$e^+e^- \rightarrow t\bar{t}ZZ$	e+e->t t∼ z z	$3.788 \pm 0.004 \cdot 10^{-5}$ +	-0.0% 4.007 ± 0.013 · 10 ⁻⁵ + 0.5% -0.0\% - 0.5%			
$j.16^{*}$	$e^+e^- \rightarrow t\bar{t}HH$	e+ e- > t t \sim h h	$1.358 \pm 0.001 \cdot 10^{-5} {}^+$	${}^{+0.0\%}_{-0.0\%}$ 1.206 \pm 0.003 \cdot 10 ⁻⁵ ${}^{+0.9\%}_{-1.1\%}$			
j.17*	$e^+e^- \mathop{\rightarrow} t\bar{t}W^+W^-$	e+ e- > t t∼ ₩+ ₩-	$1.372 \pm 0.003 \cdot 10^{-4}$ $^+$	${}^{+0.0\%}_{-0.0\%}$ 1.540 \pm 0.006 \cdot 10 ⁻⁴ ${}^{+1.0\%}_{-0.9\%}$			

From 1405.0301; this is NLO in $\alpha_{\rm S}$

Process	Syntax	Cross section (in pb)		Correction (in %)	
		LO	NLO		
$pp \rightarrow e^+ \nu_e$	p p > e+ ve QCD=0 QED=2 [QED]	$5.2498 \pm 0.0005 \cdot 10^{3}$	$5.2113 \pm 0.0006 \cdot 10^3$	-0.73 ± 0.01	
$pp \rightarrow e^+ \nu_e j$	p p > e+ ve j QCD=1 QED=2 [QED]	$9.1468 \pm \ 0.0012 \cdot 10^{2}$	$9.0449 \pm 0.0014 + 10^2$	-1.11 ± 0.02	
$pp \rightarrow e^+ \nu_e jj$	p p > e+ ve j j QCD=2 QED=2 [QED]	$3.1562 \pm 0.0003 \cdot 10^2$	$3.0985 \pm 0.0005 \cdot 10^{ 2}$	-1.83 ± 0.02	
$pp \rightarrow e^+e^-$	p p > e+ e- QCD-0 QED-2 [QED]	$7.5367 \pm \ 0.0008 \ \cdot \ 10^{9}$	$7.4997 \pm 0.0010 \cdot 10^2$	-0.49 ± 0.02	
$pp \rightarrow e^+e^-j$	p p > e+ e- j QCD=1 QED=2 [QED]	$1.5059 \pm 0.0001 \cdot 10^2$	$1.4909 \pm 0.0002 \cdot 10^2$	-1.00 ± 0.02	
$pp \rightarrow e^+e^-jj$	p p > e+ e- j j QCD-2 QED-2 [QED]	$5.1424 \pm 0.0004 + 10^1$	$5.0410 \pm 0.0007 + 10^{4}$	-1.97 ± 0.02	
$pp \rightarrow e^+e^-\mu^+\mu^-$	p p > e+ e- mu+ mu- QCD=0 QED=4 [QED]	$1.2750 \pm 0.0000 \cdot 10^{-2}$	$1.2083\pm 0.0001\cdot 10^{-2}$	-5.23 ± 0.01	
$pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$	p p > e+ ve mi- vm QCD-O QED-4 [QED]	$5.1144 \pm 0.0007 \cdot 10^{-1}$	$5.3019 \pm 0.0009 \cdot 10^{-1}$	$+3.67\pm0.02$	
$pp \rightarrow He^+\nu_e$	p p > h e+ ve QCD=0 QED=3 [QED]	$6.7643 \pm 0.0001 + 10^{-2}$	$6.4914 \pm 0.0012 \cdot 10^{-2}$	-4.03 ± 0.02	
$pp \rightarrow He^+e^-$	p p > h e+ e- QCD-0 QED-3 [QED]	$1.4554 \pm 0.0001 \cdot 10^{-2}$	$1.3700 \pm 0.0002 + 10^{-2}$	-5.87 ± 0.02	
$pp \rightarrow Hjj$	pp>hjjQCD=0QED=3[QED]	$2.8268 \pm 0.0002 \cdot 10^5$	$2.7075 \pm 0.0003 \cdot 10^{9}$	-4.22 ± 0.01	
