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Assumption:

_|_

Somewhere, someone will build an eTe™ collider

(linear or circular)



Consider the production of a system X at an eTe™ collider:
€+(Pe+) +€_(Pe—) — X
Its cross section is written as follows:

dze+e_ (Pe+7 Pe_) — Z /dy-l—dy— By (y-l—a y—) dog; (y+Pe+7y—Pe_)

kl=ete—~
Here:
¢ d>_+.-: the collider-level cross section
¢ doy;: the particle-level cross section
¢ Bii(yy,y—): describes beam dynamics (including beamstrahlung)
¢ ¢, e on the |hs: the beams

¢ ¢t ,e " ,von the rhs: the particles

I'll mostly be concerned with computing doy,; in the rest of the talk



The particle-level cross section do embeds all that is not beam dynamics

It is perturbatively computable, but plagued by log(m/E) terms to all
orders. Fortunately, the dominant classes of these are factorisable:

do (log(m/E),m/E) = K (log(m/E)) ® d6 (m/E)

The idea is to compute do to some fixed order in perturbation theory,
and KC to all orders (so that logs are resummed)

The definitions of U and of the convolution (®) determine unambiguously
how the logs are resummed. Historically (LEP), simulations have been
predominantly done by adopting the YFS formalism



Therefore, two things to be done:

1. Compute do

2. Compute K to all orders within a definite convolution scheme



Therefore, two things to be done:

1. Compute do

With the exception of dedicated, high-accuracy computations, the way to go is
automation. With MadGraph5_.aMC@NLO, both LO and NLO results can be
obtained for arbitrary processes, for any combination a*a?

S
(theoretical basis in 1405.0301, 1804.10017)
—>



Process Syntax Cross section (ph)

Heavy quarks and jets LO 1 TeV NLO 1 TeV

Ll etem —jj ot &= > ] 6.223 £ 0.005 - 10— 00 6389 £ 0.013 10— F02E
12 etem —jjj et a= > j 340140002 - 107" PIEE 3166 +£0.019 (1070 0
1.3 etem —jjjj ot e- >3 33 ] LOAT £ 0,001 - 107" P01 090 £ 0.006 - 1070 U0
id  etem —jiiji ete- >3 3iijj] 221140006 - 1072 LA 2771 20021 21072 PREE
5 etem —if ot 6= > T T LB62+0.002 - 10°1 P00 1745 £ 0,006 (1070 T
L6 ele” —tf) et &= > t t~ j 481340005 -1077 P20 5976+ 0,022 21077 1AL
L7 etem —tijj et &= > t t~ j j 8.614£0,000 -107% D20 1094 0005 1077 TR0
L& etem =iy et e- >t t~ j j i L0444 0.002 -1[]-f '_;“IJ;'E';E;E; 1546 4+ 0,010 -m-f o E'E{
10* elem —tftt et @~ >t t~ t t~  GAB6E0.016-10°7 PITIE1.99] 40005 107 FIE2E
L10° etem —tEt et e- > t t~ t te~ j ZT1040.005 107 ' 533840027 c107% TR
11 etem —bb (4F) et 6= > b b 0.198 £ 0.004 - 10-2  TO0% 9280 4 0,031 - 1072 00
L12 etem —bhj (41) et @= > b b~ j 5.020+£0.003 - 1072 PSR 4896+ 00026 <1070 O
.13 ete™ —bhjj (4) et @ > b b~ j j 1621+ 0001 - 1072 P00 g17 40009 -107F 00
L14" ele” —bhijj (4f) et e~ >b b~ jjj 36410000 .107F FIL ,‘j 1.936 £ 0.038 - 1077 '_;;_;;Ej,:f
L16*  ele™ — bbbh (4f) et &= > b b~ b b~  L644+0.003 -107¢ DN 3601 +£0.017 1070 PRI
L16%  ete — bbb (4f) e+ &= > b b~ b b~ j T.660+0.022 1077 PSRy 3740011 21070 PO
L17*  ele” —tthh (4f) et e > t t~ b b~  1B19+0.003 .107% TP sge3+ o011 107 TPEE
L18"  elem —thbj (4f) et @ > t t~ b b~ j 404500111077 PO 7o L0052 c1077 PIETE

From 1405.0301; this is NLO in ag



Frocess Syvntax Cross section [pb]

