QCD resummation in
the large-4, limit
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1. Asymptotic series and the Borel transform



Convergent
Perturbative series
In QFT can be _
Asymptotic
(divergent!)

Example: }.o-oa,a™, a, ~kb"I'(n+1+c)

Seems to converge at low n but diverges after
n ~ 20

Divergent series

»  Finite convergence radius
»  Zero convergence radius
SN=) 0,0 an”
35 k=1/3
30F »h=0s8
25F =22
[ = (.1
2.0f
1.5f
1.0?"?;;— e T
0.5}
0.0k . . . k
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Borel transform

We seek closed expressions for perturbative series (resummation).

|s there any way to resum asymptotic series?

Borel resummation

MEMOIRE

LES SERIES DIVERGENTES,

Par M. Exie BOREL.

1899




Borel transform

Borel transform improves convergence: o:?“ —> %
o0 . 3 oo un
A(as) = T;anoag — {B [A(as)|(u) =ag+ T;Uana}
Sum up (Borel sum)
Invert
The trick!
[A(& )] — agt /mdue“"s/“B[A(a N(w) Convergent series — Finite integral
Resummed 0 - Asymptotic series — B[A(ay)](u)

has poles



Renormalons
For asymptotic series, the poles of B[A(as)|(u)
In the complex u-plane are known as renormalons

[

Integration path

UV renormalons IR renormalons | Need to be dodged
u=-1/2 -1,-3/2,-2.. u=70 w=1/2,13/2, 2.
Alternating sign series Non-alternating sign series

(summable) (non-summable)



. Principal value prescription (P.V.)
Dodge poles by infinitesimally

deforming the integration contour

Lim( : ,,"".{;- C;_,_,l_(um ) =P.V
g0 — T
\un —0 Up u, +0 Y
sy [E—— e
P.V.i{ﬁn_a dﬂj(m—mn)k} = DT k even
L 0, kodd, k>1

/ Ambiguity

[P.V.{A} = [P.V..{B[A]} +P.V._{B[A]}]] [5 = L PV, {BlA]} - P.V._{5[4 ]}ﬂ
Estimated resummed value of the series Estimated resummation error (~ minimal term).

Given by sum of residues of IR renormalons.

*This definition ensures P.V.{f}eR if feR and P.V.{f} zeroforodd f along simmetric interval.
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The large-B, limit

We start with a series in the bare
formalism

Large-f, counting: keep track of powers of ng by S, = %CA — %Tpnf

n=1

oo g2 [ 1—1 [—1 n ar 11 n—it
do = 1+ 3 () Soas o = 2 )5 )
=1 n=0 3

Large-f, expansion: expand assuming O(asf,) ~ 1



The large-B, limit
Large-f, expansion: expand assuming O(asf,) ~ 1

The renormalization of o, Is simple

]. 2 2€
: . ~ n Y = 90 _ 1k
when g, is large since from g, ~ 0(B}) Z 1 Bo/ (4me) " dr =TT oufe/(@ne) Qs

for n > 0 one has

Performing this substitution and expanding in 1/,

__asBo We take this as our new
- p= 4w modified coupling constant

Ay = 1+—E cz( )+O( )
Bo+ 4 32 Coefficients of

(1 / highest ns power
— 1 —1 I ~2h—:b
Z DOt e |

Only corrections from gluon propagator
corrected with quark loops




The large-B, limit

(asﬁo) +O(i2) Ci=(—1)% 12 z—ll ”“2&5{{ 1
oy

=1 /

The effective gluon propagator can be computed in arbitrary gauge with d = 4 — 2¢ and naive non-
abelianization ny - —%ﬁo:

MS

1
Ay = 1+
’ Bo &

pweb() = |90 _ngepa(e)| (—iom)| L~ EE (1 _g5,9)| o h
n = | @n)z— AAFIB (k2)IFne — (f2)2¥ne n0) | Gluon ptropagha};’f)rd\/\llalt
momentum shniite Yy
(—1)"4(1 —e) T(e)T?(1 —¢) h = ne
(2¢ — 3) ['(2—2e¢)

PB(E) =

In practice the insertion of A’;’;”ab(k) is a (shifted) 1-loop computation which we split as:

The function a(h, €)

2 n
90 9o infini
Da.(h) = nilrmPr(e ( ) h,e) 9enerates the infinitely
<h(1) {(475)26 TP )] Am alh, €) many 1/, terms.




