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To truly understand if Standard Model describes data
observed at LHC, need to connect theory and data
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For this, need to be able to go from Lagrangian
to fully exclusive events
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders

Dream would be to literally compute the full S-matrix

Perform measurement of Create initial state with 2
final state attime T protons at time -T
2

(X(M)\UT, =T)|pp(=T))

Perform time evolution with full SM Hamiltonian
from initial time -T to final time T
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One of the holy grails of HEP is the full simulation of
scattering processes at colliders

Perform measurement of Create initial state with 2
final state at time T protons at time -T

(X(M)\UT, = T)|pp(=T))

Perform time evolution with full SM Hamiltonian
from initial time -T to final time T

1. This clearly requires Quantum Physics (Quantum Field Theory)

2. This is something that is not even remotely feasible using classical
computers

3. Would revolutionize how we can compare experimental collider
measurements with theoretical predictions
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General principles

Soft functions on a
quantum computer
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Dealing with errors in
quantum computers
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One can turn the QFT calculation into a QM calculation by
discretization / digitization

X(T)|UT,-T) \pp(—T)>|

All elements in this expression in terms of fields ¢(x)
Both position x and field ¢p(x) are continuous

Discretizing position x and digitizing field value ¢(x) turn continuous (QFT)
problem into discrete (QM) problem
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Basic idea is to map the infinite Hilbert space of QFT on a
finite dimensional HS making this a QM problem

Instead of having a continuous field ¢ at each position x, we put a digitized field
¢, at discrete points x; arranged on a lattice

¢n1 ¢n2 ¢n3 ¢n4

® @ @ @ | . .
Hilbert space has dimension
® ® ¢ ® n, : # of digitized field values
NG P
® ® ® P <n¢> n; : # of lattice points per dim
d : # of dimensions
® ® ® ® Problem reduced to matrix multiplication
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Basic idea is to map the infinite Hilbert space of QFT on a
finite dimensional HS making this a QM problem

2
(X(M)\UT, =T)|pp(=T))

3 basic steps:

1. Create an initial state vector at time (-T) of two proton wave
packets

2. Evolve this state forward in time from to time T using the
Hamiltonian of the full interacting field theory

3. Perform a measurement of the state
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be described by lattice is given by

1 1
— < E<—
NI [
To simulate full energy range of LHC need

100MeV S ES7TeV

This needs ©(70,000%) ~ 10'* |attice sites

Assume | need at least 5 bit digitization = n, = 2> =32

Dimension of Hilbert space is
3210 L o

Clearly completely impossible to perform such a calculation
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Typical event at LHC involves very different energy scales:
High energy / short distance: Perturbation Theory
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Typical event at LHC involves very different energy scales:
Medium energy / medium distance: Parton shower
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Typical event at LHC involves very different energy scales:
Low energy / long distance: soft radiation / hadronization
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Can separate physics into three main categories: Hard,

Collinear. Soft |
soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b
2
Collinear: m;, mJ/Q <Kmy < Q
Soft: mjz/ 0
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Soft-Collinear Effective Theory

Formal
understanding of
QCD

Fixed order
calculations

Resummed
calculations
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. heavy lon collisions

SC ET CWSB, Fleming, Luke ("00)

CWSB, Fleming, Pirjol, Stewart ('00)

Proqfs (.)f Jet substructure Event generation
factorization g
Jet quenching in Parton distribution

Flavor physics functions

.....................................................................................................................................................................

Non-global

logarithms - Quarkonia physics Parton showers
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Soft-Collinear Effective Theory
SC ET CWSB, Fleming, Luke ('00)

CWSB, Fleming, Pirjol, Stewart ('00)

Formal  Proofs of | |
understanding of | ] ] . Jet substructure | Event generation
QCD  factorization | |
Fixed order - Jet quenching in . . Parton distribution
. g e g Flavor physics .
calculations . heavy lon collisions functions
Resummed Non—global Quarkonia physics Parton showers
calculations logarithms ; 5
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Effective theories allow to separate short and long
distance physics from one another

Goal is to separate ingredients that are calculable in perturbation theory from
those that really benefit from non-perturbative techniques

Effective Field Theories (SCET)

d6=H®J ®..®J &S

Most interesting object in above equation is the soft function .S, which as
discussed lives at the lowest energies

For 1TeV jets with 100GeV mass, find
Ag = (100 GeV)?/(1000 GeV) = 10 GeV
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Let’s try to estimate the resources we need to simulate
physics at the LHC

Energy rage that can be described by lattice is given by

1 1
— <E<-—
NI [

As | will argue later, can use effective field theories to limit required range to

100MeV < E <10GeV

This needs O(100°) ~ 10° lattice sites

Dimension of Hilbert space is
3210 © oo

6 14
While 321" <« 32107
still completely impossible to perform such a calculation
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Soft functions on a
quantum computer
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Quantum Algorithms for Quantum
Field Theories

Stephen P. Jordan,** Keith S. M. Lee,” John Preskill?

