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1. Asymptotic series and the 
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general divergent
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of QCD

Develop the resummation 
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In these conditions

3. Series without cusp-anomalous dimension

4. Series with cusp-anomalous dimension
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5. Phenomenology I: short-distance mass schemes

6. Phenomenology II: jets from massless and massive quarks
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Perturbative series 

in QFT can be

Convergent

Asymptotic 

(divergent!)

Finite convergence radius

Zero convergence radius

Divergent series

Example: σ𝑛=0
∞ 𝑎𝑛𝛼

𝑛 , 𝑎𝑛 ∼ 𝑘 𝑏𝑛Γ 𝑛 + 1 + 𝑐

Seems to converge at low 𝑛 but diverges after 

𝑛 ∼ 20



We seek closed expressions for perturbative series (resummation).

Is there any way to resum asymptotic series? 

Borel transform

1899

Borel resummation 



Borel transform
Borel transform improves convergence:

The trick! 

• Convergent series ⟶ Finite integral

• Asymptotic series ⟶

has poles 

Invert

Resummed

Sum up (Borel sum)



Renormalons

For asymptotic series, the poles of

in the complex 𝑢-plane are known as renormalons

𝑢

𝑢 = 0

Integration path

UV renormalons

𝑢 = -1/2, -1, -3/2,-2…

Alternating sign series 

(summable)

IR renormalons

𝑢 =1/2, 1, 3/2, 2…

Non-alternating sign series 

(non-summable)

Need to be dodged!



Principal value prescription (P.V.)
Dodge poles by infinitesimally 

deforming the integration contour

*This definition ensures if and zero for odd  along simmetric interval.

Simple poles add 

imaginary part

Estimated resummed value of the series Estimated resummation error (~ minimal term).

Given by sum of residues of IR renormalons.

Ambiguity

𝑢

𝑢𝑛𝑢𝑛 − δ 𝑢𝑛 + δ
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We start with a series in the bare 

formalism

α𝑠
0

nfnfnf nf
α𝑠
0

nf
α𝑠
0 α𝑠

0 α𝑠
0 α𝑠

0

Large-𝛽0 counting: keep track of powers of 𝑛𝑓 by  𝛽0 =
11

3
𝐶𝐴 −

4

3
𝑇𝐹𝑛𝑓

Large-𝛽0 expansion: expand assuming 𝑂 𝛼𝑠𝛽0 ∼ 1

The large-𝜷𝟎 limit 



Large-𝛽0 expansion: expand assuming 𝑂 𝛼𝑠𝛽0 ∼ 1

Performing this substitution and expanding in 1/𝛽0

The renormalization of α𝑠 is simple 

when 𝛽0 is large since from 𝛽𝑛 ∼ 𝑂(𝛽0
𝑛)

for 𝑛 > 0 one has 

We take this as our new 

modified coupling constant

The large-𝜷𝟎 limit 

Coefficients of 

highest 𝑛𝑓 power

Only corrections from gluon propagator 

corrected with quark loops



The effective gluon propagator can be computed in arbitrary gauge with 𝑑 = 4 − 2𝜖 and naive non-

abelianization 𝑛𝑓 ↦ −
3

2
𝛽0:

In practice the insertion of                 is a (shifted) 1-loop computation which we split as:

Gluon propagator with 

momentum shifted by

ℎ ≡ 𝑛ϵ

The function             

generates the infinitely 

many 1/𝛽0 terms.          

The large-𝜷𝟎 limit 



where     is an external energy-scale (ex. mass or CM energy).

From here we distinguish when 𝑢 ↦ 0

• Finite series (no renormalization) ⟶ 𝐹(𝜖, 𝑢) starts at 𝑂(𝑢).

• Non-cusp series (1-loop divergences start as 1/𝜖) ⟶ 𝐹(𝜖, 𝑢) starts at 𝑂(1)

• Cusp series (1-loop divergences start as 1/𝜖2) ⟶ 𝐹(𝜖, 𝑢) starts at 𝑂(1/𝑢)

in all cases 𝐹(𝜖, 𝑢) starts at 𝑂(1) when 𝜖 ↦ 0.