The large-B, limit
All-in all, the expression for our series in the large-f, limit is (defining 0Ag= Ag— 1):

)

e~ (=D FH(e, le
o= 5y U Pt Pl

where W is an external energy-scale (ex. mass or CM energy).

From here we distinguish when u - 0
« Finite series (no renormalization) — F(e,u) starts at 0(u).
«  Non-cusp series (1-loop divergences start as 1/€) — F(e,u) starts at 0(1)
-« Cusp series (1-loop divergences start as 1/e?) — F(e,u) starts at 0(1/u)

In all cases F(e,u) starts at 0(1) when € - 0.
We found closed expressions for all three cases!

L
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3. Series without cusp-anomalous dimension



Perturbative form

For r:on;:c(usp)serles we have § :E :E uJ Ff-ﬂjj Fro=F; o
regular F (e, u): | |
g 1=07=0

Plugging it back and after several boring manipulations...

u-dependent term p-independent terms

605140—2/5%[ 1) Fo — (-1 . ] ZEJZ sz-lz-(,)j

Finite term: efficient way of UV divergences have been
computing all the coefficients separated for simple removal
of the renormalized series (we discarded j > 0 terms)

*In the large-f, limit, multiplicative
renormalization reduces to addition:

Ag=Z4A=14+06Z4+6A+0(1/55)



For non-cusp series we have

regular F(e, u):

FHe,u) = iie%jﬂ-’fj,

Perturbative form

i=05=0

Plugging it back and after several boring manipulations...

BodAp =

*In the large-f, limit, multiplicative
renormalization reduces to addition:

> 6 (TR -
c‘::l

0. @)

-2

=1

4 00 N
LS gyt 0
= ity

Nice but still perturbative

Each of these terms admits a closed form

Ag=Z4A=14+06Z4+6A+0(1/55)



Closed forms

The magic occurs when one realizes each term in the perturbative sum admits
a closed integral form:

Integral tricks Regularity condtion (backwards)

. e \

Zﬁtr FU 1_ZFU 1/deTi—1e—T/ﬁ_/DodTe—T/ﬁF“(O;T) _F(O;O)’
0 0

-
1=1
>0 ) B
- m—§ 5 0/ d»r»ri—l_/ 1 F(1.0) = F(0,0)
i=1 _a -
_Z E F; of drriti— —f drrI=*F(1,0),
i—0 ZJFJ iy



Closed forms

The magic occurs when one realizes each term in the perturbative sum admits
a closed integral form:

Series = Borel-like, ambiguous integral + Unambiguous integral, finite convergence radius

Bo0A = /dee_T/ﬁFp(O’T) — F(0,0) _|_/0 dr F'(7,0) — F(0,0) Renormalized
0 -8

- B T series

Do poles and ambiguities
depend on u?! UV substractions

oo
1 .

E —/ dTTJ_lF(T,O). Renormalization factor
e’

No UV

substractions

YA(B) = 50251( 1)’ Hﬁf (—[3,0)] Anomalous dimension

i=0 v

o

Closed, non-integral form — unambiguous



Do poles and ambiguities Removing the u dependence from the Borel integral

depend on u?!

In the large-p, limit, the Sqcp function acquires a _ —a3f0

. Bqcep =
simple form (e = 0): 27
This can be used to solve the B(1) = Buo 1

o ' 1+28,log( =) 2log( —-
running of 5=-; =Fo P g( uo) g( AQCD)
where the Landau pole is at the u-independent position Agcp = pe 2™
00 _T/JB T oo —T T

[ AE o0 -roo] ( ) e s [“ar L (£Y -

0 T (.U 0 T W .

e™7/ ’3 ( ) Taylor-expand and integrate

pu-independent!



