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OUTLINE

+ Introduction: IR divergences
« Ideas for IR finiteness:

— Cross section method
— Finite S-matrix

— Coherent states

« Conclusions & Future directions



THE SCATTERING MATRIX (S-MATRIX)

(f| S|¢): Probability amplitude for measuring a

final state |f) given an initial state |¢)

« Used in most Quantum Field Theory calculations.
— Leads to predictions for collider experiments.
— Standard Model observables computed to high precision.

— Calculated using Feynman diagrams.



PROBLEM WITH S-MATRIX: INFRARED DIVERGENCES

« Probability of two electrons scattering when calculated naively = oo.
- Problematic since probabilities py; o< |(f|S|i)|* should be less than 1.
« UV divergences occur at high energies.
— Remedy using renormalization.
« IR divergences occur at low energies in theories with massless particles.

— No proof of LSZ theorem.

— Despite these problems, use S-matrix to make predictions.

Problems provide an opportunity: Explore and gain new insight!



PROBLEM WITH S-MATRIX: INFRARED DIVERGENCES

Physical Reason: We are not including the electromagnetic field

correctly in scattering calculations.

Lumen Learning



IR DIVERGENCES IN QFT
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IDEAS FOR IR FINITENESS

1. Finite cross sections o oc [ |[(f|S|i)[*dIl;

o Bloch-Nordsieck theorem
o KLN theorem

2. Finite S-matrix

3. Finite scattering amplitudes Sy; = (f|S|i)



1. FINITE CROSS SECTIONS



CROSS SECTION METHOD - INTRODUCTION

« Idea: Cross section is measurable and needs to be finite.

+ Detecting an electron, perhaps a photon with little energy or one close to the

electron escaped detector.

— All physical detectors have a finite resolution.

« A sum over all processes consistent with detector measurement should give a

finite quantity.

Need to calculate the same quantity as we measure.



CROSS SECTION METHOD - INTRODUCTION

Physical Motivation: All physical observables are finite.

Theoretical Goal: Find the minimal set of Feynman diagrams

needed for finiteness.



PREVIOUS THEOREMS ON IR DIVERGENCES

1937 1962-64 2018
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Bloch-Nordsieck Stronger KLLN theorem
theorem (Frye, HSH, Paul, Schwartz, Yan)

Kinoshita-Lee-Nauenberg
(KLN) theorem



PREVIOUS THEOREMS ON IR DIVERGENCES

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED when summing over

with finite energy resolution.

Doria, Frenkel, Taylor (1980): Counterexample in QCD: gq - pugq + final state

gluons is soft IR divergent at 2-loops.

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing

over final states and initial states within some energy window:

) [(f1S]i} | < o0

f,iE[E—Eo ,E+E0]



STRONGER KLN THEOREM

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing

over final states and initial states within some energy window:

> [(f1:S 1) [* < o0

f,iE[E—Eo ,E+E0]

Stronger KLN Theorem (2018): S-matrix elements squared are IR finite when

summing over final states or initial states:

§|<f|S|i>|2<oo, SIS i) < 0o



STRONGER KLN THEOREM

« KLN is a trivial consequence of unitarity:
— Probability of i - anything is 1 < oo

— Probability of anything — f is 1 < oo

+ KLN requires a term where f =1 — forward scattering

>g>< : : O

« Works diagram by diagram, proof in old-fashioned perturbation theory

— Fix state and cut up squared diagrams in all possible ways
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ete” — Z -+ final state radiation

>-" x "< o =00 6(1 - 2) (finite) Soft singularities
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ete” - Z + initial state absorption
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ete” - Z + initial state absorption & final state radiation
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CANCELLING IR SINGULARITIES

« Which diagrams cancel the leftover singularity?

« Stronger KLN Theorem (2018): S-matrix elements squared are IR finite

when summing over final states or initial states:
?I(fISIi)|2<°°, SIS < 00
7

« Not including all possible diagrams.



ete” - Z + initial state absorption & final state radiation
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ete” - Z + initial state absorption & final state radiation
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ete” - Z + initial state absorption & final state radiation

No reason to stop at
e
1 disconnected photons



ete” - Z + initial state absorption & final state radiation
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ete” - Z + initial state absorption & final state radiation
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< No reason to stop at

n disconnected photons




ete” - Z + initial state absorption & final state radiation

AN AN
AAAAAA

Soft and collinear singularities

cancel in each triplet of diagrams

22n4

m: No. of initial state photons

n: No. of final state photons
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KLN THEOREM INTERPRETATION

Why did it work to sum over disconnected photons?

KLN requires a term where f =1 — forward scattering

j>< x : O

The IR singularity cancellation worked only since the forward scattering diagrams

Z +ny— Z+n-y are finite for any n



3 WAYS OF MAKING ete” — Z FINITE:

1. With infinite number disconnected photons, but no forward scattering.
2. Initial state sum, including forward scattering.

