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To truly understand if Standard Model describes data 
observed at LHC, need to connect theory and data

For this, need to be able to go from Lagrangian 
to fully exclusive events
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One of the holy grails of HEP is the full simulation of 
scattering processes at colliders
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One of the holy grails of HEP is the full simulation of 
scattering processes at colliders

Dream would be to literally compute the full S-matrix

⟨X(T) |U(T, − T) |pp(−T)⟩
2

Create initial state with 2 
protons at time -T

Perform measurement of 
final state at time T

Perform time evolution with full SM Hamiltonian

from initial time -T to final time T
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One of the holy grails of HEP is the full simulation of 
scattering processes at colliders

1. This clearly requires Quantum Physics (Quantum Field Theory)


2. This is something that is not even remotely feasible using classical 
computers


3. Would revolutionize how we can compare experimental collider 
measurements with theoretical predictions

⟨X(T) |U(T, − T) |pp(−T)⟩
2

Create initial state with 2 
protons at time -T

Perform measurement of 
final state at time T

Perform time evolution with full SM Hamiltonian

from initial time -T to final time T
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General principles

Soft functions on a 
quantum computer

Dealing with errors in 
quantum computers
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One can turn the QFT calculation into a QM calculation by 
discretization / digitization

⟨X(T) |U(T, − T) |pp(−T)⟩
2

All elements in this expression in terms of fields 
Both position x and field  are continuous

ϕ(x)
ϕ(x)

Discretizing position x and digitizing field value  turn continuous (QFT) 
problem into discrete (QM) problem 

ϕ(x)
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Basic idea is to map the infinite Hilbert space of QFT on a 
finite dimensional HS making this a QM problem

Instead of having a continuous field  at each position , we put a digitized field 
 at discrete points  arranged on a lattice

ϕ x
ϕn xk

Hilbert space has dimension

Problem reduced to matrix multiplication

(nϕ)
Nd  # of digitized field values


 # of lattice points per dim

 # of dimensions

nϕ :
nL :
d :

ϕn1
ϕn2

ϕn3
ϕn4

l
L

L = N l
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Basic idea is to map the infinite Hilbert space of QFT on a 
finite dimensional HS making this a QM problem

⟨X(T) |U(T, − T) |pp(−T)⟩
2

1. Create an initial state vector at time (-T) of two proton wave 
packets


2. Evolve this state forward in time from to time T using the 
Hamiltonian of the full interacting field theory


3. Perform a measurement of the state 

3 basic steps:
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

Energy rage that can be described by lattice is given by
1
Nl

≲ E ≲
1
l

To simulate full energy range of LHC need 

100 MeV ≲ E ≲ 7 TeV

This needs  lattice sites𝒪(70,0003) ∼ 1014

Assume I need at least 5 bit digitization ⇒ nϕ = 25 = 32

Dimension of Hilbert space is 

321014 ∼ ∞

Clearly completely impossible to perform such a calculation
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Typical event at LHC involves very different energy scales:

High energy / short distance: Perturbation Theory 
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Typical event at LHC involves very different energy scales:

Medium energy / medium distance: Parton shower
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Typical event at LHC involves very different energy scales:

Low energy / long distance: soft radiation / hadronization
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Can separate physics into three main categories: Hard, 
Collinear, Soft

 

Particle Seminar, 2018-11-27 Christopher Lepenik 3

Introduction

● Collider physics:

– Large scale hierarchy if final state consists of

● Jets: Highly energetic, collimated, strongly interacting particles

● Soft radiation

● Large scale hierarchies: Large logarithms of the scale ratios spoil perturbative expansion

  

                                        

Hard:        
Collinear: 
Soft:         

Q
mJ
m2

J /Q
m2

J /Q ≪ mJ ≪ Q
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Soft-Collinear Effective Theory
SCET CWB, Fleming, Luke (’00) 


CWB, Fleming, Pirjol, Stewart (’00)

Formal 
understanding of 

QCD

Proofs of 
factorization Jet substructure Event generation

Fixed order 
calculations

Jet quenching in 
heavy Ion collisions Flavor physics Parton distribution 

functions

Resummed 
calculations

Non-global 
logarithms Quarkonia physics Parton showers
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Soft-Collinear Effective Theory
SCET CWB, Fleming, Luke (’00) 


CWB, Fleming, Pirjol, Stewart (’00)

Formal 
understanding of 

QCD

Proofs of 
factorization Jet substructure Event generation

Fixed order 
calculations

Jet quenching in 
heavy Ion collisions Flavor physics Parton distribution 

functions

Resummed 
calculations

Non-global 
logarithms Quarkonia physics Parton showers
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Effective theories allow to separate short and long 
distance physics from one another

Goal is to separate ingredients that are calculable in perturbation theory from 
those that really benefit from non-perturbative techniques


Effective Field Theories (SCET)

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

Most interesting object in above equation is the soft function , which as 
discussed lives at the lowest energies

S

For 1TeV jets with 100GeV mass, find 
ΛS = (100 GeV)2/(1000 GeV) = 10 GeV
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Let’s try to estimate the resources we need to simulate 
physics at the LHC

Energy rage that can be described by lattice is given by
1
Nl

≲ E ≲
1
l

As I will argue later, can use effective field theories to limit required range to 

100 MeV ≲ E ≲ 10 GeV

This needs  lattice sites𝒪(1003) ∼ 106

Dimension of Hilbert space is 

32106 ∼ ∞

While , 

still completely impossible to perform such a calculation

32106 ≪ 321014
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Soft functions on a 
quantum computer
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Quantum Algorithms for Quantum
Field Theories
Stephen P. Jordan,1* Keith S. M. Lee,2 John Preskill3

Quantum field theory reconciles quantum mechanics and special relativity, and plays a central
role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering
probabilities in a massive quantum field theory with quartic self-interactions (f4 theory) in
spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong coupling. In the
strong-coupling and high-precision regimes, our quantum algorithm achieves exponential
speedup over the fastest known classical algorithm.

Thequestion whether quantum field theories
can be efficiently simulated by quantum
computers was first posed by Feynman

three decades ago when he introduced the notion
of quantum computers (1). Since then, efficient
quantum algorithms for simulating the dynamics
of quantum many-body systems have been
developed theoretically (2–4) and demonstrated
experimentally (5–7). Quantum field theory, which
applies quantum mechanics to functions of space
and time, presents additional technical challenges,
because the number of degrees of freedom per
unit volume is formally infinite.