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (¢* theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Science 336 (2012) 1130
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The resources on a quantum computer are much smaller,
but still very large

From the discussion before, size of Hilbert space to simulate full LHC given by

dim(H) ~ 3210"

This Hilbert space can be encoded In

ny = In, |dim(H)| ~ 5 x 10"

While this is much, much smaller, still inconceivable to have a system of
this size in any of our lifetimes
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Crucial thing to realize is that we don’t need quantum
computer for most of this physics

First, for most observables not interested in the most general high energy
process (typically care about events with relatively small number of jets)

Second, perturbation theory works very well for high energy processes with
limited number of final state particles

Should use Quantum Computers only for those calculations that are not possible
using known techniques

Combine quantum computing with EFTs
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

Soft function can be written as

S = |(X|T1Y,Y!]|Q) ‘2

Y=Pexp |ig]| ds@p(ns) ns = (s5,0,0,s)
0

How does this look like on a lattice?
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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Wilson lines are a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice

Wilson line can be easily discretized on the lattice

Y, = Pexp [igdn 3 du(t = 1 — o)

Y1 =Pexp |—igéx Y ¢, (t =no— ;)

Use time evolution to change the time at each lattice point

TIY, Y]] = e % exp [ig 62 (Guyn, — Pug)] X €77 exp [ig 07 (Gunn 1 — Puy )]

X o0 X € tHox eXp |:’Lg 0x (¢xn0 o ¢xn0)] .

Alternate between exponential of field operator and Hamiltonian evolution
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S= [(X|T[Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | £2), circuit for T[YnY;]
and circuit to measure final state | X)

CWB, Freytsis, Nachman, PRL 127 (2021), 212001

o)
) A U oy
IN-1)

N DN DS

~ \
U . .
:r—r>| ‘ | Christian Bauer

BERKELEY LAB Quantum Computing for Colliders




Constructing the relevant circuit is relatively

straightforward

Jordan, Lee, Preskill (
Somma (

Macridin et al (
Savage, Kico (’

Crucial simplification: this problem only requires Hamiltonian of free field theory

— YY) — A2
H=H,+H, Hy=¢*2, H,=#/2

T

Can move between ¢ and x basis via QFT
e’int _ QFT—I ei&v tqb? QFT

and express qb operator through Z operators

Z 2] (3)

Entire Hamiltonian therefore determined in terms of

no—1ng—1 1)
exoli06d,] =TT 1T exofi2t0086] = l

=0 k0 k),
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Constructing the relevant circuit is relatively
straightforward

Exponential of field operator
CWB, Freytsis, Nachman, PRL 127 (2021), 212001

Much simpler to implement, using similar technique as for Hamiltonian

|()>Z, {107
ng—1
explifo;] = H exp {2239022} =
§=0
ng — 1), o —i2ne oz 1

Put together, allows to implement the whole Wilson line operator
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]|Q) ‘2

Have worked out quantum circuit to create vacuum state | £2), circuit for T[YnY;Z]
and circuit to measure final state | X)
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Constructing the relevant circuit is relatively

straightforward

Kitaev, Webb (’08)

CWB, Delivannis, Freytsis, Nachman (2109.10918)

Ground state of scalar field theory given by multivariate Gaussian

L i
U) = exp _§¢iGij¢j

ko) 1K),

The covariance matrix G;; can be diagonalized
G = MDM", where D is diagonal and M upper triangle matrix

General process is therefore to proceed in two steps

1. Prepare set of uncorrelated Gaussians with widths determined by D
2. Switch basis by applying M (a shearing operation)
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Constructing the relevant circuit is relatively
straightforward

Kitaev, Webb (’08)
CWB, Delivannis, Freytsis, Nachman (2109.10918)

1. Prepare set of uncorrelated Gaussians with widths determined by D
- Classical complexity scales as N exp(n¢)

- Quantum algorithm exists that has polynomial scaling Np(n¢)

- Requires to perform relatively complicated quantum arithmetic
- Since ny typically not very large, might be most efficient to simply

create classically computed state

2. Switch basis by applying M (a shearing operation)
- Classical complexity scales as exp(Nn¢)
- Quantum algorithm exists that has polynomial scaling p(Nn¢)

- Since N typically large, imperative to use much more efficient
quantum algorithm
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]| Q) ‘2

Have worked out quantum circuit to create vacuum state | €2), circuit for T[YnY;_i]
and circuit to measure final state | X)
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Constructing the relevant circuit is relatively
straightforward

Jordan, Lee, Preskill ('12)

1. Given the ground state of the theory, can obtain excited state by
acting with creation operator.

Not a unitary operation, but can be implemented using ancillary quit
Complexity scales as p(Nn)

