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● to compare with experiment, we compare 
which particles arrive in the detectors

● for this we need to know in which direction the 
outgoing particles are going

● we need the differential cross section

Introduction
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matrix element

phase space integration

Introduction

Differential Cross Section
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2-particle phase space
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take spin sums

calculate traces

sum of scalar 
products

Introduction

2-particle phase space
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● general 2-particle phase space 
in CM-frame of P

● only depends on angles

Introduction

2-particle phase space
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final state with 2 particles:

● traces from spin sums easily calculable 

● analytic integration of phase space

Introduction

2-particle phase space
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final state with 2 particles:

● traces from spin sums easily calculable 

● analytic integration of phase space

final state with >3 particles:

● matrix element with traces possible in principle, but 

computationally expensive in practice

● analytic integration of phase space not possible

3/28

2-particle phase space

Introduction
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Why are traces a problem for >3 particles in the final state?
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Why are traces a problem for >3 particles in the final state?

● 62 diagrams

● 62 x 62 / 2 = 1922 terms

● in general:
○ N2/2 terms for N diagrams

○ the number of diagrams grows with the number of 
external legs n faster than n!

○ grows faster than (n!)2/2

example: 

● traces get complicated 

● each of the 1922 terms has a form 

similar to the image on the right

Matrix Element
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Is there a better method?

Matrix Element
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Is there a better method?

Yes, calculate helicity amplitudes 

● number of helicity amplitudes grows approximately as 2n with the number of external particles n

● no trace evaluation necessary

● additional simplifications

Matrix Element



Angelika Widl 6/28

Example

Matrix Element
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Example

Matrix Element

1) terms violating helicity conservation drop out
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Example

Matrix Element

1) terms violating helicity conservation drop out

2) diagrams can be dropped by clever choice of gluon polarization vectors
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Example

1) terms violating helicity conservation drop out

2) diagrams can be dropped by clever choice of gluon polarization vectors

3) subparts of amplitudes can be reused easily

Matrix Element
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Formalism

massless Dirac equation 

chiral basis

solution in chiral basis

2-spinors with spin along      axis 

choose                     (the spin of a massless particle is aligned (anti-)parallel to the momentum):  

Matrix Element
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Formalism

gamma matrices

chiral projectors

Matrix Element
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Formalism

gamma matrices

chiral projectors

terms violating helicity conservation drop out:

Matrix Element
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Formalism

complex polarization vectors are defined by:

fix polarization with:

polarization sum:

write polarization vectors with spinors:

Matrix Element
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1922 terms of the form:

number of additions/subtractions/divisions/multiplications: 30000

Matrix Element

trace method

:
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:

1922 terms of the form:

1333 terms of the form:

number of additions/subtractions/divisions/multiplications: 30000

number of additions/subtractions/divisions/multiplications: 11

400 subexpressions of the form:

Matrix Element

trace method

helicity amplitudes
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● for n > 3 not integrable analytically

● integrate numerically instead

● only option because of high dimensions: Monte Carlo integration

Phase Space Integration
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Want to integrate f(x) between a = 0 and b = 10:

Monte Carlo Integration

Monte Carlo Integration
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Monte Carlo Integration

Want to integrate f(x) between a = 0 and b = 10:
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Monte Carlo Integration

First estimate:
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Better estimate: take average

Monte Carlo Integration
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Take average:

Variance of f(x): 

Monte Carlo Integration
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Take average:

Variance of f(x): 

Monte Carlo Integration



Angelika Widl 14/28

What is the error of a Monte Carlo evaluation with 100 points?

back to the example from before:

Monte Carlo Integration
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exact (analytical) integration result

14/28

What is the error of a Monte Carlo evaluation with 100 points?

back to the example from before:

Monte Carlo Integration

1) perform integration many times to get 
error from Gauss distribution
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What is the error of a Monte Carlo evaluation with 100 points?

back to the example from before:

Monte Carlo Integration

1) perform integration many times to get 
error from Gauss distribution

histogram of 10i000 evaluations of         
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What is the error of a Monte Carlo evaluation with 100 points?

back to the example from before:

Monte Carlo Integration

1) perform integration many times to get 
error from Gauss distribution

or

2) calculate variance directly

histogram of 10i000 evaluations of         
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● how to satisfy energy-momentum conservation?