We show that quantum computers can ef-
ficiently calculate scattering probabilities in
continuum f4 theory to an arbitrary degree of pre-
cision. We have chosen f4 theory, a scalar theory
with quartic self-interactions, because it is among
the simplest interacting quantum field theories
and thus illustrates essential issues without un-
necessary complications. Our work introduces
several new techniques, including creation of the
initial state by a generalization of adiabatic state
preparation and the use of effective field theory
to analyze spatial discretization errors.

In complexity theory, the efficiency of an al-
gorithm is judged by how its computational de-
mands scale with the problem size or some other
quantity associated with the problem’s intrinsic
difficulty. An algorithm with polynomial-time
asymptotic scaling is considered to be feasible,
whereas one with superpolynomial (typically, ex-
ponential) scaling is considered infeasible. This
classification has proved to be a useful guide in
practice.

Traditional calculations of quantum field
theory scattering amplitudes rely on perturba-

tion theory—namely, a series expansion in
powers of the coupling (the coefficient of the
interaction term), which is taken to be small.
A powerful and intuitive way of organizing
this perturbative expansion is through Feyn-
man diagrams, in which the number of loops
is associated with the power of the coupling.
A reasonable measure of the computational com-
plexity of perturbative calculations is therefore
the number of Feynman diagrams, which is de-
termined by combinatorics and grows factorial-
ly with the number of loops and the number of
external particles.

If the coupling constant is insufficiently
small, the perturbation series does not yield cor-
rect results. In f4 theory, for D = 2, 3 spacetime
dimensions, by increasing the coupling l0, one
eventually reaches a quantum phase transition at
some critical coupling lc (8–10). In the parameter
space near this phase transition, perturbative
methods become unreliable; this region is re-
ferred to as the strong-coupling regime. There
are then no known feasible classical methods
for calculating scattering amplitudes, although
lattice field theory can be used to obtain static
quantities such as mass ratios. Even at weak
coupling, the perturbation series is not conver-
gent, although it is asymptotic (11–13). Includ-
ing higher-order contributions beyond a certain
point makes the approximation worse. There is
thus a maximum possible precision achievable
perturbatively.

We simulate a process in which initially well-
separated massive particles with well-defined
momenta scatter off each other. The input to our
algorithm is a list of the momenta of the in-
coming particles, and the output is a list of the
momenta of the outgoing particles produced
by the physical scattering process. At relativistic
energies, the number of outgoing particles may
differ from the number of incoming particles.
In accordance with quantum mechanics, the in-
coming momenta do not uniquely determine
the outgoing momenta, but rather a probability
distribution over possible outcomes. Upon re-
peated runs, our quantum algorithm samples

from this distribution. The asymptotic scaling
of the algorithm is given in Eq. 9 and Table 1. The
simulated scattering processes closely match ex-
periments in particle accelerators, which are the
standard tools to probe quantum field-theoretical
effects.

The issue of gauge symmetries in quantum
simulation of lattice field theories has been
addressed in (14). There is an extensive literature
on analog simulation of interacting quantum field
theories using ultracold atoms (15–26), trapped
ions (27, 28), and Josephson-junction arrays (29).
Much work has also been done on analog sim-
ulation of special-relativistic quantum mechani-
cal effects such as zitterbewegung and the Klein
paradox, as well as general-relativistic quantum
effects such as Hawking radiation [for recent
reviews, see (30, 31)]. Our work, in contrast to
these studies, addresses digital quantum sim-
ulation, with explicit consideration of convergence
to the continuum limit and efficient preparation of
wave packet states for the computation of dy-
namical quantities such as scattering probabil-
ities. Our analysis includes error estimates of all
parts of our algorithm.

Representing fields with qubits. Although
quantum field theory is typically expressed in
terms of Lagrangians and within the interaction
picture, our algorithm is more naturally described
in the formalism of Hamiltonians and within
the Schrödinger picture. We start by defining a
lattice f4 theory and subsequently address con-
vergence to the continuum theory. (In D = 4,
the continuum limit is believed to be the free the-
ory. Nonetheless, because the coupling shrinks
only logarithmically, scattering processes for
particles with small momenta in lattice units
are interesting to compute.) Let W ¼ aZd

%L, that
is, an %L" :::" %L lattice in d = D − 1 spatial
dimensions with periodic boundary conditions
and lattice spacing a. The number of lattice
sites is V ¼ %Ld . For each x ∈ Ω, let f(x) be a
continuous, real degree of freedom—interpreted
as the field at x—and let p(x) be the correspond-
ing canonically conjugate variable. In canonical
quantization, these degrees of freedom are pro-
moted to Hermitian operators with the commu-
tation relation

½f(x), p(y)$ ¼ ia−ddx,y1 ð1Þ

We use units with ħ = c = 1. f4 theory on the
lattice Ω is defined by the Hamiltonian

H ¼ ∑
x∈W

ad
1
2
p(x)2 þ 1

2
(∇af)2(x) þ

!

1
2
m2

0f(x)
2 þ l0

4!
f(x)4

"
ð2Þ

where ∇af denotes a discretized derivative (that
is, a finite-difference operator) and m0 is the
particle mass of the corresponding noninteract-
ing (l0 = 0) theory.
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The resources on a quantum computer are much smaller, 
but still very large

From the discussion before, size of Hilbert space to simulate full LHC given by

dim(H) ∼ 321014

This Hilbert space can be encoded in 

nQ = ln2 [dim(H)] ∼ 5 × 1014

While this is much, much smaller, still inconceivable to have a system of 
this size in any of our lifetimes
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Crucial thing to realize is that we don’t need quantum 
computer for most of this physics

First, for most observables not interested in the most general high energy 
process (typically care about events with relatively small number of jets)

Second, perturbation theory works very well for high energy processes with 
limited number of final state particles

Should use Quantum Computers only for those calculations that are not possible 
using known techniques

Combine quantum computing with EFTs
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2
Soft function can be written as

Y = P exp [ig∫
∞

0
ds ϕ(ns)] ns = (s,0,0,s)

How does this look like on a lattice?
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A Wilson line is a relatively simple object on a lattice

Yn
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice

Yn̄
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A Wilson line is a relatively simple object on a lattice
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A Wilson line is a relatively simple object on a lattice
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Wilson lines are a relatively simple object on a lattice

Yn̄ Yn
t = 0
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A Wilson line is a relatively simple object on a lattice

t = l
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A Wilson line is a relatively simple object on a lattice

t = 2l
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A Wilson line is a relatively simple object on a lattice

t = 3l
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A Wilson line is a relatively simple object on a lattice

t = 4l
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A Wilson line is a relatively simple object on a lattice

In the following we discuss how to compute matrix elements of Wilson line operators

analogous to Eq. (7), but for a massless scalar field theory, rather than a gauge theory.