Top quarks +bosons LO 1 TeV NLO 1 1eV

i1 etem —tiH et e > t t~ h 2,018 £ 0.003 - 107F 200 1011 £ 0.006 - 107 FLE
j2¢ etem —ttHj et e= > t t~ L 2.533 £ 0.003 - 10~ 1220 2658 £0.000 - 1070 I
j3° etem —ttHjj] et e > Lt~ h 2,663 £ 0,004 - 1077 TS5 3078 £0.007 - 1077 T
j4r  etem =ty et e > L t~ a L2704 0,002 - 1072 1A 1335 £ 0.004 - 10—F 0T
35 etem —tivyg et e- > €L t~ a 2,355+ 0,002 -107% 25 2617+ 0010 - 107% FLOE
j6° etem =ty et e- > €L t~ a 3.103 £ 0,005 - 10~ M2 4o02 £ 0021 1070 A
3T etem =iz e+t 8- > £ t~ 2 4642 £ 0,006 - 107F 0O 4049 £ 0.014 - 107 0O
jB8* eltem —itZj et e- > £t t~ z j 6.050 + 0.006 - 10~ 290 G040+ 0028 107t 2T
9 e p—Aer” et = > L Lt~ Z ] 6.351 £0.028 . 107° 2N 5439 40051 - 1070 2T
jlor etem —#WE i et e » £t~ wpm 2,400+ 0.004 - 1077 HEEE 3723 +0.012 - 1077 ROE
jA1* etem —tiHEZ et e- > Lt~ h = 3.600 + 0.006 - 10-° 1000 357940013 107 T
jl12e ete —tiyZ et e- > L t~ a z 2212+ 0,003 - 1070 0O 2364 £0.006 - 10—t FOOE
j13° etem —tinH et e- > Lt~ ah 9.756+ 0,016 -107° 09 9493+ 0032 . 107° 0
j14° t”lt" — ty et e- > Lt~ a a 3650+ 0,008 10~ 0T aRaz 40013 .07t 0T
j15*  elem —iiZZ et e~ >t t~zz 3.788 £0.004 - 1077 TR 4007 £0.013 - 1077 1T
j16*  ete” =t HH et e~ > £t t~ h k 1.358 + 0.001 - 107° 0o 1206 + 0.003 - 107° 1T
AT etem HWIWT et e- > £ooe~ wt w- 137240003 21070 0O 154040006 - 1070 R