Energy-Momentum Conservation

Energy-Momentum Conservation



Angelika Widl 16/28

option 1: Rambo [Kleiss, Stirling 1986]

● produce n massless 4-momenta 
(energy from finite distribution and momentum in random direction)

● Lorentz transform all momenta to CM frame

● rescale momenta to obtain correct CM energy

● transform to massive momenta

finite energy distribution

Energy-Momentum Conservation
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momenta are evenly distributed for fixed energy

Energy-Momentum Conservation

option 1: Rambo [Kleiss, Stirling 1986]

● produce n massless 4-momenta 
(energy from finite distribution and momentum in random direction)

● Lorentz transform all momenta to CM frame

● rescale momenta to obtain correct CM energy

● transform to massive momenta
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2-particle phase space known

rewrite n-particle phase space 
into 2-particle phase spaces

Energy-Momentum Conservation

option 2: sequential phase space 

● rewrite n particle phase space into 2-particle phase spaces
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2-particle phase space known

rewrite n-particle phase space 
into 2-particle phase spaces
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2-particle phase space known

rewrite n-particle phase space 
into 2-particle phase spaces

example:

Energy-Momentum Conservation

option 2: sequential phase space 

● rewrite n particle phase space into 2-particle phase spaces
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can we do better?

Monte Carlo integration error for

Energy-Momentum Conservation
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Where does the large and unstable integration error come from?

● the large function variance 
leads to a large Monte Carlo 
integration error

Energy-Momentum Conservation
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example:

● the large function variance 
leads to a large Monte Carlo 
integration error

● it comes from the top quark 
propagator, which is large for 
                :

top propagator

Energy-Momentum Conservation
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Improving Precision: Variable Transformations

Basic Principle: Do a variable transformation to get a function with smaller variance.

large function variance 
⇨ large Monte Carlo integration error

small function variance 
⇨ small Monte Carlo integration error
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Improving Precision: Variable Transformations

Basic Principle: Do a variable transformation to get a function with smaller variance.

method 1: function known (example resonant propagators)

method 2: function unknown (Vegas)

Improving Precision
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example: resonant propagator

                variable transformation:

21/28

method 1: function known 

Improving Precision
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example: resonant propagator

                variable transformation:

method 1: function known 

Improving Precision
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example: 

method 1: function known 

Improving Precision
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method 1: function known 

example: 

Improving Precision
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method 2: function unknown (Vegas)

example: 1) separate integration region into 2 intervals of different size

Improving Precision
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example: 1) separate integration region into 2 intervals of different size

2) make intervals of same size by stretching one interval and compressing the 

other

method 2: function unknown (Vegas)

Improving Precision
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example: 1) separate integration region into 2 intervals of different size

2) make intervals of same size by stretching one interval and compressing the 

other

3) add Jacobian factor

variable transformation:

method 2: function unknown (Vegas)
 

Improving Precision
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example: 1) separate integration region into 2 intervals of different size

2) make intervals of same size by stretching one interval and compressing the 

other

3) add Jacobian factor

large variance small variance

variable transformation:

method 2: function unknown (Vegas)
 

Improving Precision
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in practice:

● take N intervals 

● calculate contribution to variance in each interval
● change size of interval accordingly
● repeat

method 2: function unknown (Vegas)

Improving Precision
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in practice:

● take N intervals 

● calculate contribution to variance in each interval
● change size of interval accordingly
● repeat

● for higher dimensions: project on each dimension 
and divide each axis separately into intervals

method 2: function unknown (Vegas)

Improving Precision
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in practice:

● take N intervals 

● calculate contribution to variance in each interval
● change size of interval accordingly
● repeat

● for higher dimensions: project on each dimension 
and divide each axis separately into intervals

caveat: cannot adapt 
to diagonal structures

method 2: function unknown (Vegas)

Improving Precision
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Multichannel Integration

● discussed how to use the structure of one diagram for integration

● what about all other 61 diagram structures?

Multichannel Integration
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separate into parts, where the resonant propagators are coming mainly from one diagram: 

Multichannel Integration
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separate into parts, where the resonant propagators are coming mainly from one diagram: 

adapt phase space structures to diagrams (“integration channels”):

1 n

Multichannel Integration
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multiply with factors                         (= “channel weights”)  

→ channel weights are adapted to minimize the integration error

Multichannel Integration
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Comparison of methods and generators:
(each point evaluated with 300 000 phase space points)

Multichannel Integration
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Project

● want to improve Monte Carlo event generation for top quark production:

○ NLL threshold corrections for the differential cross section for top quark pair production at the 
threshold

○ parton showers off intermediate top quarks

○ .... 

● we are building an NLO Monte Carlo for                                        with resonant 
subtraction 

Project
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Conclusion

● matrix elements can be efficiently calculated with helicity amplitudes

● phase space integration usually uses multiple integration channels

● each channel uses variable transformations to reduce the integration error

● we have finished a LO C++ Monte Carlo for                                        and are now building 
an NLO code with resonant subtraction

Conclusion
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Conclusion

● matrix elements can be efficiently calculated with helicity amplitudes

● phase space integration usually uses multiple integration channels

● each channel uses variable transformations to reduce the integration error

● we have finished a LO C++ Monte Carlo for                                        and are now building 
an NLO code with resonant subtraction

Thank you!

Conclusion