W N
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

S = |(X|T1Y,Y!]| Q) ‘2

Have worked out quantum circuit to create vacuum state | €2), circuit for T[YnY;_i]
and circuit to measure final state | X)
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Soft function is the expectation value of a “Wilson line”

operator between initial and final state
CWB, Freytsis, Nachman, accepted by PRL

1.0 g
13 N 0.81 m
c G .
| - — i
S 550.6-
B>
v = i
% < 0.4 — Analytic Calculation P
I: -~ . Digitized Calculation/Noiseless Simulation (Qiskit)
| M Raw Quantum (IBMQ)
0.21 @ Corrected Quantum (IBMQ) -
1 X=|p1)
O_O T T p—n @ ¥ L L T
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Soft function is the expectation value of a “Wilson line”
operator between initial and final state

Not that good out of the box
... heed error mitigation!

1.0 g
g 0.8- t
c G -
| - — i
S 550.6-
EEEN
v = i
% < 0.4 — Analytic Calculation
I: -~ . Digitized Calculation/Noiseless Simulation (Qiskit)
| M Raw Quantum (IBMQ)
0.21 @ Corrected Quantum (IBMQ) -
1 X=|p1)
O_O T T p—n @ ¥ L L T

Quantum computer gives a good description of the analytical result

= A
] . .
rr/lml Christian Bauer

BERKELEY LAB Quantum Computing for Colliders




Dealing with errors in
quantum computers
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There are two types of errors in quantum computation:
Readout errors and gate errors

Readout (measurement errors)

Readout (measurement) errors only happen when qubits are measured.

They are the largest errors on current devices [O(10%)]

Gate errors

Gate errors happen whenever a gate is applied. The largest errors
occur in entangling 2-qubit gates [O(few%)]

Gate errors accumulate and therefore limit the number of gates that can
be used in a circuit
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Readout errors arise from errors (for example decoherence)

that arises during the measurement process

Nachman, Urbanek, de Jong, CWB, npj Quantum Information 6 (2020)

Qiskit Simulator
IBM Q Johannesburg Readout Errors

On a quantum compulter,
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One can also use active readout error correction, which uses

technigues similar to create fault tolerant computers
Hicks, Kobrin, CWB, Nachman (2108.12432)

Has advantage of allowing event-by-event correction

When readout errors Y AR
are larger than gate !
errors (as is often the 0) —{U i o [ L -
case), we can trade 0) A T pt
one for the other 0) & 7 -

We have developed a new protocol for exactly this
purpose!
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One can also use active readout error correction, which uses

technigues similar to create fault tolerant computers
Hicks, Kobrin, CWB, Nachman (2108.12432)

2 1

T T T T o T I ! .
[ m Nominal Circuit 2% 1 %4.2% 1% 5% 1% 9% 194 8% 4 % 2%

Encoded Ciruict,
no mitigation

i Active Readout
:- Correction

Active Readout
Detection

©
-
N

©
-
o

{IBMQ Mumbai

O
o
00

O
o
)

O
o
ES

Effective Readout Error

O
o
N

First  Second  Fourth  Fifth
Qubit Qubit Qubit Qubit

Christian Bauer
Quantum Computing for Colliders




The dominant gate errors one can find in quantum
computers are occurring in entangling CNOT gates

Typical errors are O(%) for each CNOT gate.
Can not run circuits with more than O(10) CNOT gates without correction

Have worked to develop techniques based on “Zero Noise Extrapolation”
A. He, BPN, W. de Jong, C. Bauer, PRA 102 (2020) 012426

Basic idea
* Dependence on error rate is to first approximation linear
* Can increase error rate through extra insertion of gates
* Allows to extrapolate noise to zero

~
U . .
:r_rﬁ‘ | Christian Bauer

BERKELEY LAB Quantum Computing for Colliders




The dominant gate errors one can find in quantum
computers are occurring in entangling CNOT gates

Typical errors are O(%) for each CNOT gate.
Can not run circuits with more than O(10) CNOT gates without correction

Second technique uses circuit to estimate and then correct noise
Urbanek, Nachman, Pascuzzi, He, CWB, dedong 2103.08591 (accepted in PRL)
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Combining EFTs with quantum algorithms, can compute
long distance physics from first principles

Using noise mitigation techniques, can use existing guantum computers to
obtain stable results for simplest observables

While this has shown that the relevant EFT calculations are possible, much
more work required for real world applications

1. Calculation done for scalar field theory
Implementation for gauge theories

2. Calculation done in bare theory:
Think carefully about renormalization in EFT
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First step to extend to gauge theories recently completed
with careful study of lattice U(1) gauge theory
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CWB, Grabowska, 2111.08015

Does significantly
better than the
previously best
approach for all

values of the coupling
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