Alternative closed expression

BodA = F(o,o)bg(ﬁ_g)+[)°°dT(A?ch)2"F(0,T);F(O,O)+/_°5dT F(T,O);F(O,O)

Multiplies the residues of F (0, 7)

Renormalized series, alternative expression

The entire u-dependence of the series is contained in the unambiguous terms through 8 = () .

The IR renormalons are the poles of F(0, ) and neither their position nor their residues deppend on
the unphysical scale u, but the latter does deppend on w.

Each pole’s ambiguity is enhanced by (AQCD/w)ZT, with t being the pole’s position in the positive
real axis.

The explicit presence of Ay¢p indicates 6, estimates the size of non-perturbative (power) corrections.



Outline

4. Series with cusp-anomalous dimension



_ _ _ Perturbative expression
We present an extension of the previous formalism

to series with cusp-anomalous dimension
For such series F(e,u) starts at 0(1/u) so we define G(e,u) = uF (€, u)

z —1 (—1)l(l)i_lF”(6,l6) o °© ‘
BOAO_ZQ ; (1 —1)! Zl GH(e,u) EZ;Z(:) G eu? Glew) is
i == regular
BoaAo—Zﬁ ey CUGHE 19 — Gto=Gio

— .
s (i—1)! [%¢

The presence of an extra [ complicates manipulations, but we do
not despair and find...

This term provides the
Perturbative coefficients anomalous dimension

- - . HG; Gi
Boddo = (-5 | Gl a1 - HECL0 S | Z( 5) @R o+GP, )
i—1
e @] o0 : - . I
_325 éi_al(—ﬁ)i”l]@?;f;{’o + (—B)HJZ _l?'_ﬂ New nuisance! Harmonic numbers



Closed forms

Again each term admits a closed integral form but it is worth saying this time
IS much harder to find due to H;...

(—B)H; = /0 dTTi_(_’B)i (_fg)ng; = /0 d»r»rf-—llog(u%)

.y B‘|‘T ? —B

Spliting the renormalization equation 5A0:5A+5zﬁc+log<ﬂ_2)5zcusp
In a cusp and non-cusp part as w? A

T

0
6Z5° = 1/ dT[dG(T’S)

_ log(l + L
s=0

)G(T,O) — G(0,0)
p

Renormalization factor

> 0 non-cusp part
j=2¢ /-8 5 ls=0 b
© 1 [0 _

T — Z_j drri—1G(r,0) Renormalization factor NON-cusp Z
=15 /-8 (Cusp part) factor term needs

UV substraction




The renormalized cusp-series also has an apparently u-dependent ambiguous

Integral that turns out to be u-independent

Closed forms

Series = Ambiguous + Finite convergence radius

BooA

2
log( )Go o+ !
[ (e
0 W

+/_Oﬁdf{id[G(

Goo B Renormalized
B Go’l]log(z) cusp series
> G(0,7) — G(0,0) 1dG(0,s)
7 r  ds 0 UV subst
_ _ 2 some terl
)-GO, G060, (1) T
: dG(s,0)

—log(l + %)[ G(7,0) - G(0,0) _ 1

T2 T

ractions:
ms need
them

va(B) =

dA
And finally we have closed forms for the anomalous dimension
,6 —+ 7 ,60 ds s—0

[aA(B) =

Bo

2p
EG(_B-; 0)

Q/Od G(t,0) —

\

Non-cusp needs UV substraction

uz
Wy, = A +10g( )FA

Cusp and non-
cusp anomalous
dimensions
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5. Phenomenology I: short-distance mass schemes



Massive quark self-energy
p g We compute the massive quark self-energy
5 5 5 with the effective gluon propagator.

(u—1)(3—2T(1+w)(1—2u)[3(1—)T(1+e)T*(1—¢) ]
FB—-u—e) (3—26)T(2 — 2¢)

FZ%S(E, u) = 2CpeVEY

Where the energy scale is given by W =m( )

This one function generates the large-f, series for the mass renormalization
factor in the on-shell scheme, which allows us to comptue...

- Relation between pole and MS masses — MS mass anomalous dimension
and running

* MSR mass and its R-anomalous dimension

... all of these perturbatively and in closed form (PV value and ambiguities).