From 1405.0301; this is NLO in ag



Procass Synitax Cross section (in ph) Correction (in %
L. ML
p — ety pp > e+ ve QCD=0 QED=2 [QED] hMOE 4+ 00006 - 10* K213 + 0.0006 - 107 —0.73 + 001
o — et g pp > et ve | QD=1 QED=2 [QED] 9. 1468 £ 00012 - 104 80449 £ 0.0014 - 0* —1.11 £ n.n2
g — et pp > et ve | | QCD=2 QED=2 [QED] AA62 + 00008 - 105 20985 + 00005 . 10° —1.83 + n.02
p— &+ e B P> et e- QOD=0 QED=2 [QED] THAOT £ 0O00R - 1P 74007 £ 0.0010 - 109 —01.49 + 008
m— etej pp>ete- | QCD=1 QED=2 [QED] ARG + 0000] - 107 L4900 + 0 - 10 —1.00 + {102
pp— atu= gy pp>e+e-| | QD=2 QED=2 [QED] 51424 + 0oood - 100 Rodlo + 00007 - 10! —1.07 £ 0.02
pp— ete ptpT  pp > et - mud mu- QD=0 QD=4 [QED] 127504+ 00000 - 10-F 12083 +£ 0.0000 41072 —5.23 + Q0
i —+ et bt By, pp > et ve m- ve~ Q000 QED=4 [QED] 5.1144 + 00007 1077 523019 £0.0000 - 101 4367 £ 002
m — Hetuy pp>h et ve QCD=0 QED=3 [QED] A.7643 4 0.0001 - 1074 64914 £ 00012 1077 —4.03 + 0.02
g — Hote pp>h et e- (D=0 QED=3 [QED] 14554 + 0oonnl - 0% LATO0 4 00002 - 10-%  —5AT 4+ .02
mm— H i pp>h i GCD=0 QED=3 [QED] 2HA08 £ 00008 - 10F 2.T0Th £ Ouong - e —4.92 + (.01
pp— WHW W+ pp > w w- v Q0D=0 QED=3 [QED] ROET4 4+ 00004 - 1072 REOIT £ 00012 -10F  46.21 4+ 002
op— ZZWH pPp>zz et QD=0 QED=2 [QED] |LORTA £+ 0onnd - 107 20189 £ 0.0003 - 10°% 4158 £ 0.02
m— ZZE pp>zez QOh=0 Q=3 [QED] 10761 £ 00001 - 1007 09741 + 00001 -10°%  —0.47 + 008
m— HZE pp>hzz CD=0 Q=3 [QED] 005 + 00008 - 10-% 19165 £ 0008 -10-%F  —28] £ 0
m— HZW+ pp*hz e QCD=0 QED=3 [QED] 4408 + 00000 - 107% AR 40000 1077 41.64 + 002
p— HH W pp>h b w QCD=0 QED=3 [QED] 27827 4+ 00001 - 10 24250 4+ 00027 - 10 — 1282 4 0.10
ppr— HH Z pp>hh =z QCD=0 QED=3 [QED] 20014 + 0008 - 1Y 23000 + 000G - 10 — 1110 + o0e
i — Bt pPp >ttt wk QCD=2 QED=1 [QED] 24119 4+ 00003 - 10! 23025 £ 0008 - W0~ —4.5 + 002
m — HE pp >tttz QCD=2QED=t [QED] ROAGE + 00006 - 1071 RO033 £ 00007 107 -8 + 002
pp — HH pp >ttt b QC0=2 QED=1 [QED] 4480 + 00004 - 1070 B5102 £ 00005 <107 41LR1 + 002
mp— £ pp>tt ] OCD=2 QEO=0 [QED] FORTT+ 0.0000 - P 20883 4 00004 - 1P —1.896 + 0.0
i — §ii PP >3] 10Cch=3 QED=O [QED] TEOG30 4+ 00010 - 10F TedT2 £ 00011 - 10f —0.21 + 002
pp— b pp>*t | (CD=0 QED=2 [QED] L0613 4 nonnd - 0% LO&a39 £ .00 - (n? —0.70 + 0102

From 1804.10017: this is NLO in a: eTe™ results can be obtained as easily as these ones,

provided a definite scheme for item 2. above has been chosen (as is now the case)



Therefore, two things to be done:

1. Compute do

2. Compute K to all orders within a definite convolution scheme

We adopt a collinear-factorisation approach. Comparisons with YFS-based

predictions will help assess theoretical systematics in a comprehensive way

(I'll concentrate here on ISR. Analogous formulae hold for FSR)



Collinear factorisation

4

s -

do = PDF x PDF % do

PDFs collect (universal) small-angle dynamics



do(pr,p1) = Z /dZ+dZ— L (zqs 02, m*) T i (2=, i, m?)

’ij:€+,€_ Y

m2 P
X d6i; (21 pr, 2—p1, p°) + O <<—) )

S

where one calculates I' and do to predict do

® k,l=e" ,e v on the lhs: the particles that emerge from beamstrahlung
¢ i,j=-e",e ,von the rhs: the partons
¢ doy;: the particle-level (ie observable) cross section

¢ do;;: the subtracted parton-level cross section.
Generally with m = 0 = power-suppressed terms in do discarded

¢ I/ the PDF of parton i inside particle &

¢ 1 the hard scale, m? < u? ~ s



Why this approach?

Because it allows one to exploit a significant amount of the

technical knowledge we have acquired in two decades of
LHC physics

[And: to cross-check YFS-based predictions, and to provide meaningful systematics]



Indeed, very similar to QCD, with some notable differences:

¢ PDFs and power-suppressed terms can be computed perturbatively

¢ An object (e.g. ¢e7) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not



As | have said, parton-level cross section computations are highly
automated, and can now be carried out at the NLO in both « and ag

with MadGraph5_.aMC@NLO

Conversely, until recently PDFs were only available at the LO+LL,
which is insufficient in the context of NLO simulations

—



z-space LO+LL PDFs (alog(E/m))":

~ 1992
> O S k S 0 for =~ ]. (Gribov, Lipatov)
> O S k S 3 for ya < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

» matching between these two regimes



z-space LO+LL PDFs (alog(E/m))":

~ 1992
> O S k S 0 for Z =~ ]. (Gribov, Lipatov)
» O S k S 3 for Z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

» matching between these two regimes

z-space NLO+NLL PDFs (alog(E/m))* + a (alog(E/m))* "

— 1909.03886,1911.12040,2105.06688

0<k<ooforz~l1

0<k<3forz<1 <= 0O(a?)