3. Final state sum, including forward scattering.



MAKING ete” - Z FINITE: 1. DISCONNECTED PHOTONS
Sum of triplets of diagrams are IR finite




MAKING ete” — Z FINITE: 2. INITIAL STATE SUM




MAKING ete” - Z FINITE: 3. FINAL STATE SUM
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SUMMARY

Need forward scattering and disconnected diagrams in KLN theorem.
3 ways of making e*e” — Z finite:

— With infinite number disconnected photons, but no forward scattering.

— Initial state sum, including forward scattering.

— Final state sum, including forward scattering.
IR divergence in vy — ~~ scattering is cancelled by vy — e*e™.

Need a revised understanding of what is observable.



CONCLUSION OF CROSS SECTION METHOD
D SIS oc 1< o0
f
Conclusion: KLN theorem = unitarity.
If we sum over all possible diagrams we get 1 by unitarity, and 1 is IR finite.
Not closer to finding the minimal set of diagrams needed for IR finiteness.

Need new ideas beyond the cross section method.



2. A FINITE S-MATRIX



THE SCATTERING MATRIX (S-MATRIX)

« Properties extensively studied.
— How to encode its content? Spinors, twistors, amplituhedron?
— What are its symmetries? Lorentz invariance, Dual conformal invariance?
— What constraints can we impose? Steinmann relations, limits?

« Still, the S-matrix does not exist in theories with massless particles.

— Divergent in perturbation theory.

— Zero non-perturbatively.



THE SCATTERING MATRIX (S-MATRIX)

Why are our previous calculations valuable?
What is the fundamental object we should calculate?

What do we gain from a firmer mathematical ground?



WHAT IS SCATTERING?

time y
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WHAT IS SCATTERING?

S-matrix: Probability amplitude for measuring |f) given |i)

Sfl = lim <f| eiH0t+€_th+€th—e—iH0t— |Z>

ti—+o00
time
t=—o0 t=0 t=00 _ B
] e e
e*lH()t |Z>
: (27’/,H17
: e e



TRADITIONAL DEFINITION OF S-MATRIX

Sf’L = lim <f| €iH0t+€_th+€th7€_iH0L |Z)

ti—+o00

Free Theory: S=1 Sy =(fli) v
QM, short range potential: v

Const. potential H =Ho+Vy: Sy = <f|i>Thm e=2tVoT 9

QED S:]l_;%+...:_oo?
S = exp{—;%} =07
ef/’\//f,f)&v/\,
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TRADITIONAL DEFINITION OF S-MATRIX

Sfi = lim <f| eiHotJre—'thJreth,e—iHot, |Z)
ti—+o00
Free Theory: S=1 Sy =(fli) v
QM, short range potential: v

Const. potential H =Hp+Vy: Sy = (f|z)Thm e~ 2WT 7

QED S:]l_;%+...:_oo?
S = exp{—;%} =07
Interactions do not vanish as t - +o0 in QED

Must redefine S-matrix in theories with long range interactions



MODIFY S-MATRIX TO Sy

Recall: Interactions do not vanish as t - +oo in QED.

e SE Wi
TN NS

Redefine S-matrix in theories with long range interactions:

Sfl — ) lim (f| eiH0t+e—th+eth_e—iHot_ |Z)
+—>+00
— sz — hm (f] eiHast+e—th+eth_e—iHaSt_ |z)

+—>+00



MODIFY S-MATRIX TO Sg

t=—00 t=0 t=00



QUESTIONS

S]g :t lim <f| eiH;Lst+e—th+ 6th_e—iHast_ |Z)

+—>+00

(i) How to pick H,g?
 Criteria: IR finite, easy to calculate, useful in practice, consistent with every

measurement to date.
(ii) How to calculate matrix elements of Sg?

(iii) How to interpret Sg?



CHOICE OF H ,q

(i) How to pick Hus?
+ Use factorization, and techniques from Soft-Collinear Effective Theory (SCET):

Has = HSCET

« IR finite by construction due to universality of IR divergences.
« States evolve independently of how they scatter.
« New UV divergences dealt with using renormalization.

« No scales, most integrals are zero in dim reg.



THREE PART CALCULATION

(ii) How to calculate matriz elements of Sg ¢

+ Calculation trick in perturbation theory:

Sfi= [ty [ i (e 1) (1 S1) @9 1)

—_—  — ——

TOPT usual TOPT
. L. rules Feynman rules
« Calculations split into three parts: rules

asymptotic region t=seo  central region =00 asymptotic region
time




EXAMPLE: Z - e* e FOR H,s = Hscgrr

t=0

t=—o0

YR [3 4+2L_i_4+2L]