Pole- MS mass relation

5in = 6795 nite = ﬁOYﬁ%Zaz Slogi( L)

m ) s0s (B o A 2 Fpos(0,7) — FZg [0 . Fyos(r,0) — FZg
Bo [5’ 0 m T _3 T
Poles Order | Crossed ,
Fuos(e,0) | (2n+1)/2, n=2,3,4... | simple No Indeed we don't cross the poles of F(e, 0)
(2n+1)/2, n=0,1,2... | simple Yes " .
Fyos(0,u) | —m, n=1,2,3.. Sela | e There are poles at all positive half integers.
2 simple | Yes The most severe renormalon lays atu = 1/2

The ambiguity Om,, of the pole mass is the sum of the residues and with extra effort it can be

also resummed
u=1/2

5/
O A e g T
0

The leading power ambiguity does not deppend on m



mP°'® from 1M, (p) [GeV]

Pole- MS mass relation

ZOS

Os
0 " B

-

Closed form results vs partial sum of perturbative series

n+ 11loops

As series, m,, Is clearly asymptotic

The PV prescription value is u-independent and
1 agrees (within ambiguity) with the “convergent”
value of the series.

PV valuet+ambiguity _ o
1 The fixed order expresion is u-dependent and
=100GeV - exact u plays a role in the asymptotic behavior: for lower
)1 = 500 GeV ] values the series “converges” faster but the
ambiguity

divergent behavior is more pronounced

10 15

)



MS anomalous dimension

The MS anomalous dimension is unambiguous _ _ 2B B
(the u derivative cancels the Borel integral) Tm(B) = Bo FZ’:?%S( 8,0)

_ o B CrB(3+28)'(4—25)
(agrees with the derivation of Palanques-Mestre ~ T35, 2+ BT — B2+ 3)3

and Pascual, Grozin)
Convergence radius of f = 2.5

Y = 30 GeV) mp(p = 30 GeV) [GeV]
] 3.28}s '
-0.090¢ ® perturbative ® perturbative
-0.091¢ -—— ayqct ' 3.26} === oxact
~0.092} 'E
0003k £ =0.09, ’n,f:5 3 24} £ =0.09, ?’Lf:5
-0.094¢} 3 22}
~0.095} R
~0.096}, 5200 .
0 5 10 15




. . — . MSR mass
The MSR mass is obtained from the pole-MS relation

co
SmMSR = mMSR — Eza%sﬁfé ngF=mnj +}’tﬁ
Bo— 0
R { o0 (AQCD )2TFZOS(O, ’T) — FZOS(O, 0) 0 FZOS(T, 0) — FZOS(O, 0) }
=—— / dr m = —l—f dr —= -
Bo 0 R T —Br T
and presents the same leading renormalon at 1/2 MSR anomalous dimension

The R derivative does not cancel the Borel integral,
however the 1/2 renormalon does cancel (higher
order ones stay)

R-evolution is (a bit) ambiguous

~ =8 {as = 0.25)

Borr(Br) =~ [BomMSR(R) o165
" dR 0.15}
_ oo (AQCD) 1_27_ FZ%S(O,T)—FZ%S(O,O) 0.1al
T
0 Flos(t,0) — Flos(0,0 "
_/ d ZOS ’ ZOS( ) 0.121
Br
0.11}
—28r[Fz0s(—Br,0) —FZgS(OaO)] o 1oL




. . — . MSR mass
The MSR mass is obtained from the pole-MS relation

& @]
SmMSR = mMSR — Eza%sﬁfé ngF=mnj +}’tﬁ
Bo— 0
R { o0 (AQCD )2TFZOS(O, ’T) — FZOS(O, 0) 0 FZOS(T, 0) — FZOS(O, 0) }
=—— / dr m = —l—f dr —= -
Bo L Jo R T —Br T
and presents the same leading renormalon at 1/2 MSR anomalous dimension

The R derivative does not cancel the Borel integral,
however the 1/2 renormalon does cancel (higher
order ones stay)

d

R-evolution is (a bit) ambiguous

mMR(R = 300 MeV)[GeV]

173

Bovr(Br) = “dR —— 160 mMSR( m, = 160 GeV ]
oo AQCD F05(0,7) — Fp08(0,0) | Moco = 88MeV '=

= — 1 — 27)— m 171k ]

T ; -]

/0 o FZOS 7,0) FZOS(O 0) 170f :

Br 169

—2Br|Fz05(— PR, 0) —FzgS(OaO)] o R B



When expanded in terms of a (1), the MSR mass agquires
powers of log(u/R) and u dictates the asymptotic behavior,

while R doesn't.