>
>
» matching between these two regimes
» foret, e, and vy

>

both numerical and analytical

Main tool: the solution of PDFs evolution equations



Henceforth, | consider the dominant production mechanism at an ete™
collider, namely that associated with partons inside an electron™

Simplified notation:

Fi(Z,ALQ) = Lli/e~ (Z,ALQ)

*The case of the positron is identical, at least in QED, and will be understood



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

I =%+ 21 4 0(a?)

2 °

Results:

Fz[O] (Z, :ug) — 5@'6_5(1 o Z)

1 2
F[‘ﬂ(z,ug) = [ R (log ,uo — 2log(1 — z) — 1)] + Kee(2)
€ 1—z n
14+ (1 -2 T

I‘,gl] (z,p5) = (z S (log % _2logz — 1) + K. e(2)

D (zud) = 0
Note:

Meaningful only if ug ~m

In MS, K;;(2) = 0; in general, these functions define a factorisation scheme




NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial
conditions computed previously
oi(z, %) _ a(p) ol (z,p*) _ a(u)

2 2
9 log 12 :7[P¢j®Fj](Z»M) — 9 log 12 :7[P®F](zaﬂ)a

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

¢ Mellin space: suited to both numerical solution and all-order, large-z
analytical solution (called asymptotic solution). Dominant

¢ Directly in z space in an integrated form: suited to fixed-order, all-z
analytical solution (called recursive solution). Subleading




Bear in mind that PDFs are fully defined only after adopting a definite
factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

(done by means of the K;;(z) functions)

¢ 1911.12040 — MS
¢ 2105.06688 — a DIS-like scheme (called A)



A technicality: owing to the running of «, it is best to evolve in ¢ rather
than in /,L, Wlth (~ Furmanski, Petronzio)

, o 1 a(u)
27Tb0 ( )
a(p) () 2 2by 3 p
= —L— boL® — —L L =log — .

Note:
t «—— u; notation-wise, the dependence on t is equivalent to the dependence on 1
t=0 <= pu=po
L is my “large log"

Tricky: fixed-a expressions are obtained with t = aL/(27) (and not ¢ = 0)



Mellin space

Introduce the evolution operator £y

Tn(p?) =Ex(t)Ton, Enx(0)=1, Ton=Tn(up)

The PDFs evolution equations are then re-expressed by means of an
evolution equation for the evolution operator:

8E§)(t) — boa()Kn <[+%K )_ £ (1)
- Seans(F)
x <1+ 2(— )PE@] (I+ 0‘2(:) KN)1E§§<>(t)

Can be solved numerically

Can be solved analytically in a closed form under simplifying assumptions.
Chiefly: large-z is equivalent to large-N



Asymptotic MS solution

Non-singlet = singlet; photon is more complicated

—vE&1 él
) 2 e v
y {1 n O‘(:O) (Lo _ 1) (A(gl) + Z) _9B(&) + Z

+ (Lo —1— 2A(£1)> log(1 — z) —log®(1 — Z)] }

where Lo = log u3/m?, and:

A(k) = —7v —to(k)
1, x? 1 , 1
B(k) = §VE+E+VE¢0("@)+§¢O(@ —§¢1(K)

with:



{1 =

Al =

Remember that:

1

t
27Tb0

27

log

alp) o

2t —

a(p)

20 47Tb1
1 _ —27Tb0t> - ”
( ¢ ( 0" T o )
(1 _ e_zwbot) ( A - 37Tbl)
bo

+ 47%)

47’(’2[)0
2t + O(at) =ng + . ..
3. o)
—1
2 +47T2[?0
3
515—'—0(0415) = XoNo + - ..
3 7 o
- — — — —(3
8 2 06 18(
a(p)
a(fio)
(1) 2by
—2 | bgL? — =L

4 ( 0 bo

) +0(a®), L=log



Asymptotic A solution
Non-singlet = singlet; photon is trivial

e~ VESL 651

(]_ —+ ( )L()> g S p(z) ( )LH E Sjgp(Z)
p=0 - p=0 |

The S;,(2) functions are increasingly suppressed at z — 1 with growing p.
The dominant behaviour is:

—veé1 €1
Tain(z, p?) == ?(I + ;) &(1—z)~ 18
< | 20 2 (e +1og(1 )+ )]

B A vastly different logarithmic behaviour w.r.t. the MS case

However, (1Y) — T8 = O(a?)