- A | €2 2
dr | e €ir €y €uv

_ 2
(e*e | Su|2)™ = Mo + Mof [78 + % By SL]
Y[

,E‘z . .
me=0, L=In —#Czﬂ, Mo: LO matrix element, Dim reg, CM frame



INTERPRETATION OF Sy

iii) How to interpret Sy
iii) How to int tSp?
a. Wilson coefficients in Soft-Collinear Effective Theory (SCET)
b. Remainder functions in N = 4 Supersymmetric Yang-Mills theory (SYM)

c. Dressed states / Coherent states



3. FINITE SCATTERING AMPLITUDES



C. COHERENT STATES

o Arise as intermediate steps in Sy calculations:

SH = SIS (| S (]2 Ji)

fl il

(9] i)

. t=0 t=—oc0
time




C. COHERENT STATES

o Arise as intermediate steps in Sy calculations:
St = 2 2 QTS IS 1) (1925° )
fl Z‘/
(f i)

Mathematically the same as the finite S-matrix



FUTURE DIRECTIONS: ANALYTIC STRUCTURE OF Sy

We have explored:

S provides an alternative definition of familiar QFT objects.

New goal:

Examine properties of Sg, e.g. using bootstrapping methods.

Tools needed:

Better handle on analytic structure of amplitudes.



CONCLUSIONS OF FINITE S-MATRIX METHOD

S “hard” S-matrix defined by exploiting universality of

asymptotic interactions in theories with massless particles.
« Encodes hard dynamics of scattering processes.

« Interpretations:

a. Wilson coefficients
b. N =4 remainder functions

c. Coherent states

« Ezxplore analytic structure of S and Sp.



FUTURE DIRECTIONS

Extend Steinmann relations.

Apply new results to bootstrapping finite S-matrix?

Extend to massless particles?

More general proof of Steinmann?



CONCLUSIONS

« IR divergences remain a problem in QFT
« Explored three solutions:

1. Finite cross sections: Sum over all diagrams for finiteness.
2. Finite S-matrix: Fncodes hard dynamics of scattering processes.

3. Finite scattering amplitudes (Coherent states): Same as Finite S-matriz.

« Future directions: Explore analytic structure.



THANKS!



PREVIOUS RESULTS: EXTEND CUTTING RULES

+ Traditional Cutting Rules: (Cutkosky 1960)

o~
DiseM = M|y = M|_ie = Z CutM

« Extended Cutting Rules: (Bourjaily, HH, McLeod, Schwartz, Vergu 2020)
=0~

DiscM ~ > Cut’ M + Y Cut® M + ---



STEINMANN RELATIONS

M cannot have sequential discontinuities

in partially overlapping channels

i S

+ M cannot contain In(s)In(t) but can contain In(s)In(u).

« Important for bootstrapping amplitudes.

+ Proofs: Steinmann 1960; Bourjaily, HH, McLeod, Schwartz, Vergu 2020.



STEINMANN RELATIONS

M cannot have sequential discontinuities

in partially overlapping channels

i S

+ M cannot contain In(s)In(t) but can contain In(s)In(u).

« Important for bootstrapping amplitudes.

« Proofs: Steinmann 1960; Bourjaily, HH, McLeod, Schwartz, Vergu 2020.

New Goal: Find stronger constraints



1]

2]

3]

REFERENCES 1

Christopher Frye, Holmfridur Hannesdottir, Nisarga Paul,

Matthew D. Schwartz, and Kai Yan. “Infrared Finiteness and Forward
Scattering”. In: Phys. Rev. D 99.5 (2019), p. 056015. DOL:
10.1103/PhysRevD.99.056015. arXiv: 1810.10022 [hep-ph].

Holmfridur Hannesdottir and Matthew D. Schwartz. “S-Matrix for massless
particles”. In: Phys. Rev. D 101.10 (2020), p. 105001. DOTI:
10. 1103/PhysReVD. 101.105001. arXiv: 1911.06821 [hep—th] .

Holmfridur Hannesdottir and Matthew D. Schwartz. “A Finite S-Matrix”. In:
(June 2019). arXiv: 1906.03271 [hep-th].



REFERENCES ii
[4] T. Kinoshita. “Mass singularities of Feynman amplitudes”. In: J. Math. Phys. 3
(1962), pp. 650-677. DOI: 10.1063/1.1724268.

[5] T.D. Lee and M. Nauenberg. “Degenerate Systems and Mass Singularities”.
In: Phys. Rev. 133 (1964), B1549-B1562. pOI: 10.1103/PhysRev.133.B1549.

[6] O Steinmann. “Uber den Zusammenhang Zwischen den Wightmanfunktionen
und den Retardierten Kommutatoren”. In: Helvetica Physica Acta 33 (1960),
pp- 257-298.

[7] O Steinmann. “Wightman-Funktionen und Retardierte Kommutatoren. II”. In:
Helvetica Physica Acta 33 (1960), pp. 347-362.



REFERENCES 111

[8] Jacob L. Bourjaily, Holmfridur Hannesdottir, Andrew J. McLeod,
Matthew D. Schwartz, and Cristian Vergu. “Sequential Discontinuities of
Feynman Integrals and the Monodromy Group”. In: (July 2020). arXiv:
2007.13747 [hep-th].