178

mP" from mMS®(R = 40 GeV) [GeV]

176}
174}

172}

170} T
168}

166

u-dependence

n

176}

174}

172

170

168

166™

Pole mass from MSR mass

Tﬁuy‘aMSRIOgJ( )

mP*" from mMSR(R) [GeV]
178p———————

® R=2GeV
B R=40GeV ’

R =150 GeV
.““./_.'_Zf'“-i-'i'-*-""'_‘ ST T TTTTETTEr T rm T m e
/ R-dependence
0 5 10 15

n

Therefore for a renormalon cancelation between two series both must be expanded in terms

of the same a,(u).



Comparison of short-distance mass schemes

my (), m™> () [GeV]
8o\

The pole mass is computed as m,, = m + P.V.{§m}
and its ambiguity is too small to be clearly seen.

175f The MS mass is computed through y5 (a;). It

[ grows for u < m and becomes larger tan agrees
170k my, at u < m/2. Itis not ambiguous.
The MSR mass is computed through yz(a,). It
agrees with the MS mass at u = m and smoothly
aproaches m, for u = 0. It's ambiguity is too

small to be shown.

165}

6o T
0 50 100 150
p [GeV]
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©. Phenomenology lI: jets from massless and massive quarks



SCET computations

Often, e"e~ — Hadrons collisions at high
Soft energies adopt di-jet configurations:

e_ N, e’  High energetic (collinear) radiation travels
i together in two

* Low-energy, soft radiation populates the space
between the jets.

In Soft Collinear Effective Theory (SCET) there is a factorization theorem for
the event-shape differential cross section

We present the computation in the
1 do large-f, limit of the
= HogX J,®@Jz®S Hard function (universal QCD
mathing onto SCET) and the

0 de

(Fleming, Hoang, Mantry, Stewart)
(Bauer, Fleming, Lee, Sterman)



. . Hard function
The hard function H, (Q, i) is the modulus squared of the QCD

P1
2 _ 2
matching coefficient onto SCET, C5(Q% + i0%, ) Q” = (p1 +p2) =

on-shell scheme and dim.reg. — all self-energy and SCET diagrams vanish

— Cy= massless quark vector form factor

Gon(et) = 20w (1 — 1€ + (u? — 2u+ 3)e — 2]1_‘(1 +u)2(1—w) [3(e—DI2(1—-e)T(1+e) |1 pZ\A

I'(3—u—e¢) (2¢ — 3)I'(2 — 2¢)

w2 = —Q2
On the way to the hard function we can use G¢,, to compute the anomaolus dimension

%= (a, = 0.9) 205 sin(7B8)T (4 + 28) Y=, = 0.9)
: Fcllsp (/8) — 3 F 2 2 -0 6' h
0.7 Convergence - T Bol'(2+5) °F :
: _ ] -0.8F .
e radius of = 2.51  (5grees with Scimemi and Viadimirov) of
05f N ] 12k e ]
] Our results reporoduce the _14f \\/
0.4 ] leading flavour known results . .} ]

0 1 2 3 4 5 6 7 8 in full QCD up to 0(ay) 0 1 2 3 4 5 6 7 8




. . Hard function
The hard function H, (Q, i) is the modulus squared of the QCD

matching coefficient C,;(Q? + i0™", u)
Gy(e,u) = 2cos(mu)Geoy(e,u)

Poles Order Crossed Again we don’t cross
Gr(e,0) (2n+1)/2, n=2,3,4... simple No the poles of Gy (e, 0)
—n, n=23,4... simple No — :
G (0, u) 1,2 double and simple Yes This time the two first
n, n=3,4,5... simple Yes renormalons at u =1 and 2
are two double poles

The ambiguity can again be resumed

We observe logaritmic

. . - Ei 2 5 4
enhanceme_nt In the ambiguities 5HQ e s(esAQCD) [610g(AQCD)+5] N z(eeAQCD) llzlog(AQCD)+ 1]
corresponding to double poles Bo

Double poles signal anomalous n 4(68AQ(D> N G(EGAQLD ):/4
dimension with nr dependence at @ Q
leading order for dimension 2 and

4 operators in OPE.