Key facts

¢ Both MS and A results feature an integrable singularity at z — 1,
essentially identical to the LL one



Key facts

¢ Both MS and A results feature an integrable singularity at z — 1,
essentially identical to the LL one

¢ In addition to that, in MS there are single and double logarithmic terms
—



Inen/T'or at large 2 (1o = m)

6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ] 67 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\
50 ] 5L
4; : 4;
4 [ p=0.01 GeV a4 [
— L i - L
= 1 b
Z 3 4 2 3
— = 4 [ L
i p=1 GeV J—— i
20 T memmmmTTTT ] 2-
o= — =100 GeV ] I
1C H 4 1 I
I I I I | I I | | | | L C | | | | |
1 2 3 4 5 6 7 1 2 3 4 5 6
-logip(1- 2) -log1p(1- 2)
MS scheme A scheme

In MS, significant scale dependence, and significant differences w.r.t.
LL results. This doesn’t happen in A (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors:

PDFs are unphysical, and there are huge cancellations with partonic cross sections.

Also, bear in mind that Fl(\lﬁ) — Fl(\IAL)L = 0(a?)



Inen/T'or at large 2 (1o = m)

b ] 1.00 ————————————————————————
5| [
i 0.99
Al
a0 p=0.01 GeV o
= L - [
! 5 0.98 =100 GeV
z 31 = r P
— " - ”f
i p=1GeV J—— S cee et
2 ; _____________ 0 97 ; ______________ P':l GeV
et aeemmTT o p=0.01 GeV
e =100 GeV
1- |
E ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ e 096 I I I I | I I I I | I I I I | I I I I | I I I I | I I I I
1 2 3 4 5 6 7 1 2 3 4 > 6 7
_|oglo(1 z) _IOQIO(]'_ Z)
MS scheme A scheme

In MS, significant scale dependence, and significant differences w.r.t.
LL results. This doesn’t happen in A (note the y ranges in the plots)

This does not mean NLO and LO cross sections will differ by large factors:

PDFs are unphysical, and there are huge cancellations with partonic cross sections.

Also, bear in mind that Ff\lﬁ) — 1(\IAL)L = O(a?)



Key facts

¢ Both MS and A results feature an integrable singularity at z — 1,
essentially identical to the LL one

¢ In addition to that, in MS there are single and double logarithmic terms

¢ Owing to the integrable singularity, it is essential to have large-z
analytical results: the PDFs convoluted with cross sections are obtained

by matching the small- and intermediate-z numerical solution with the
large-z analytical one

Analytical recursive solutions are used as cross-checks



A look at the photon:

2 toz(,uo)2 3 ta(po)® 1
F(MS) z, ; log(l—z) — log?(1 — 2
=1 1 a? 1+ (1—2)? 1 2
F(A) (Z,,LLQ) 1 & (ILLO) + ( Z) LO s ta (/’LO) LO
! 2m  op) 2 2161 a(p)

_ta(u) e_PYEgleél
27’('61 P(l—l—fl)

(1 — Z)gl LO .

B MS vs A exhibits the same pattern as for (non-)singlet: logarithmic
terms dominate at 2 — 1 in MS, but are absent in A



MS results

NLL, gy = m,, 4= 100 GeV MNLL, g = my, 4 = 100 GeV

101 : DD? I I T I I rE+|:;.:I}| B _.I_

- 0.06 M(z) —===- 7
100 +(1

= 0.05 Me-{z) *(1-z) i
107 | 0.04 |
152 = 0.03

N 0.02 b T~o_

W 0.01 b -
104 _ _ 0 === —- _._._._H.':.:.___.___‘_‘._._._._.:.:
1[}-5 : i [ i i i i i i | e ] -0.01 I I I I I I I