$pp \rightarrow W^+W^-W^+$	p p > w+ w- w+ QCD=0 QED=3 [QED]	$8.2874 \pm 0.0004 + 10^{-2}$	$8.8017 \pm 0.0012 \cdot 10^{-2}$	$+6.21 \pm 0.02$	
$pp \rightarrow ZZW^+$	p p > z z w+ QCD=0 QED=3 [QED]	$1.9874 \pm 0.0001 \cdot 10^{-2}$	$2.0189\pm0.0003\cdot10^{-2}$	$+1.58\pm0.02$	
$pp \rightarrow ZZZ$	pp>zzzQCD=0QED=3[QED]	$1.0761 \pm 0.0001 \cdot 10^{-2}$	$0.9741 \pm 0.0001 \cdot 10^{-2}$	-9.47 ± 0.02	
$pp \rightarrow HZZ$	p p > h z z QCD-0 QED-3 [QED]	$2.1005 \pm 0.0003 \cdot 10^{-8}$	$1.9155\pm 0.0003\cdot 10^{-3}$	-8.81 ± 0.02	
$pp \rightarrow HZW^+$	p p > h z w+ QCD=0 QED=3 [QED]	$2.4408 \pm 0.0000 \cdot 10^{-3}$	$2.4809 \pm 0.0005 \cdot 10^{-3}$	$+1.64\pm0.02$	
$pp \rightarrow HHW^+$	pp>hhw+QCD=0 QED=3 [QED]	$2.7827 \pm 0.0001 \cdot 10^{-4}$	$2.4259 \pm 0.0027 \cdot 10^{-4}$	-12.82 ± 0.10	
$pp \rightarrow HHZ$	p p > h h z QCD=0 QHD=3 [QED]	$2.6914 \pm 0.0063 \cdot 10^{-4}$	$2.3926 \pm 0.0003 \cdot 10^{-4}$	-11.10 ± 0.02	
$pp \rightarrow t\bar{B}V^+$	$p p > t t^- w + QCD = 2 QED = 1 [QED]$	$2.4119 \pm 0.0003 \cdot 10^{-1}$	$2.3025 \pm 0.0003 \cdot 10^{-1}$	-4.54 ± 0.02	
$pp \rightarrow t\bar{t}Z$	$p p > t t^{*} z QCD=2 QED=1 [QED]$	$5.0456 \pm 0.0006 \cdot 10^{-1}$	$5.0033 \pm 0.0007 \cdot 10^{-1}$	-0.84 ± 0.02	
$pp \rightarrow t\bar{t}H$	$p p > t t^{-} h QCD=2 QED=1 [QED]$	$3.4480 \pm 0.0004 \cdot 10^{-1}$	$3.5102\pm0.0005\cdot10^{-1}$	$+1.81 \pm 0.02$	
$pp \rightarrow t\bar{t}j$	pp>ttjQCD-3QED-0[QED]	$3.0277 \pm 0.0003 + 10^9$	$2.9683\pm 0.0004\cdot 10^2$	-1.96 ± 0.02	
$pp \rightarrow jjj$	pp>jjjQCD-3QED-0[QED]	$7.9639 \pm 0.0010 + 10^6$	$7.9472 \pm 0.0011 \cdot 10^6$	-0.21 ± 0.02	
$pp \rightarrow tj$	pp>tjQCD-0 QED-2 [QED]	$1.0613 \pm \ 0.0001 + 10^2$	$1.0539\pm0.0001{\scriptstyle+}10^{2}$	-0.70 ± 0.02	

From 1804.10017; this is NLO in α ; e^+e^- results can be obtained as easily as these ones, provided a definite scheme for item 2. above has been chosen (as is now the case)

Therefore, two things to be done:

1. Compute $d\hat{\sigma}$

2. Compute \mathcal{K} to all orders within a definite convolution scheme

We adopt a <u>collinear-factorisation</u> approach. Comparisons with YFS-based predictions will help assess theoretical systematics in a comprehensive way (I'll concentrate here on ISR. Analogous formulae hold for FSR)