This can be viewed as a Wilson line created in a massless Yukawa theory, where a pair

of highly-energetic fermions interact with a massless boson field. When constructing the

explicit circuits we also limit ourselves to (1+1) dimensions, mainly to restrict the quantum

resources required such that it can be implemented on currently existing hardware. While

this allows us to omit some technical complications that arise when dealing with gauge

theories (gauge transformations, the existence of unphysical polarizations, etc.), it contains

all the physics originating from the fact that we are working within an e↵ective field theory.

To be precise, we consider a massless field theory in (1+1) dimensions with Hamiltonian

and Wilson lines defined by

H =

Z
dx

1

2

⇣
�̇
2
� � @

2
�

⌘
, Yn = Pexp


ig

Z 1

0

ds �(x = ns)

�
. (8)

In the Supplemental Material, we discuss how working in (1+1) dimensions gives rise to sev-

eral e↵ects not present in higher dimensions, and how these generalize to higher dimensions.

We discretize the position x into an odd number of lattice points, labeling the positions

by x0, . . . , xN�1. To eliminate the zero-momentum mode of the theory, we impose twisted

boundary conditions [26–29]. The result is a theory defined at discrete values x and p values

given by xi = xmin + i �x and pi = pmin + i �p with xmin = (1 � N) �x /2, pmin = �⇡/ �x

and �p = 2⇡/ �x, Writing �i ⌘ �(xi), the twisted boundary conditions correspond to the

condition �i+N = ��i. The Hamiltonian becomes [30]

H =
�x

2

N�1X

i=0

h
�̇
2
i
� �i [r

2
�]j

i
, (9)

where the lattice operator r
2 is defined through its action on a field as [r2

�]i = (2�i �

�i�1 � �i+1)/ �x
2. Due to the twisted boundary conditions [r2

�]0 = (2�0 + �N�1 � �1)/ �x
2

and [r2
�]N�1 = (2�N�1 � �N2 + �0)/ �x

2. The Wilson line operators can be written as

Yn = Pexp

"
ig �x

2n0X

i=n0

�xi(t = xi � n0)

#
, Y

†
n̄ = Pexp

"
�ig �x

n0X

i=0

�xi(t = n0 � xi)

#
, (10)

where n0 = (N � 1)/2 denotes the point the the center of the lattice.

We represent the field theory through the field values at each lattice position, and in order

to describe the theory on a digital quantum computer one needs to digitize the continuous
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field value at each lattice point [31]. Choosing nQ qubits per lattice site allows for n� ⌘ 2nQ

di↵erent field values. For each lattice point, the possible field values are chosen to be by

�
(k)
i

= ��max + k ��, with �� = 2�max/(n� � 1). The value of �max has to be chosen to

optimize the digitized description, which for free fields is accomplished by

�max =
1

p
�x !̄

s
⇡

2

(n� � 1)2

n�

(11)

where

!̄ =
1

N

X

i

!i , !i =
2

�x

����sin
pi �x

2

���� . (12)

For !̄ = 1, as is the case for a single lattice site with ! = 1, corresponding to a single

harmonic oscillator, Eq. (11) reproduces the empirical numerical values obtained in [31].

To implement the Wilson line operator we first rewrite the time-ordered produce of the

two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
⇥ e

iH�x exp
⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
.

(13)

where we have used the time translation operator to make the time dependence on the field

operators explicit. Thus, the Wilson line operator consists of a sequence of time-evolution

operators for a time interval corresponding to the lattice spacing and exponentials of the field

operator. The last time evolution evolves the state back from time that can be represented

on this lattice setup, namely tmax = n0 �x, to t = 0 at which all states are defined.

Ultimately, to make contact with the continuum field theory limit any such simulation

will have to be preformed on a series of increasing lattices, and the result extrapolated to

the N ! 1 limit. Any parameters of the theory present in the continuum must be suitably

matched for this procedure to yield meaningful results. For local terms in the Hamiltonian,

this procedure is discussed in detail in [30]. Dealing with a massless theory simplifies this

procedure since only local interactions (of which in the present case there are none) need

to be matched. However, the e↵ective field theory will also require the matching of Wilson

line operators, which is complicated by their non-local nature and sensitivity to total lattice

size, as discussed in the Supplemental Materials. In this letter, we work at fixed lattice size

and we leave the detailed investigation of these issues to future work.

The implementation of the exponential of the field operator, as well as the time evolution

operator, follows the discussion in [31] and uses the fact that the digitized field �
(k)
i

can be

7

Alternate between exponential of field operator and Hamiltonian evolution

Wilson line can be easily discretized on the lattice

Use time evolution to change the time at each lattice point
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount
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Constructing the relevant circuit is relatively 
straightforward

Hamiltonian Evolution

H = Hϕ + Hπ Hϕ = ̂ϕ2/2 , Hπ = ̂π2/2

Can move between  and  basis via QFTϕ π

8

n� = 2nQ distinct values. One can write the field as

�
(k)
i

= ��max + k �� for k = 0, . . . , n� � 1 , �� =
2�max

n� � 1
. (S42)

Representing the integer |ki
i
through its binary representation of the nQ qubits at lattice site i, we can define

�̂i |kii = �
(k)
i

|ki
i
. (S43)

The value of �max should be chosen to minimize the minimize the error due to the digitization and depends on the
Hamiltonian implemented on the lattice. The integer state |ki

i
is represented as usual through the bitstring of the

nQ qubits at the given lattice site

|ki
i
= |q0ii · · ·

��qnQ�1

↵
i
. (S44)

The full Hilbert space is then represented through the tensor product of the states |ki on each lattice site

| i = |ki0 · · · |kiNd . (S45)