0 01 02 03 04 05 06 0.7 0.8 09 1 2 4 6 8 10 12 14

Z -logpll-2)

e~ vs v vs eT. Note that e~ in the right-hand panel is strongly damped
As expected, electron dominance, but photons may play a role in the production of
very massive objects



Cross sections

The results for these are not yet public; we are double-checking them.
Some preliminary findings are the following:

» The inclusion of NLL contributions into the electron PDF has an impact
between 0.1% and 0.5% (on average: results are expected to be observable

dependent)

» This estimate does not include the effects of the photon PDF

» The comparison between MS- and A-based results shows differences
compatible with non-zero O(a?) effects, as expected



Conclusions

¢ We have computed all NLO initial conditions for PDFs and FFs
(1909.03886), unpolarised

¢ We have NLL-evolved those relevant to the electron PDFs
(1911.12040, 2105.06688), both analytically and numerically

¢ We have released the first version of MadGraph5_.aMC@NLO
(2108.10261) that includes both e PDFs and beamstrahlung effects

Many results are based on establishing a “dictionary” QCD — QED,
which works at any order in ag and «



Being done/to be done

¢ Present results for physical cross sections

¢ Add the resummation of soft non-collinear logarithms
¢ Fragmentation functions (also relevant to hadron colliders)
¢ Polarisations?

¢ Higher logarithmic accuracy?



EXTRA SLIDES



Z Space
Use integrated PDFs (so as to simplify the treatment of endpoints)

f(z,t)Z/O dyO(y —2)T(y, p*) = F(Z»MQ)Z—%JE(ZJ)

in terms of which the formal solution of the evolution equation is:

F(z,t) = F(z,0) +/O du ZO(Z(S;; PR F|(z,u)
By inserting the representation:
Fet =3 o (T + 5L g a))

on both sides of the solution, one obtains recursive equations, whereby a
Ji. 1s determined by all 7, with p < k. The recursion starts from Jp,
which are the integrated initial conditions



For the record, the recursive equations are:

jLL — P[O]®jklfl
T = (—)k(%bo)kfm( 0)

+Z P(27bg)P ( e + Pl gEe

27Tb1

We have computed these for k < 3 (J**) and k < 2 (JN*), ie to O(a?)
Results in 1911.12040 and its ancillary files




Large-z singlet and photon

As for the non-singlet, start from the asymptotic AP kernel expressions:

N o0 —2log N + 20 0
]P)S,N —
0 —% o
—nF log N + ) 0
@ s + O(1/N) + 0(a?
2T 0 —n,
This implies
(EN)SS = LN

M—l D _ &(MO) 5 1 —

[(En)y,] = 50560 -2)

= Singlet = non-singlet

Photon = initial condition + «(0) scheme

)



Photon = initial condition + «(0) scheme =—>

1 afpo)? 1+ (1—2)

2
2%
T 2y = log =% — 91 1.
’Y(Zalu) 27_‘_ OZ(ILL) > (Ong ng )

Or: ~ Weizsaecker-Williams function, plus the natural emergence of
a small scale in the argument of «



Photon = initial condition + «(0) scheme —>

L oa(po)® 14 (1 —2)°

2
2) — log 20— 9logz — 1] |
F’Y (ZJ /'L ) 27_‘_ Oé(,LL) > ( Og m2 2 ng

Or: ~ Weizsaecker-Williams function, plus the natural emergence of
a small scale in the argument of «

But: vastly different from the numerical (exact) solution

— 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the 0-like peak of the electron initial-condition



Photon = initial condition + «(0) scheme =—>

1 afpo)? 1+ (1—2)

2
2%
T 2y = log =% — 91 1.
’Y(zalu) 27_‘_ Oé(ﬂ) > (Ong ng )

Or: ~ Weizsaecker-Williams function, plus the natural emergence of
a small scale in the argument of «

But: vastly different from the numerical (exact) solution

— 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the 0-like peak of the electron initial-condition

By solving the 2 x 2 system e.g. in MS:

ta(po)® 3 ta(po)® 1

T(MS) 2, 12 imd log(l—z) —
v ) () 3mg 08— A) - = e g,

log®(1 — 2)




A remarkable fact

Our asymptotic solutions, expanded in «, feature all of the terms:

log?(1 — 2)
11—z
log?(1 — z) photon

singlet, non — singlet

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at z — 1) in the AP kernels