Collinear factorisation

$d\sigma = \mathsf{PDF} \star \mathsf{PDF} \star d\hat{\sigma}$

PDFs collect (universal) small-angle dynamics

$$d\sigma_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2) \\ \times d\hat{\sigma}_{ij}(z_+ p_k, z_- p_l, \mu^2) + \mathcal{O}\left(\left(\frac{m^2}{s}\right)^p\right)$$

where one calculates Γ and $d\hat{\sigma}$ to predict $d\sigma$

- $k, l = e^+, e^-, \gamma$ on the lhs: the particles that emerge from beamstrahlung
- \blacklozenge $i, j = e^+, e^-, \gamma$ on the rhs: the partons
- \blacklozenge $d\sigma_{kl}$: the particle-level (ie observable) cross section
- $d\hat{\sigma}_{ij}$: the subtracted parton-level cross section. Generally with $m = 0 \implies$ power-suppressed terms in $d\sigma$ discarded
- $\Gamma_{i/k}$: the PDF of parton *i* inside particle *k*
- $\blacklozenge~\mu$: the hard scale, $m^2 \ll \mu^2 \sim s$

Why this approach?

Because it allows one to exploit a significant amount of the technical knowledge we have acquired in two decades of LHC physics

[And: to cross-check YFS-based predictions, and to provide meaningful systematics]

Indeed, *very* similar to QCD, with some notable differences:

- PDFs and power-suppressed terms can be computed perturbatively
- An object (e.g. e^-) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not

As I have said, parton-level cross section computations are highly automated, and can now be carried out at the NLO in both α and α_s with MadGraph5_aMC@NLO

Conversely, until recently PDFs were only available at the LO+LL, which is insufficient in the context of NLO simulations

z-space LO+LL PDFs $(\alpha \log(E/m))^k$:

 ~ 1992

- $\blacktriangleright \ 0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- \blacktriangleright $0 \leq k \leq 3$ for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
- matching between these two regimes

z-space LO+LL PDFs $(\alpha \log(E/m))^k$:

 ~ 1992

- \blacktriangleright $0 \leq k \leq \infty$ for $z \simeq 1$ (Gribov, Lipatov)
- \blacktriangleright $0 \leq k \leq 3$ for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
- matching between these two regimes

z-space NLO+NLL PDFs $(\alpha \log(E/m))^k + \alpha (\alpha \log(E/m))^{k-1}$:

- $\longrightarrow \ 1909.03886, 1911.12040, 2105.06688$
- ▶ $0 \le k \le \infty$ for $z \simeq 1$
- ▶ $0 \le k \le 3$ for $z < 1 \iff \mathcal{O}(\alpha^3)$
- matching between these two regimes
- ▶ for e^+ , e^- , and γ
- both numerical and analytical

Main tool: the solution of PDFs evolution equations

Henceforth, I consider the dominant production mechanism at an e^+e^- collider, namely that associated with partons inside an electron^{*}

Simplified notation:

$$\Gamma_i(z,\mu^2) \equiv \Gamma_{i/e^-}(z,\mu^2)$$

*The case of the positron is identical, at least in QED, and will be understood

NLO initial conditions (1909.03886) Conventions for the perturbative coefficients:

$$\Gamma_i = \Gamma_i^{[0]} + \frac{\alpha}{2\pi} \Gamma_i^{[1]} + \mathcal{O}(\alpha^2)$$

Results:

$$\begin{split} &\Gamma_i^{[0]}(z,\mu_0^2) &= \delta_{ie^-}\delta(1-z) \\ &\Gamma_{e^-}^{[1]}(z,\mu_0^2) &= \left[\frac{1+z^2}{1-z}\left(\log\frac{\mu_0^2}{m^2}-2\log(1-z)-1\right)\right]_+ + K_{ee}(z) \\ &\Gamma_{\gamma}^{[1]}(z,\mu_0^2) &= \frac{1+(1-z)^2}{z}\left(\log\frac{\mu_0^2}{m^2}-2\log z-1\right) + K_{\gamma e}(z) \\ &\Gamma_{e^+}^{[1]}(z,\mu_0^2) &= 0 \end{split}$$

Note:

▶ Meaningful only if $\mu_0 \sim m$

▶ In $\overline{\text{MS}}$, $K_{ij}(z) = 0$; in general, these functions define a factorisation scheme

NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial conditions computed previously

$$\frac{\partial\Gamma_i(z,\mu^2)}{\partial\log\mu^2} = \frac{\alpha(\mu)}{2\pi} \left[P_{ij}\otimes\Gamma_j\right](z,\mu^2) \iff \frac{\partial\Gamma(z,\mu^2)}{\partial\log\mu^2} = \frac{\alpha(\mu)}{2\pi} \left[\mathbb{P}\otimes\Gamma\right](z,\mu^2),$$