Our explicit circuit constructions in this paper will only use a single spatial direction, such that we use

| i = |ki0 · · · |kiN . (S46)

The free Hamiltonian

The construction of the Hamiltonian of free massless scalar field theory follows previous work [6–8]. One can easily
convince oneself that the operator �̂i can be written through its action on the nQ qubits at each lattice site

�̂i =

nQ�1X

j=0

2j �̂(j)
z,i

, (S47)

where the operator �̂(j)
z,i

is a single �z Pauli matrix applied to the jth qubit of the ith lattice register.
The Hamiltonian is a sum over two pieces that do not commute with one another. The time derivative of the field

is the conjugate field ⇡i ⌘ �̇i, and one can write

H = H⇡ +H� (S48)

with

H⇡ = �x

X

i

⇡
2
i
, H� = �x

N�1X

i=0

�i[r
2
�]i . (S49)

As discussed before, the �i[r2
�]i operator only requires nearest neighbor interactions on the lattice. The time

evolution is then written in terms of the Suzuki–Trotter formula (we give the first order expression here)

⇥
e
�iHt

⇤
n
=

h
e
iH⇡t/n e

iH�t/n

in
. (S50)

To construct the exponential of the H⇡ operator, we use that the � and ⇡ are related by a Fourier transform on
the � register. Thus, we can write

e
iH⇡t = QFT�1

e
i�x t�

2
i QFT , (S51)

where QFT denotes the (symmetrized) Quantum Fourier Transform, which was discussed in [8]. We do not repeat
its circuit here.
Given this, on needs to find a circuit representation exp[i✓�i�j ] for general i and j, from which one can construct

both the circuits for exp[iH⇡t] and exp[iH�t].
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both the circuits for exp[iH⇡t] and exp[iH�t].

and express  operator through Z operatorsϕ

9

Using Eq. (S47), one can write

�̂i�̂j =

"
nQ�1X

l=0

2l�̂(l)
z,i

#"
nQ�1X

k=0

2l�̂(k)
z,j

#
=

nQ�1X

l=0

nQ�1X

k=0

2(l+k)
�
(l)
z,i
�
(k)
z,j

. (S52)

This allows us to write

exp
h
i✓�̂i�̂j

i
=

nQ�1Y

l=0

nQ�1Y

k=0

exp
h
i 2(l+k)

✓ �
(l)
z,i
�
(k)
z,j

i
. (S53)

The action exp
h
i 2(k+l)

✓ �
(l)
z,i
�
(k)
z,j

i
is equal to exp

⇥
i2(k+l)

✓
⇤
if qubits q(l)

i
and q

(k)
i

are equal and exp
⇥
�i2(k+l)

✓
⇤
if they

are opposite. Thus, it can be implemented by the circuit

|li
i

• •

|ki
i e

�i(2k+l
✓)Z

and the full operator exp[i✓�̂i�̂j ] for nq qubits per lattice site is therefore implemented by stringing together the
nQ(nQ � 1)/2 di↵erent possible 2-qubit circuits shown above.

Ground state preparation

The ground state of a massless scalar field theory is given by a multivariate Gaussian

| i = exp


�
1

2
�̂iGij �̂j

�
|k0i · · · |kin (S54)

While Qiskit provides a function to generate an aribtrary Gaussian multivariate distribution, the number of gates
in the resulting circuit scale exponentially with the number of qubits in the system. However, an algorithm with
polynomial scaling was derived by Kitaev and Webb [52]. While this algorithm does not produce the exact multivariate
distribution in its digitized form, it approaches the correct limit as the number of qubits per lattice site becomes large.

The KW algorithm relies on the LDL or square-root-free Cholesky decomposition, which rewrites the correlation
matrix in terms of a diagonal matrix D and a lower unit-triangular matrix L (a lower triangular matrix with 1’s on
the diagonal)

G = LDL
† (S55)

An arbitrary multi-dimensional Gaussian distribution can then be created by generating a series of uncorrelated
Gaussian distributions according to the diagonal matrix D, and then applying shear matrices L through a remapping
of the basis states of the Hilbert space. For details of this algorithm, we refer the reader to the original paper. In
Section we mentioned a modified version of the KW procedure, which only rounds the shear matrices applied to the
uncorrelated states to the nearest digitized field value after applying the the full shear matrix rather than after every
individual shearing operation, as was originally proposed in [52]. While requiring more ancilla qubits for memory,
this does not a↵ect the polynomial scaling of the approximation and results in exponentially greater fidelity with the
exact ground state for the nQ � 3 cases [56].

For 2 qubits per lattice site, the second step of the KW algorithm does not actually change the basis states, such
that KW state preparation is equal to the production of a uncorrelated Gaussians at each lattice site with width given
by the diagonal entries of the matrix D. In this work, we use the Cholesky decomposition of the correlation matrix,
but rather than using the full KW algorithm to produce the uncorrelated Gaussian, we use the built in functionality
of Qiskit, even though it has exponential scaling with nQ.

Wilson line operator

The Wilson line operator on a lattice was given in Eq. (S22). From this expression on can see that it is determined
through the successive application of the operator exp[ig �x�n] and Hamiltonian evolution. Given the circuit for
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by the diagonal entries of the matrix D. In this work, we use the Cholesky decomposition of the correlation matrix,
but rather than using the full KW algorithm to produce the uncorrelated Gaussian, we use the built in functionality
of Qiskit, even though it has exponential scaling with nQ.

Wilson line operator

The Wilson line operator on a lattice was given in Eq. (S22). From this expression on can see that it is determined
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Entire Hamiltonian therefore determined in terms of 

Crucial simplification: this problem only requires Hamiltonian of free field theory
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Constructing the relevant circuit is relatively 
straightforward

Exponential of field operator

Much simpler to implement, using similar technique as for Hamiltonian
10

Hamiltonian evolution derived above, one therefore only needs the circuit for the exponential of a single field. This is
easily derived using a similar derivation to the Hamiltonian case, and one writes

exp[i✓�̂i] =

nQ�1Y

j=0

exp
h
i2j✓�(j)

z,i

i
, (S56)

which can easily be written in circuit form

|0i
i e

�i✓Z

... · · · ...