We found closed expressions for all three cases!

All-in all, the expression for our series in the large-𝛽0 limit is (defining                          ):

The large-𝜷𝟎 limit 
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For non-cusp series we have 

regular 𝐹 𝜖, 𝑢 :

Plugging it back and after several boring manipulations…

Finite term: efficient way of 

computing all the coefficients 

of the renormalized series

UV divergences have been 

separated for simple removal

(we discarded 𝑗 > 0 terms)

μ-independent termsμ-dependent term

*In the large-𝛽0 limit, multiplicative 

renormalization reduces to addition: 

Perturbative form



For non-cusp series we have 

regular 𝐹 𝜖, 𝑢 :

Plugging it back and after several boring manipulations…

Each of these terms admits a closed form

*In the large-𝛽0 limit, multiplicative 

renormalization reduces to addition: 

Perturbative form

Nice but still perturbative



Closed forms

The magic occurs when one realizes each term in the perturbative sum admits 

a closed integral form:

Integral tricks Regularity condtion (backwards)



Series = Borel-like, ambiguous integral + Unambiguous integral, finite convergence radius

Closed forms

The magic occurs when one realizes each term in the perturbative sum admits 

a closed integral form:

Renormalization factor

Anomalous dimension

UV substractions
Do poles and ambiguities 

depend on 𝜇?!

Closed, non-integral form ⟶ unambiguous

No UV 

substractions

Renormalized 

series



Removing the 𝝁 dependence from the Borel integral 

where the Landau pole is at the 𝜇-independent position 

This can be used to solve the 

running of 

In the large-𝛽0 limit, the           function acquires a 

simple form (𝜖 = 0): 

Taylor-expand and integrate

Do poles and ambiguities 

depend on 𝜇?!

𝜇-independent!



Alternative closed expression

Each pole’s ambiguity is enhanced by Λ𝑄𝐶𝐷/𝜔
2𝜏

, with 𝜏 being the pole’s position in the positive 

real axis.

The explicit presence of Λ𝑄𝐶𝐷 indicates 𝛿𝐴 estimates the size of non-perturbative (power) corrections.

Renormalized series, alternative expression

The IR renormalons are the poles of 𝐹(0, 𝜏) and neither their position nor their residues deppend on 

the unphysical scale 𝜇, but the latter does deppend on 𝜔.

The entire 𝜇-dependence of the series is contained in the unambiguous terms through                    . 

Multiplies the residues of 𝐹(0, 𝜏)
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We present an extension of the previous formalism 

to series with cusp-anomalous dimension

For such series 𝐹(𝜖, 𝑢) starts at 𝑂(1/𝑢) so we define 𝐺 𝜖, 𝑢 ≡ 𝑢𝐹(𝜖, 𝑢)

The presence of an extra 𝑙2 complicates manipulations, but we do 

not despair and find…

Perturbative expression

𝐺 𝜖, 𝑢 is 

regular

Perturbative coefficients 
This term provides the 

anomalous dimension

New nuisance! Harmonic numbers



Closed forms

Again each term admits a closed integral form but it is worth saying this time 

is much harder to find due to 𝐻𝑖…

Spliting the renormalization equation 

in a cusp and non-cusp part as 

Renormalization factor 

(non-cusp part)

Renormalization factor 

(cusp part)
Non-cusp 𝑍

factor term needs 

UV substraction



The renormalized cusp-series also has an apparently 𝜇-dependent ambiguous 

integral that turns out to be 𝜇-independent

Renormalized 

cusp series

Closed forms

And finally we have closed forms for the anomalous dimension

Cusp and non-

cusp anomalous 

dimensions

UV substractions: 

some terms need 

two of them

Series = Ambiguous + Finite convergence radius

Non-cusp needs UV substraction
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Massive quark self-energy

We compute the massive quark self-energy 

with the effective gluon propagator.