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

- Mellin space: suited to both numerical solution and all-order, large-z analytical solution (called *asymptotic solution*). <u>Dominant</u>
- Directly in z space in an integrated form: suited to fixed-order, all-z analytical solution (called *recursive solution*). <u>Subleading</u>

Bear in mind that PDFs are fully defined only after adopting a definite *factorisation scheme*, which is the choice of the finite terms associated with the subtraction of the collinear poles

(done by means of the $K_{ij}(z)$ functions)

- \blacklozenge 1911.12040 $\longrightarrow \overline{\mathrm{MS}}$
- 2105.06688 \longrightarrow a DIS-like scheme (called Δ)

A technicality: owing to the running of α , it is best to evolve in t rather than in μ , with: (~ Furmanski, Petronzio)

$$t = \frac{1}{2\pi b_0} \log \frac{\alpha(\mu)}{\alpha(\mu_0)}$$

= $\frac{\alpha(\mu)}{2\pi} L - \frac{\alpha^2(\mu)}{4\pi} \left(b_0 L^2 - \frac{2b_1}{b_0} L \right) + \mathcal{O}(\alpha^3), \qquad L = \log \frac{\mu^2}{\mu_0^2}$

Note:

- \blacktriangleright t \longleftrightarrow μ ; notation-wise, the dependence on t is equivalent to the dependence on μ
- $\blacktriangleright t = 0 \iff \mu = \mu_0$
- ► L is my "large log"
- Fricky: fixed- α expressions are obtained with $t = \alpha L/(2\pi)$ (and not t = 0)

Mellin space

Introduce the evolution operator \mathbb{E}_N

 $\Gamma_N(\mu^2) = \mathbb{E}_N(t) \,\Gamma_{0,N} \,, \qquad \mathbb{E}_N(0) = I \,, \qquad \Gamma_{0,N} \equiv \Gamma_N(\mu_0^2)$

The PDFs evolution equations are then re-expressed by means of an evolution equation for the evolution operator:

$$\frac{\partial \mathbb{E}_{N}^{(K)}(t)}{\partial t} = b_{0}\alpha(\mu)\mathbb{K}_{N}\left(I + \frac{\alpha(\mu)}{2\pi}\mathbb{K}_{N}\right)^{-1}\mathbb{E}_{N}^{(K)}(t) + \frac{b_{0}\alpha^{2}(\mu)}{\beta(\alpha(\mu))}\sum_{k=0}^{\infty}\left(\frac{\alpha(\mu)}{2\pi}\right)^{k} \times \left(I + \frac{\alpha(\mu)}{2\pi}\mathbb{K}_{N}\right)\mathbb{P}_{N}^{[k]}\left(I + \frac{\alpha(\mu)}{2\pi}\mathbb{K}_{N}\right)^{-1}\mathbb{E}_{N}^{(K)}(t)$$

Can be solved numerically

Can be solved analytically in a closed form under simplifying assumptions. Chiefly: large-z is equivalent to large-N

Asymptotic $\overline{\mathrm{MS}}$ solution

Non-singlet \equiv singlet; photon is more complicated

$$\Gamma_{\rm NLL}(z,\mu^2) \xrightarrow{z \to 1} \frac{e^{-\gamma_{\rm E}\xi_1} e^{\hat{\xi}_1}}{\Gamma(1+\xi_1)} \xi_1 (1-z)^{-1+\xi_1} \\ \times \left\{ 1 + \frac{\alpha(\mu_0)}{\pi} \left[\left(L_0 - 1 \right) \left(A(\xi_1) + \frac{3}{4} \right) - 2B(\xi_1) + \frac{7}{4} \right. \\ \left. + \left(L_0 - 1 - 2A(\xi_1) \right) \log(1-z) - \log^2(1-z) \right] \right\}$$

where $L_0 = \log \mu_0^2 / m^2$, and:

$$A(\kappa) = -\gamma_{\rm E} - \psi_0(\kappa)$$

$$B(\kappa) = \frac{1}{2}\gamma_{\rm E}^2 + \frac{\pi^2}{12} + \gamma_{\rm E}\psi_0(\kappa) + \frac{1}{2}\psi_0(\kappa)^2 - \frac{1}{2}\psi_1(\kappa)$$

with:

$$\begin{aligned} \xi_1 &= 2t - \frac{\alpha(\mu)}{4\pi^2 b_0} \left(1 - e^{-2\pi b_0 t} \right) \left(\frac{20}{9} n_F + \frac{4\pi b_1}{b_0} \right) \\ &= 2t + \mathcal{O}(\alpha t) = \eta_0 + \dots \\ \hat{\xi}_1 &= \frac{3}{2} t + \frac{\alpha(\mu)}{4\pi^2 b_0} \left(1 - e^{-2\pi b_0 t} \right) \left(\lambda_1 - \frac{3\pi b_1}{b_0} \right) \\ &= \frac{3}{2} t + \mathcal{O}(\alpha t) = \lambda_0 \eta_0 + \dots \\ \lambda_1 &= \frac{3}{8} - \frac{\pi^2}{2} + 6\zeta_3 - \frac{n_F}{18} (3 + 4\pi^2) \end{aligned}$$

Remember that:

$$t = \frac{1}{2\pi b_0} \log \frac{\alpha(\mu)}{\alpha(\mu_0)}$$

= $\frac{\alpha(\mu)}{2\pi} L - \frac{\alpha^2(\mu)}{4\pi} \left(b_0 L^2 - \frac{2b_1}{b_0} L \right) + \mathcal{O}(\alpha^3), \qquad L = \log \frac{\mu^2}{\mu_0^2}$

.

Asymptotic Δ solution

Non-singlet \equiv singlet; photon is trivial

$$\Gamma_{\rm NLL}(z,\mu^2) \xrightarrow{z \to 1} \frac{e^{-\gamma_{\rm E}\xi_1} e^{\hat{\xi}_1}}{\Gamma(1+\xi_1)} \xi_1 (1-z)^{-1+\xi_1} \\ \times \left[\left(1 + \frac{3\alpha(\mu_0)}{4\pi} L_0 \right) \sum_{p=0}^{\infty} S_{1,p}(z) - \frac{\alpha(\mu_0)}{\pi} L_0 \sum_{p=0}^{\infty} S_{2,p}(z) \right]$$

The $\mathcal{S}_{i,p}(z)$ functions are increasingly suppressed at $z \to 1$ with growing p. The dominant behaviour is:

$$\Gamma_{\rm NLL}(z,\mu^2) \xrightarrow{z \to 1} \frac{e^{-\gamma_{\rm E}\xi_1} e^{\hat{\xi}_1}}{\Gamma(1+\xi_1)} \xi_1 (1-z)^{-1+\xi_1} \\
\times \left[\frac{\alpha(\mu)}{\alpha(\mu_0)} + \frac{\alpha(\mu)}{\pi} L_0 \left(A(\xi_1) + \log(1-z) + \frac{3}{4} \right) \right]$$

A vastly different logarithmic behaviour w.r.t. the \overline{MS} case However, $\Gamma_{NLL}^{(\overline{MS})} - \Gamma_{NLL}^{(\Delta)} = \mathcal{O}(\alpha^2)$ Key facts

• Both $\overline{\text{MS}}$ and Δ results feature an integrable singularity at $z \to 1$, essentially identical to the LL one

Key facts

- Both $\overline{\text{MS}}$ and Δ results feature an integrable singularity at $z \to 1$, essentially identical to the LL one
- \blacklozenge In addition to that, in $\overline{\mathrm{MS}}$ there are single and double logarithmic terms \longrightarrow

 $\Gamma_{\rm NLL}/\Gamma_{\rm LL}$ at large $z \ (\mu_0 = m)$

In $\overline{\text{MS}}$, significant scale dependence, and significant differences w.r.t. LL results. This doesn't happen in Δ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors: PDFs are unphysical, and there are huge cancellations with partonic cross sections. Also, bear in mind that $\Gamma_{\text{NLL}}^{(\overline{\text{MS}})} - \Gamma_{\text{NLL}}^{(\Delta)} = \mathcal{O}(\alpha^2)$

 $\Gamma_{\rm NLL}/\Gamma_{\rm LL}$ at large $z \ (\mu_0 = m)$

In MS, significant scale dependence, and significant differences w.r.t. LL results. This doesn't happen in Δ (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors: PDFs are unphysical, and there are huge cancellations with partonic cross sections. Also, bear in mind that $\Gamma_{\text{NLL}}^{(\overline{\text{MS}})} - \Gamma_{\text{NLL}}^{(\Delta)} = \mathcal{O}(\alpha^2)$