|nQ � 1i
i e

�i2(nq�1)
✓Z

VALIDATION OF THE CIRCUITS FOR THE HAMILTONIAN

As a validation of the quantum circuits we first check the implementation of the free field theory (ground state
preparation and time evolution). In particular, we check to what degree the ground state is an eigenstate of the
Hamiltonian, and how well the energy of the ground state agrees with the known analytical value. We begin by
computing the overlap

f(t) =
��h⌦|

⇥
e
�iHt

⇤
n
|⌦i

��2 , (S57)

where
⇥
e
�iHt

⇤
n
is the Trotterized Hamiltonian with n steps given in Eq. (S50). This is implemented with the circuit

/ Ustate

⇥
e
�iHt

⇤
n

U
†
state

and the function f(t) is obtained by the fraction of measurements where all qubits are back the initial |0i state. If
the ground state is indeed an eigenstate of the Hamiltonian, and the Trotterized Hamiltonian is equal to the full
Hamiltonian, this function should be identically 1, and any deviation from this value should be due to Trotterization
errors or because the state |⌦i not being equal to the true ground state. In Fig. 5 we show this overlap for the exact
ground state on the left and for the KW ground state on the right. The result on the left confirms that with more
Trotter steps we approach unity, while the result on the right shows that even for a large amount of Trotter steps the
KW approximation leads to deviations from unity.

While this measurements tests to what degree the ground state is an eigenstate of the Trotterized Hamiltonian, it
can not check for the energy of the ground state since that manifests itself only as a pure phase in the above circuit.
A slight variation of this circuit

/ Ustate

⇥
e
�iHt

⇤
n

U
†
state

H • H

can measure the energy of the ground state. The fraction of measurements with all qubits in the |0i state is given by

fctr(t) =
1

4

��1 + h⌦|
⇥
e
�iHt

⇤
n
|⌦i

��2 , (S58)

which is sensitive to the energy E⌦. One can see that using the digitization of exact ground state and su�cient Trotter
steps one produces the analytically expected dependence on the ground state energy up to the small di↵erence in
period due to the shift in ground state energy due to digitization. Conversely, with the KW states one also sees a
small reduction in probability due to leakage out of the approximate ground state, as expected.

ERROR MITIGATION ON IBMQ

We mitigate both readout errors and gate errors. Readout error mitigation proceeds with a classical post-processing
step. We prepare all 2nqubit possible states |ii and measure the frequency of observing the state |fi. These probabilities
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=

Put together, allows to implement the whole Wilson line operator
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount
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Ground state preparation

Ground state of scalar field theory given by multivariate Gaussian
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Using Eq. (S47), one can write

�̂i�̂j =

"
nQ�1X

l=0

2l�̂(l)
z,i

#"
nQ�1X

k=0

2l�̂(k)
z,j

#
=

nQ�1X

l=0

nQ�1X

k=0

2(l+k)
�
(l)
z,i
�
(k)
z,j

. (S52)

This allows us to write

exp
h
i✓�̂i�̂j

i
=

nQ�1Y

l=0

nQ�1Y

k=0

exp
h
i 2(l+k)

✓ �
(l)
z,i
�
(k)
z,j

i
. (S53)

The action exp
h
i 2(k+l)

✓ �
(l)
z,i
�
(k)
z,j

i
is equal to exp

⇥
i2(k+l)

✓
⇤
if qubits q(l)

i
and q

(k)
i

are equal and exp
⇥
�i2(k+l)

✓
⇤
if they

are opposite. Thus, it can be implemented by the circuit

|li
i

• •

|ki
i e

�i(2k+l
✓)Z

and the full operator exp[i✓�̂i�̂j ] for nq qubits per lattice site is therefore implemented by stringing together the
nQ(nQ � 1)/2 di↵erent possible 2-qubit circuits shown above.

Ground state preparation

The ground state of a massless scalar field theory is given by a multivariate Gaussian

| i = exp


�
1

2
�̂iGij �̂j

�
|k0i · · · |kin (S54)

While Qiskit provides a function to generate an aribtrary Gaussian multivariate distribution, the number of gates
in the resulting circuit scale exponentially with the number of qubits in the system. However, an algorithm with
polynomial scaling was derived by Kitaev and Webb [52]. While this algorithm does not produce the exact multivariate
distribution in its digitized form, it approaches the correct limit as the number of qubits per lattice site becomes large.

The KW algorithm relies on the LDL or square-root-free Cholesky decomposition, which rewrites the correlation
matrix in terms of a diagonal matrix D and a lower unit-triangular matrix L (a lower triangular matrix with 1’s on
the diagonal)

G = LDL
† (S55)

An arbitrary multi-dimensional Gaussian distribution can then be created by generating a series of uncorrelated
Gaussian distributions according to the diagonal matrix D, and then applying shear matrices L through a remapping
of the basis states of the Hilbert space. For details of this algorithm, we refer the reader to the original paper. In
Section we mentioned a modified version of the KW procedure, which only rounds the shear matrices applied to the
uncorrelated states to the nearest digitized field value after applying the the full shear matrix rather than after every
individual shearing operation, as was originally proposed in [52]. While requiring more ancilla qubits for memory,
this does not a↵ect the polynomial scaling of the approximation and results in exponentially greater fidelity with the
exact ground state for the nQ � 3 cases [56].

For 2 qubits per lattice site, the second step of the KW algorithm does not actually change the basis states, such
that KW state preparation is equal to the production of a uncorrelated Gaussians at each lattice site with width given
by the diagonal entries of the matrix D. In this work, we use the Cholesky decomposition of the correlation matrix,
but rather than using the full KW algorithm to produce the uncorrelated Gaussian, we use the built in functionality
of Qiskit, even though it has exponential scaling with nQ.