This one function generates the large-𝛽0 series for the mass renormalization 

factor in the on-shell scheme, which allows us to comptue…

• Relation between pole and MS masses ⟶MS mass anomalous dimension 

and running

• MSR mass and its R-anomalous dimension

… all of these perturbatively and in closed form (PV value and ambiguities).

Where the energy scale is given by



There are poles at all positive half integers.

The most severe renormalon lays at 𝑢 = 1/2

Indeed we don’t cross the poles of 𝐹(𝜖, 0)

The ambiguity 𝛿𝑚𝑝
of the pole mass is the sum of the residues and with extra effort it can be 

also resummed

The leading power ambiguity does not deppend on ഥ𝑚

Pole- 𝐌𝐒 mass relation 



𝒏 + 𝟏 loops

Closed form results vs partial sum of perturbative series

As series, 𝑚𝑝 is clearly asymptotic

The PV prescription value is 𝜇-independent and 

agrees (within ambiguity) with the “convergent” 

value of the series.

The fixed order expresion is 𝜇-dependent and 

𝜇 plays a role in the asymptotic behavior: for lower 

values the series “converges” faster but the 

divergent behavior is more pronounced

Pole- 𝐌𝐒 mass relation 

PV value±ambiguity



𝐌𝐒 anomalous dimension

The MS anomalous dimension is unambiguous

(the 𝜇 derivative cancels the Borel integral)

(agrees with the derivation of Palanques-Mestre 

and Pascual, Grozin)
Convergence radius of 𝛽 = 2.5



MSR mass
The MSR mass is obtained from the pole-MS relation

and presents the same leading renormalon at 1/2

0

𝐌𝐒𝐑 anomalous dimension

The R derivative does not cancel the Borel integral, 

however the 1/2 renormalon does cancel (higher 

order ones stay)

R-evolution is (a bit) ambiguous 



MSR mass
The MSR mass is obtained from the pole-MS relation

and presents the same leading renormalon at 1/2

0

𝐌𝐒𝐑 anomalous dimension

The R derivative does not cancel the Borel integral, 

however the 1/2 renormalon does cancel (higher 

order ones stay)

R-evolution is (a bit) ambiguous 



Pole mass from MSR mass

When expanded in terms of 𝛼𝑠 𝜇 , the MSR mass aqquires 

powers of log(𝜇/𝑅) and 𝜇 dictates the asymptotic behavior, 

while 𝑅 doesn’t.

Therefore for a renormalon cancelation between two series both must be expanded in terms 

of the same 𝛼𝑠 𝜇 . 

𝜇-dependence 𝑅-dependence



Comparison of short-distance mass schemes

The MS mass is computed through 𝛾 ഥ𝑚 𝛼𝑠 . It 

grows for 𝜇 < ഥ𝑚 and becomes larger tan agrees 

𝑚𝑝 at 𝜇 < ഥ𝑚/2. It is not ambiguous.

The MSR mass is computed through 𝛾𝑅 𝛼𝑠 . It 

agrees with the MS mass at 𝜇 = ഥ𝑚 and smoothly 

aproaches 𝑚𝑝 for 𝜇 = 0. It’s ambiguity is too 

small to be shown. 

The pole mass is computed as 𝑚𝑝 = ഥ𝑚 + P. V. {𝛿 ഥ𝑚}

and its ambiguity is too small to be clearly seen.
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Often, 𝒆+𝒆− → Hadrons collisions at high 

energies adopt di-jet configurations: 

• High energetic (collinear) radiation travels 

together in two jets

• Low-energy, soft radiation populates the space 

between the jets. 