Key facts

- Both $\overline{\text{MS}}$ and Δ results feature an integrable singularity at $z \to 1$, essentially identical to the LL one
- \blacklozenge In addition to that, in $\overline{\mathrm{MS}}$ there are single and double logarithmic terms
- Owing to the integrable singularity, it is essential to have large-z analytical results: the PDFs convoluted with cross sections are obtained by matching the small- and intermediate-z numerical solution with the large-z analytical one

Analytical recursive solutions are used as cross-checks

A look at the photon:

$$\begin{split} \Gamma_{\gamma}^{(\overline{\mathrm{MS}})}(z,\mu^{2}) & \xrightarrow{z \to 1} & \frac{t\alpha(\mu_{0})^{2}}{\alpha(\mu)} \frac{3}{2\pi\xi_{1}} \log(1-z) - \frac{t\alpha(\mu_{0})^{3}}{\alpha(\mu)} \frac{1}{2\pi^{2}\xi_{1}} \log^{3}(1-z) \\ \Gamma_{\gamma}^{(\Delta)}(z,\mu^{2}) & \xrightarrow{z \to 1} & \frac{1}{2\pi} \frac{\alpha^{2}(\mu_{0})}{\alpha(\mu)} \frac{1+(1-z)^{2}}{z} L_{0} + \frac{1}{2\pi\xi_{1}} \frac{t\alpha^{2}(\mu_{0})}{\alpha(\mu)} L_{0} \\ & -\frac{t\alpha(\mu)}{2\pi\xi_{1}} \frac{e^{-\gamma_{\mathrm{E}}\xi_{1}}e^{\hat{\xi}_{1}}}{\Gamma(1+\xi_{1})} (1-z)^{\xi_{1}} L_{0} \,. \end{split}$$

■ $\overline{\text{MS}}$ vs Δ exhibits the same pattern as for (non-)singlet: logarithmic terms dominate at $z \rightarrow 1$ in $\overline{\text{MS}}$, but are absent in Δ

 e^- vs γ vs e^+ . Note that e^- in the right-hand panel is strongly damped As expected, electron dominance, but photons may play a role in the production of very massive objects

Cross sections

The results for these are not yet public; we are double-checking them. Some *preliminary* findings are the following:

- The inclusion of NLL contributions into the electron PDF has an impact between 0.1% and 0.5% (on average: results are expected to be observable dependent)
- This estimate does not include the effects of the photon PDF
- ► The comparison between $\overline{\text{MS}}$ and Δ -based results shows differences compatible with non-zero $\mathcal{O}(\alpha^2)$ effects, as expected

Conclusions

- We have computed all NLO initial conditions for PDFs and FFs (1909.03886), unpolarised
- We have NLL-evolved those relevant to the electron PDFs (1911.12040, 2105.06688), both analytically and numerically
- We have released the first version of MadGraph5_aMC@NLO
 (2108.10261) that includes both e[±] PDFs and beamstrahlung effects

Many results are based on establishing a "dictionary" QCD \longrightarrow QED, which works at any order in α_s and α

Being done/to be done

- Present results for physical cross sections
- Add the resummation of soft non-collinear logarithms
- Fragmentation functions (also relevant to hadron colliders)
- Polarisations?
- Higher logarithmic accuracy?

EXTRA SLIDES

z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

$$\mathcal{F}(z,t) = \int_0^1 dy \,\Theta(y-z)\,\Gamma(y,\mu^2) \quad \Longrightarrow \quad \Gamma(z,\mu^2) = -\frac{\partial}{\partial z}\mathcal{F}(z,t)$$

in terms of which the formal solution of the evolution equation is:

$$\mathcal{F}(z,t) = \mathcal{F}(z,0) + \int_0^t du \, \frac{b_0 \alpha^2(u)}{\beta(\alpha(u))} \left[\mathbb{P} \,\overline{\otimes} \,\mathcal{F}\right](z,u)$$

By inserting the representation:

$$\mathcal{F}(z,t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left(\mathcal{J}_k^{\text{LL}}(z) + \frac{\alpha(t)}{2\pi} \, \mathcal{J}_k^{\text{NLL}}(z) \right)$$

on both sides of the solution, one obtains recursive equations, whereby a \mathcal{J}_k is determined by all \mathcal{J}_p with p < k. The recursion starts from \mathcal{J}_0 , which are the integrated initial conditions