Wilson line operator

The Wilson line operator on a lattice was given in Eq. (S22). From this expression on can see that it is determined
through the successive application of the operator exp[ig �x�n] and Hamiltonian evolution. Given the circuit for

The covariance matrix  can be diagonalized

, where  is diagonal and  upper triangle matrix

Gij
G = MDMT D M

General process is therefore to proceed in two steps

1. Prepare set of uncorrelated Gaussians with widths determined by 
2. Switch basis by applying  (a shearing operation)

D
M

Kitaev, Webb (’08)

CWB, Deliyannis, Freytsis, Nachman (2109.10918)
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Constructing the relevant circuit is relatively 
straightforward

Ground state preparation

1. Prepare set of uncorrelated Gaussians with widths determined by  
- Classical complexity scales as  
- Quantum algorithm exists that has polynomial scaling  
- Requires to perform relatively complicated quantum arithmetic  
- Since  typically not very large, might be most efficient to simply 
create classically computed state  

2. Switch basis by applying  (a shearing operation) 
- Classical complexity scales as  
- Quantum algorithm exists that has polynomial scaling  
- Since N typically large, imperative to use much more efficient 
quantum algorithm 

D
N exp(nϕ)

Np(nϕ)

nϕ

M
exp(Nnϕ)

p(Nnϕ)

Kitaev, Webb (’08)

CWB, Deliyannis, Freytsis, Nachman (2109.10918)



Christian Bauer
Quantum Computing for Colliders

Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount
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Constructing the relevant circuit is relatively 
straightforward

Excited state preparation

1. Given the ground state of the theory, can obtain excited state by 
acting with creation operator. 


2. Not a unitary operation, but can be implemented using ancillary quit

3. Complexity scales as p(Nnϕ)

Jordan, Lee, Preskill (’12)
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Soft function is the expectation value of a “Wilson line” 
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To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount

S = ⟨X |T[YnY†
n̄] |Ω⟩

2

Have worked out quantum circuit to create vacuum state , circuit for  
and circuit to measure final state 

|Ω⟩ T[YnY†
n̄]

|X⟩
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Quantum computer gives a good description of the analytical result
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Soft function is the expectation value of a “Wilson line” 
operator between initial and final state

Quantum computer gives a good description of the analytical result

Not that good out of the box 
… need error mitigation!
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Dealing with errors in 
quantum computers
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There are two types of errors in quantum computation: 
Readout errors and gate errors

Readout (measurement) errors only happen when qubits are measured.


They are the largest errors on current devices [O(10%)]

Gate errors happen whenever a gate is applied. The largest errors 
occur in entangling 2-qubit gates [O(few%)]


Gate errors accumulate and therefore limit the number of gates that can 
be used in a circuit

Readout (measurement errors)

Gate errors
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On a quantum computer, 
the state may be 1 but 

readout as a 0, etc.

For n qubits, there is a 

2n x 2n transition matrix.

Standard technique is to 
invert this readout matrix

Can obtain more stable 
results using techniques 

borrowed from HEP 
detector unfolding

Readout errors arise from errors (for example decoherence) 
that arises during the measurement process

Nachman, Urbanek, de Jong, CWB, npj Quantum Information 6 (2020)
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One can also use active readout error correction, which uses 
techniques similar to create fault tolerant computers

Has advantage of allowing event-by-event correction

We have developed a new protocol for exactly this 
purpose!

3

and encode the qubits before they are measured into
a bigger multiqubit array. This encoding is analogous
to conventional strategies for quantum error correction,
but with two important distinctions. First, in the case
of readout error mitigation, one is only concerned with
bit-flip errors in the computational basis since phase-flip
errors do not a�ect the measured distribution. Second,
the encoding is performed after state preparation rather
than at the beginning of the circuit. These simplifications
allow us to circumvent the significant space and gate
overhead typically associated with full quantum error
correction.

The simplest version of active readout error mitigation
is based on the two-qubit repetition code. As depicted
in Fig. 1, each qubit is entangled with a unique partner
qubit using a single cnot gate (though other fully entan-
gling gates could also be employed). Without errors, the
measured outcomes are either 00 or 11, whereas with a
single bit-flip error, the measured outcomes become 01 or
10; single qubit readout errors can thus be detected but
not corrected. A natural extension of this encoding is to
introduce a second ancilla qubit and entangle it with the
original qubit (Fig. 3). This forms a three-qubit repetition
code and allows for the correction of single qubit readout
errors — i.e. by taking the majority vote among the three
qubit — or the detection of two-qubit readout errors. We
henceforth refer to these encodings as the (2,1) and (3,1)
codes, where the notation (n, k) indicates that n physical
qubits are required to encode k logical qubits.

By design, these encodings o�er substantial protection
against readout errors; nevertheless, they remain suscepti-
ble to certain gate errors that occur during the encoding
circuit. For example, the single cnot gate in the two-
qubit encoding may lead to a correlated bit-flip error on
both of the qubits, resulting in a spurious measurement
outcome despite error detection. In general, if the av-
erage two-qubit error rate is ‘, one expects an e�ective
readout error rate of qe� ¥ –‘, where – is an order-one
constant that depends on specific protocol (e.g. two-qubit
vs. three-qubit, and error detection vs. correction), as well
as the error model for the entangling gates. We confirm
this scaling for a symmetric depolarizing noise model via
analytical results in Sec. III and numerical simulations in
Sec. IV. Active readout error mitigation is thus beneficial

|0Í U R≠1

`̆

|0Í U • •

R≠1|0Í

|0Í

FIG. 3. An illustration of the repetition (3,1) code, which
enables both error detection and error correction.

Encoding (n, k) Det. or E�. error rate Discarded
cor.? q-dependence – measurements?

Repetition
code

(2,1)
(3,1)
(3,1)

det.
det.
cor.

≥ q2

≥ q3

≥ q2

1/4
1/4
3/4

Yes
Yes
No

Hamming
code

(7,4)
(7,4)
(8,4)
(8,4)

det.
cor.
det.

hybrid

≥ q3

≥ q2

≥ q4

≥ q3

1/4
7/8
1/4
1/4

Yes
No
Yes
Yes

TABLE I. Summary of the encoding schemes presented in this
work. The notation (n, k) indicates that n physical qubits
are required to encode k logical qubits. The e�ective error
rate Qe� [defined in Eq. (13)] scales non-linearly with the
nominal readout error rate q, and is linearly proportional
to the cnot error rate ‘ with a susceptibility – given by
Qe�/k ¥ –‘.

q3 : |0Í

U

• • •

R≠1

q5 : |0Í • • •

q6 : |0Í • • •

q7 : |0Í • • • •

q1 : |0Í •

q2 : |0Í •

q4 : |0Í •

q0 : |0Í

FIG. 4. Illustration of the encoding for the Hamming (8,4)
code. The first four qubits (indexed q3, q5, q6, q7) contain
logical state information while the remaining qubits are the
parity bits. For the Hamming (7,4) code we omit the last
parity bit (q0) and all gates connected to it, i.e. those within
the black dashed box.

whenever the two-qubit error rate is lower than the intrin-
sic readout error rate q. In practice, this condition is met
by many existing quantum devices, as depicted in Fig. 2
for Google Sycamore and a variety of IBMQ quantum
computers.