SCET computations

𝒆− 𝒆+

Collinear

Collinear

Soft

In Soft Collinear Effective Theory (SCET) there is a factorization theorem for 

the event-shape differential cross section
We present the computation in the 

large-𝛽0 limit of the 

Hard function (universal QCD 

mathing onto SCET) and the

SCET jet function (for hemisphere 

mass and trust event shapes)

(Fleming, Hoang, Mantry, Stewart)

(Bauer, Fleming, Lee, Sterman)



Hard function
The hard function 𝐻𝑄(𝑄, 𝜇) is the modulus squared of the QCD 

matching coefficient onto SCET, 𝐶𝐻 𝑄2 + 𝑖0+, 𝜇

𝑝1

𝑝2

𝑄2 = 𝑝1 + 𝑝2
2

On the way to the hard function we can use 𝐺𝐶𝐻 to compute the anomaolus dimension 

Our results reporoduce the 

leading flavour known results 

in full QCD up to 𝑂(𝛼𝑠
4)

(agrees with Scimemi and Vladimirov)

Convergence 

radius of 𝛽 = 2.5

on-shell scheme and dim.reg. ⟶ all self-energy and SCET diagrams vanish

⟶ 𝐶𝐻= massless quark vector form factor



Hard function
The hard function 𝐻𝑄(𝑄, 𝜇) is the modulus squared of the QCD 

matching coefficient 𝐶𝐻 𝑄2 + 𝑖0+, 𝜇

The ambiguity can again be resumed 

We observe logaritmic 

enhancement in the ambiguities 

corresponding to double poles

This time the two first 

renormalons at 𝑢 =1 and 2 

are two double poles

Again we don’t cross 

the poles of 𝐺𝐻(𝜖, 0)

Double poles signal anomalous 

dimension with 𝑛𝑓 dependence at 

leading order for dimensión 2 and 

4 operators in OPE.



Hard function
The hard function 𝐻𝑄(𝑄, 𝜇) is the modulus squared of the QCD 

matching coefficient 𝐶𝐻 𝑄2 + 𝑖0+, 𝜇

The ambiguity can again be resumed 

This time the two first 

renormalons at 𝑢 =1 and 2 

are two double poles

Again we don’t cross 

the poles of 𝐺𝐻(𝜖, 0)

Although it is small even for 

the smallest 𝑄 aplicable in 

SCET.

We observe logaritmic 

enhancement in the ambiguities 

corresponding to double poles

Double poles signal anomalous 

dimension with 𝑛𝑓 dependence at 

leading order for dimensión 2 and 

4 operators in OPE.



Hard function
The hard function 𝐻𝑄(𝑄, 𝜇) is the modulus squared of the QCD 

matching coefficient 𝐶𝐻 𝑄2 + 𝑖0+, 𝜇

This time the two first 

renormalons at 𝑢 =1 and 2 

are two double poles

Again we don’t cross 

the poles of 𝐺𝐻(𝜖, 0)

Pertuvatively one can decide wheter to sum up 

factors of  𝜋.

𝜇0 = −𝑖𝑄 𝜇0 = 𝑄

We observe faster convergence faster 

convergence when 𝜋-resummation is included.



SCET Jet function

× 𝟐
+

𝑝 𝑝 𝑝

The relevant diagrams to compute 

the jet function at 𝑂(1/𝛽0) are

We take the Fourier 

transform w.r.t. 𝑝2 = 𝑠 to 

avoid distributions

We recover the universal cusp 

anomalous dimension (cross-

chek)

We compute 𝛾𝐽 𝛼𝑠 ,

And by consistency we predict 𝛾𝑠(𝛼𝑠)

Perturbatively, we find agreement 

up to 𝑂(𝛼𝑠
3) with the leading 

flavour structure in full QCD



SCET Jet function

There are only two (simple) 

poles at 𝑢 =1 and 2

Again we don’t cross 

the poles of 𝐺 ሚ𝐽(𝜖, 0)