The hard function H, (Q, i) is the modulus squared of the QCD

matching coefficient C,;(Q? + i0™", u)
Gy(e,u) = 2cos(mu)Geoy(e,u)

Poles Order Crossed

Gr(e,0) (2n+1)/2, n=2,3,4... simple No

—n, n=23,4... simple No

Gy (0, u) 1,2 double and simple Yes

n, n=3,4,5... simple Yes

The ambiguity can again be resumed 5rH10(0)

We observe logaritmic oo — with log |
enhancement in the ambiguities 0.0075F — nolog 1

corresponding to double poles

Double poles signal anomalous

dimension with nr dependence at
leading order for dimension 2 and
4 operators in OPE.

0.0050F
0.0025F

0.0000F

AQCD = 88 MeV -

o0

75 100 125 150 175 200
Q[GeV]

Hard function

Again we don’t cross
the poles of Gy (¢, 0)

This time the two first
renormalons at u =1 and 2
are two double poles

Although it is small even for
the smallest Q aplicable in
SCET.



. . Hard function
The hard function H, (Q, i) is the modulus squared of the QCD

matching coefficient C,;(Q? + i0™", u)
Gy(e,u) = 2cos(mu)Geoy(e,u)

Poles Order Crossed Again we don’t cross
Gr(e,0) (2n+1)/2, n=2,3,4... simple No the poles of Gy (e, 0)
—n, n=23,4... simple No — :
G (0, u) 1,2 double and simple Yes This time the two first
n, n=3,4,5... simple Yes renormalons at u =1 and 2
are two double poles

(ny=5)
' i H =30GeV,u = 10GeV
Pertuvatively one can decide wheter to sum up Ho € eV, eV)

— .

1.2:— ) :

factors of . I / —e— with 7 resummation !
. [ —e— no 7 resummation

po =—iQ po =20 i ]

We observe faster convergence faster 1.0p ]
convergence when r-resummation is included. 0.9F ;

AQCD =88 MeV -

£ 1 ] 1 ] ] I

0 1 2 3 4 5 6
n




SCET Jet function
The relevant diagrams to compute p q .
the jet function at 0(1/f,) are @ --F - . ® X2 éi _________ % _______ ®
p p p

L2 —e)T(1 - u)

Gjle,u) = 2CF[(u —2)e — 3u+4] Fitu—or(3_u—2 We take the Fourier
) transform w.r.t. p? = s to
3(1—eT(1+eI*(1—¢) [« | avoid distributions
(3 —26)I'(2 — 2¢) ] w=—ie" " [y

We recover the universal cusp
anomalous dimension (cross-

(nf:S)(
jet §

- 0% Yah (@5 =0.9)

1.6}

chek) 1 4f
We compute y;(as), 1.2k

1.05
0.85
Perturbatively, we find agreement 0.6} 4
up to 0(a2) with the leading
flavour structure in full QCD

And by consistency we predict y,(a;)




SCET Jet function

I'(2—e)'(1—u) 3(1—e)L(14e)I2(1—¢) ]!
Fl4+u—el'(B—u—e¢) (3 —2¢)'(2 — 2¢)

Gi(e,u) = 2CF[(u—2)e—3u+4]

Again we don’t cross

Poles Order | Crossed
the poles of G;(¢,0
G (e, 0) (2n+1)/2, n=2,3,4...| simple No P 7€ 0
G;(0,u) 1,2 simple | Yes There are only two (simple)

poles at u =1 and 2

There are only two contributions to the ambiguity

For real y

Re[]] is free from u = 1 renormalon

2
0= — QIBC,F{IQGE’/?’A OD"‘(%iyeS/gA%QCD) ]
0

Im[/] is free from u = 2 renormalon



Gi(e,u) = 2CF[(u—2)e—3u+4]

02— (1 —u)

SCET Jet function

31— e)T(1+e2(1—¢) ]!