For the record, the recursive equations are:

$$\begin{aligned}
\mathcal{J}_{k}^{\text{LL}} &= \mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1}^{\text{LL}} \\
\mathcal{J}_{k}^{\text{NLL}} &= (-)^{k} (2\pi b_{0})^{k} \mathcal{F}^{[1]}(\mu_{0}^{2}) \\
&+ \sum_{p=0}^{k-1} (-)^{p} (2\pi b_{0})^{p} \left(\mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{NLL}} + \mathbb{P}^{[1]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{LL}} \\
&- \frac{2\pi b_{1}}{b_{0}} \mathbb{P}^{[0]} \overline{\otimes} \mathcal{J}_{k-1-p}^{\text{LL}} \right)
\end{aligned}$$

We have computed these for $k \leq 3$ (\mathcal{J}^{LL}) and $k \leq 2$ (\mathcal{J}^{NLL}), ie to $\mathcal{O}(\alpha^3)$ Results in 1911.12040 and its ancillary files

Large-z singlet and photon

As for the non-singlet, start from the asymptotic AP kernel expressions:

$$\mathbb{P}_{\mathrm{S},N} \xrightarrow{N \to \infty} \begin{pmatrix} -2\log\bar{N} + 2\lambda_0 & 0\\ 0 & -\frac{2}{3}n_F \end{pmatrix} + \frac{\alpha}{2\pi} \begin{pmatrix} \frac{20}{9}n_F\log\bar{N} + \lambda_1 & 0\\ 0 & -n_F \end{pmatrix} + \mathcal{O}(1/N) + \mathcal{O}(\alpha^2)$$

This implies

$$(\mathbb{E}_N)_{SS} = E_N$$
$$M^{-1} [(\mathbb{E}_N)_{\gamma\gamma}] = \frac{\alpha(\mu_0)}{\alpha(\mu)} \,\delta(1-z)$$

- \Rightarrow Singlet \equiv non-singlet
 - Photon \equiv initial condition + $\alpha(0)$ scheme

Photon \equiv initial condition $+ \alpha(0)$ scheme \Longrightarrow $\Gamma_{\gamma}(z,\mu^2) = \frac{1}{2\pi} \frac{\alpha(\mu_0)^2}{\alpha(\mu)} \frac{1 + (1-z)^2}{z} \left(\log \frac{\mu_0^2}{m^2} - 2\log z - 1 \right).$

Or: \sim Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

Photon \equiv initial condition $+ \alpha(0)$ scheme \Longrightarrow

$$\Gamma_{\gamma}(z,\mu^2) = \frac{1}{2\pi} \frac{\alpha(\mu_0)^2}{\alpha(\mu)} \frac{1 + (1-z)^2}{z} \left(\log \frac{\mu_0^2}{m^2} - 2\log z - 1 \right) \,.$$

Or: \sim Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

But: vastly different from the numerical (exact) solution

 $\rightarrow 1/N$ suppression of off-diagonal terms in the evolution operator is over-compensated by the δ -like peak of the electron initial-condition Photon \equiv initial condition $+ \alpha(0)$ scheme \Longrightarrow

$$\Gamma_{\gamma}(z,\mu^2) = \frac{1}{2\pi} \, \frac{\alpha(\mu_0)^2}{\alpha(\mu)} \, \frac{1+(1-z)^2}{z} \left(\log\frac{\mu_0^2}{m^2} - 2\log z - 1\right) \, .$$

Or: \sim Weizsaecker-Williams function, plus the natural emergence of a small scale in the argument of α

But: vastly different from the numerical (exact) solution

 $\rightarrow 1/N$ suppression of off-diagonal terms in the evolution operator is over-compensated by the δ -like peak of the electron initial-condition

By solving the 2×2 system e.g. in MS:

$$\Gamma_{\gamma}^{(\overline{\mathrm{MS}})}(z,\mu^2) \xrightarrow{z \to 1} \frac{t\alpha(\mu_0)^2}{\alpha(\mu)} \frac{3}{2\pi\xi_1} \log(1-z) - \frac{t\alpha(\mu_0)^3}{\alpha(\mu)} \frac{1}{2\pi^2\xi_1} \log^3(1-z)$$

A remarkable fact

Our asymptotic solutions, expanded in α , feature **all** of the terms:

$$\frac{\log^q (1-z)}{1-z} \qquad \text{singlet, non-singlet} \\ \log^q (1-z) \qquad \text{photon}$$

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at $z \rightarrow 1$) in the AP kernels