Generalizing our strategy, one may consider encoding
circuits for implementing arbitrary classical error correc-
tion codes. To do so, one would add ancilla qubits and
entangle them with the original qubits to generate a classi-
cal code in the computational basis, i.e. each bitstring on
the original qubits is mapped to an encoded bitstring on
the full set of qubits. To understand the tradeo�s of using
increasingly complex codes, we compare two families of
error encoding schemes: the aforementioned repetition
codes and two versions of the Hamming code—the (7,4)
and (8,4) codes—illustrated in Fig. 4. We test the perfor-
mance of these codes via numerical simulations in Sec. IV
and summarize their key di�erences in Table I. In partic-
ular, we find that both types of codes o�er comparable
levels of error mitigation, and the more important factor
for determining the e�ective error rate is whether error
detection or error correction is performed.

When readout errors 
are larger than gate 

errors (as is often the 
case), we can trade 

one for the other

Hicks, Kobrin, CWB, Nachman (2108.12432)
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One can also use active readout error correction, which uses 
techniques similar to create fault tolerant computers
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FIG. 8. A diagram of the IBMQ Mumbai computer layout,
where circles represent qubits and links represent qubits that
are connected. The qubits used for the measurement presented
in Fig. 10 are colored in black (logical qubits) and blue (coding
qubits). The readout errors are reported in the circles and the
two qubit errors are reported on links connecting the circles.
Error rates are reported from August 19, 2021.

7-qubit encoding and the 2-qubit encoding [Fig. 7(a)].
Analagous with the previous case, the error rates are
nearly equivalent for the two encodings except when ‘ π q,
in which case the scaling with q becomes relevant.

Finally, in Appendix D, we analyze an extended (8,4)
version of the Hamming code which includes an extra
ancilla qubit compared to the (7,4) code and has an in-
creased code distance of d = 4. Interestingly, there are
two natural circuits that lead to the same classical encod-
ing and di�er in the number of entangling gates. While
one would naively expect the circuit with the fewest gates
to have the lowest error rate, we find the opposite to be
true. This highlights the importance of designing encod-
ing circuits that are robust not only to readout errors,
but also to gate errors that occur during the encoding
circuit.

V. EXPERIMENTAL DEMONSTRATION

This section demonstrates the experimental perfor-
mance of the repetition code on the IBMQ Mumbai
quantum computer. This computer has 27 qubits total,
arranged in a pattern depicted in Fig. 8. To demonstrate
the active readout error correction protocol, we construct
a 5 qubit sub-computer consisting of the five filled black
circles in Fig. 8 (corresponding to qubits 12-16 in the
computer’s labeling scheme). Due to the adjacency map
of connected qubits, we are unable to encode all qubits,
without adding extra Swap gates. Instead, the first (top
right filled black circle in Fig. 8), second, fourth and fifth
(counter-clockwise from the first) are encoded with the
(3,1) repetition code to improve the readout errors.

In Fig. 9, the e�ective readout error rates for the four
qubits are compared under three di�erent scenarios. First,
we measure the readout error rate with the encoding
circuit but without performing error mitigation (i.e. we
discard the measurements of the ancilla bits). As expected,

FIG. 9. The e�ective readout error for the first (top right
filled black circle in Fig. 8), second, fourth and fifth (counter-
clockwise from the first) are encoded with the (3,1) repetition
code to improve the readout errors. For each qubit, the left
(green) bar corresponds to the nominal circuit without any
additional cnots, the blue represents the circuit with the addi-
tional qubits and cnots without using them for correction, the
red shows the results with the active readout error correction,
and the orange shows the results with active readout error
detection. The bar height is the average over all 25 = 32 initial
states and the error bar represents the standard deviation.

this leads to an increase in the readout error rate relative
to that of the nominal circuit. Indeed, the observed
increase of ≥ 1% is consistent with the independently
measured rate of depolarizing errors (Fig. 8).

Second, we measure the e�ective error rate after per-
forming either error detection or correction. With either
scheme, we observe a substantial improvement in the er-
ror rate, e.g. dropping by a factor of five in the first two
qubits compared to the unencoded qubits. This indicates
that the suppression of readout errors due to the encoding
outweighs the errors introduced by the entangling gates
and is consistent with the relatively large readout error
rates for these qubits (Fig. 8).

A global picture of the subcomputer performance is
illustrated in Fig. 10. Even though only four of the five
qubits are encoded, the probability for a prepared state
to be correctly measured increases from about 75% to
more than 90% on average.

VI. CONCLUSIONS

In this work, we proposed a scheme for active readout
error mitigation based on encoding the output state of
a quantum circuit via a classical error correcting code.
We showed that this approach generally provides signifi-
cant readout improvement on devices whose bare readout
error rate is comparable or larger than the error rate of
entangling gates.

More specifically, we introduced two forms of encoding
(the repetition code and the Hamming code) and analyzed
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FIG. 8. A diagram of the IBMQ Mumbai computer layout,
where circles represent qubits and links represent qubits that
are connected. The qubits used for the measurement presented
in Fig. 10 are colored in black (logical qubits) and blue (coding
qubits). The readout errors are reported in the circles and the
two qubit errors are reported on links connecting the circles.
Error rates are reported from August 19, 2021.

7-qubit encoding and the 2-qubit encoding [Fig. 7(a)].
Analagous with the previous case, the error rates are
nearly equivalent for the two encodings except when ‘ π q,
in which case the scaling with q becomes relevant.

Finally, in Appendix D, we analyze an extended (8,4)
version of the Hamming code which includes an extra
ancilla qubit compared to the (7,4) code and has an in-
creased code distance of d = 4. Interestingly, there are
two natural circuits that lead to the same classical encod-
ing and di�er in the number of entangling gates. While
one would naively expect the circuit with the fewest gates
to have the lowest error rate, we find the opposite to be
true. This highlights the importance of designing encod-
ing circuits that are robust not only to readout errors,
but also to gate errors that occur during the encoding
circuit.