There are only two contributions to the ambiguity

Re[ ሚ𝐽] is free from 𝑢 = 1 renormalon

Im[ሚ𝐽] is free from 𝑢 = 2 renormalon

For real 𝑦



SCET Jet function

There are only two (simple) 

poles at 𝑢 =1 and 2

Again we don’t cross 

the poles of 𝐺 ሚ𝐽(𝜖, 0)



bHQET computations

When jets are produced by heavy quarks there is an extra energy scale involved: 

the quark’s mass 𝑚

In this case one can match SCET onto two copies of bHQET to sum up the new logs

We present the computation of the additional mass-scale hard function and the 

bHQET jet function for hemisphere mass in the large-𝛽0limit



The mass-scale hard function 𝐻𝑚(𝑚, 𝜇) is the modulus 

squared of the massive SCET matching coefficient onto 

bHQET: 𝐶𝑚(𝑚, 𝜇)

on-shell scheme and dim.reg. ⟶ all bHQET diagrams vanish

Mass-scale hard function

× 𝟐

+

𝑝2

𝑝1𝑝1

𝑝2
× 𝟐

For the self-energy diagram we need the wave-function 

renormalization 𝑍𝜉
OS, which we obtain from quark’s self energy 

computation in QCD.

Again we use this to compute the anomalous dimension

Once more we recover the cusp anomalous 

dimension and find full agreement up to 𝑂 𝛼𝑠
3 for 

the non-cusp part (unambiguous). 



We analize the poles of 𝐺𝐻𝑚 𝜖, 𝑢 ≡ 2𝐺𝐶𝑚 𝜖, 𝑢 and find…

Mass-scale hard function

There are poles at 𝑢 =1 and 2 

and all the positive half-integers

Again we don’t cross the 

poles of 𝐺 ሚ𝐽(𝜖, 0)

The leading renormalon for 𝐻𝑚 lays then at 𝑢 =1/2 and its ambiguity is   

This is three times higher tan the pole’s mass ambiguity: 

Therefore the combination 𝐻𝑚/𝑚𝑝
3 is free from the leading ambiguity



Therefore the combination 𝐻𝑚/𝑚𝑝
3 is free from the leading ambiguity…

Mass-scale hard function

…when both series are expanded (left) in terms of the same 𝛼𝑠(𝜇𝑚)
(right)

Note: this renormalon affects the norm of the distribution and might lead to bad 
convergence of the distribution if not properly accounted for.



bHQET Jet function

The relevant diagrams to compute 

the jet function for hemisphere 

masses at 𝑂(1/𝛽0) are

where we have taken the Fourier transform w.r.t. Ƹ𝑠 = (𝑠 − 𝑚2)/𝑚 to avoid distributions

We recover the universal cusp anomalous 

dimension (cross-chek)

We compute the non-cusp, unambiguous 

anomalous dimension

Again, for both we find agreement up to 𝑂(𝛼𝑠
3)

with the leading flavour structure in full QCD

We find

× 𝟐
+

𝑝 𝑝 𝑝



bHQET Jet function

The leading renormalon 

lays at  𝑢 =1/2

Again we don’t cross the 

poles of 𝐺 ෨𝐵(𝜖, 0)

This time the leading ambiguity is twice that of the pole mass (except 

for a factor of i𝑥):

Therefore the combination ෨𝐵 𝑥 𝑒−2i𝑥𝑚𝑝 is free from the leading renormalon



Therefore the combination ෨𝐵 𝑥 𝑒−2i𝑥𝑚𝑝 is free from the leading renormalon.

Expanding 𝑚𝑝 in terms of theMS mass breaks bHQET power counting since 𝛿 ഥ𝑚 ∝ ഥ𝑚

Use instead the MSR mass in an expansion in powers of 𝛼𝑠(𝜇) with 𝜇 ∼ 𝑅 ∼ 1/𝑥 to avoid large 

logs 

We used complex 𝑥 since for real 𝑥 the real part is free from the 1/2 renormalon 



Conclussions
• In the large-𝛽0 limit we completely know QCD perturbative 

series, and we can resum them

• We derived a formalism that recovers the known closed expressions for finite,

non-cusp and extended it to cusp series and their anomalous dimensions

• From these expressions we can study their asymptotic behaviour and estimate 

the size of non-perturbative power corrections

• We computed SCET and bHQET matrix elements (all divergent)

and their anomalous dimensions (all finite)



Thanks for your 
attention