V. EXPERIMENTAL DEMONSTRATION

This section demonstrates the experimental perfor-
mance of the repetition code on the IBMQ Mumbai
quantum computer. This computer has 27 qubits total,
arranged in a pattern depicted in Fig. 8. To demonstrate
the active readout error correction protocol, we construct
a 5 qubit sub-computer consisting of the five filled black
circles in Fig. 8 (corresponding to qubits 12-16 in the
computer’s labeling scheme). Due to the adjacency map
of connected qubits, we are unable to encode all qubits,
without adding extra Swap gates. Instead, the first (top
right filled black circle in Fig. 8), second, fourth and fifth
(counter-clockwise from the first) are encoded with the
(3,1) repetition code to improve the readout errors.

In Fig. 9, the e�ective readout error rates for the four
qubits are compared under three di�erent scenarios. First,
we measure the readout error rate with the encoding
circuit but without performing error mitigation (i.e. we
discard the measurements of the ancilla bits). As expected,

FIG. 9. The e�ective readout error for the first (top right
filled black circle in Fig. 8), second, fourth and fifth (counter-
clockwise from the first) are encoded with the (3,1) repetition
code to improve the readout errors. For each qubit, the left
(green) bar corresponds to the nominal circuit without any
additional cnots, the blue represents the circuit with the addi-
tional qubits and cnots without using them for correction, the
red shows the results with the active readout error correction,
and the orange shows the results with active readout error
detection. The bar height is the average over all 25 = 32 initial
states and the error bar represents the standard deviation.

this leads to an increase in the readout error rate relative
to that of the nominal circuit. Indeed, the observed
increase of ≥ 1% is consistent with the independently
measured rate of depolarizing errors (Fig. 8).

Second, we measure the e�ective error rate after per-
forming either error detection or correction. With either
scheme, we observe a substantial improvement in the er-
ror rate, e.g. dropping by a factor of five in the first two
qubits compared to the unencoded qubits. This indicates
that the suppression of readout errors due to the encoding
outweighs the errors introduced by the entangling gates
and is consistent with the relatively large readout error
rates for these qubits (Fig. 8).

A global picture of the subcomputer performance is
illustrated in Fig. 10. Even though only four of the five
qubits are encoded, the probability for a prepared state
to be correctly measured increases from about 75% to
more than 90% on average.

VI. CONCLUSIONS

In this work, we proposed a scheme for active readout
error mitigation based on encoding the output state of
a quantum circuit via a classical error correcting code.
We showed that this approach generally provides signifi-
cant readout improvement on devices whose bare readout
error rate is comparable or larger than the error rate of
entangling gates.

More specifically, we introduced two forms of encoding
(the repetition code and the Hamming code) and analyzed
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Christian Bauer
Quantum Computing for Colliders

The dominant gate errors one can find in quantum 
computers are occurring in entangling CNOT gates

Typical errors are O(%) for each CNOT gate. 

Can not run circuits with more than O(10) CNOT gates without correction

Have worked to develop techniques based on “Zero Noise Extrapolation”

Basic idea

• Dependence on error rate is to first approximation linear 

• Can increase error rate through extra insertion of gates

• Allows to extrapolate noise to zero 

A. He, BPN, W. de Jong, C. Bauer, PRA 102 (2020) 012426
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The dominant gate errors one can find in quantum 
computers are occurring in entangling CNOT gates

Typical errors are O(%) for each CNOT gate. 

Can not run circuits with more than O(10) CNOT gates without correction
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FIG. 2. Quantum circuit for the simulation of the XX chain. a) Preparation of the initial domain-wall state and basis
transformation to a convenient basis. The dotted gates were replaced by random rotations in the estimation circuit. b) One
step of the time evolution. Multiple steps are obtained by repeating this subcircuit. The dotted gates were removed in the
estimation circuit. c) Basis transformation and measurement of the last qubit. The dotted gates were replaced by the inverses
of random rotations from the initialization step in the estimation circuit.
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FIG. 3. Comparison of the original and mitigated results
for the time evolution of the local magnetization in the XX
chain. The original results were obtained using the original
circuits without any mitigation. There are 14 CNOT gates per
time step and the longest original circuit contains 210 CNOT

gates. Target results use readout-error correction, randomized
compiling, and zero-noise extrapolation. Mitigated results use
readout-error correction, randomized compiling, mitigation
with estimation circuits, and zero-noise extrapolation. Data for
extrapolation were obtained with circuits where each CNOT

gate was replaced by one, three, or five CNOT gates. Each
circuit was executed with 448 random instances. Error bars
represent the standard deviation of processed data. Exact
solution takes the Trotter–Suzuki decomposition into account.

estimation circuit to estimate the noise rate that is then
used to correct the output of a given circuit. A crucial
part of this approach is the randomized compiling that
ensures that gate errors can be modeled as incoherent
depolarizing noise. We demonstrated that the method

works well, especially in combination with readout-error
correction and zero-noise extrapolation, on a set of test
circuits containing hundreds of CNOT gates. The method
is scalable to any number of qubits and gates given that
enough randomized samples are collected to achieve low
uncertainty.
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Appendix A: Zero-noise extrapolation

We replaced each CNOT gate in our circuits with
one, three, or five consecutive CNOT gates to artificially
increase noise. They are equivalent to a single CNOT gate
on a noiseless quantum computer. Both the estimation
and the target circuits were modified. Figure 4 shows
the e�ect of extra CNOT gates on the output of the
estimation circuits. Figure 5 shows this e�ect on the
output of the target circuits. We performed mitigation
using the outputs of the estimation and target circuits to
obtain mitigated local magnetization shown in Fig. 6.

[1] J. Preskill, Quantum 2, 79 (2018). [2] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.
Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,

Second technique uses circuit to estimate and then correct noise
Urbanek, Nachman, Pascuzzi, He, CWB, deJong 2103.08591 (accepted in PRL)
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Quantum Computing for Colliders

Combining EFTs with quantum algorithms, can compute 
long distance physics from first principles

While this has shown that the relevant EFT calculations are possible, much 
more work required for real world applications

1. Calculation done for scalar field theory 
Implementation for gauge theories 

2. Calculation done in bare theory: 
Think carefully about renormalization in EFT

Using noise mitigation techniques, can use existing quantum computers to 
obtain stable results for simplest observables
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First step to extend to gauge theories recently completed 
with careful study of lattice U(1) gauge theory

CWB, Grabowska, 2111.08015
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Does significantly 
better than the 
previously best 
approach for all 
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