Fl4+u—el'(B—u—e¢)

(3 —2¢)'(2 — 2¢)

Again we don’t cross
the poles of G;(¢, 0)

Poles Order | Crossed
G (e, 0) (2n+1)/2, n=2,3,4...| simple No
G;(0,u) 1,2 simple Yes

Re[J;"™(y = 03GeV 2, i = 2GeV)|

There are only two (simple)
poles at u =1 and 2

Im[J;"~(x = 03GeV 2, 4t = 2GeV)|

1.04
1.ozf
1.005
0.985
0.965

0.94f

- 0.5F

—o— pp=2GeV ] ;
—— 19 =13GeV 7 0.4F
—— 1p=1GeV ] :
. 0.3

B 0.2

] 0.1

AQCD = 88 MeV . 0-0:

1

AQCD = 88 MeV

—— 1ip=2GeV ]
—— 1y =13GeV
—— uy=1GeV A

2 3 4 5 6 7

5 6 7 8 9 10
n




bHQET computations

When jets are produced by heavy quarks there is an extra energy scale involved:

the quark’s mass m

In this case one can match SCET onto two copies of bHQET to sum up the new logs

1 do
g0 de

= HoXxHpXx B, B;®S

We present the computation of the additional mass-scale hard function and the

for hemisphere mass in the large-g,limit



Mass-scale hard function

The mass-scale hard function H,,,(m, u) is the modulus
squared of the massive SCET matching coefficient onto
bHQET: C,,,(m, 1)

on-shell scheme and dim.reg. — all bHQET diagrams vanish

For the self-energy diagram we need the wave-function
renormalization Z2°, which we obtain from quark’s self energy

computation in QCD.

Ge, (e,u) = 4Cpe"® u?(14+u — €)[(2u® — 2u +1)e — 3u’ + 4u — 2] E(M)F(_QU)

(3—u—¢)
3(1 — E)F(l + €)F2(1 — E) =1 YLI;;SIZ)T(Q‘ =0.9)
(3 —2¢)['(2 — 2¢) '
-0.4F
Again we use this to compute the anomalous dimension o5k \
[ e
Once more we recover the cusp anomalous -0.6f
dimension and find full agreement up to 0(a?2) for ot
the non-cusp part (unambiguous). :




Mass-scale hard function

We analize the poles of Gy (€,u) = 2G¢,_(€,u) and find...

Polos Order | Crossed Again we don’t cross the
Gm,, (€,0) (2n+1)/2, n=2,3,4... | simple No poles of G;(¢, 0)
(2n+1)/2, n=0,1,2... | simple Yes
Gr,.(0,u) —n, n=234.. amgl | NE There are poles at u =1 and 2
1,2 simple Yes . .
and all the positive half-integers

The leading renormalon for H,, lays then at u =1/2 and its ambiguity is

6€%OF AQCD
0, = —
Bo m
2CF
This is three times higher tan the pole’s mass ambiguity: Om, = — 6—065/6AQCD

Therefore the combination Hm/mg is free from the leading ambiguity



Mass-scale hard function

Therefore the combination Hm/mg is free from the leading ambiguity...

(7, /M) H,pi(my, . = 20 GeV) (770 /mP Y H,p(my, 1 = 20 GeV)
1'605_ —e— H,, expanded _ 1'605_ H, and m, expanded ~* Hm = u
1'555- —— m, expanded _ 1'555' = Uy = % -
1.50;— —e— -; 1.50; E
L H,, and m, expanded _ ek o jjiy_
1-405- _— 1.405 _
135/ Aqep = 88 MeV E 135 Aqep = 88 MeV :
1 30E ; = 160 GeV M = 3 1 30k ; = 160 GeV :
-D 2 4 6 8 10 12 14 16 - CIJ é t;f EIS é 1ID 1I2 1I4 ‘II6
n n
...when both series are expanded (left) in terms of the same a (i)

(right)

Note: this renormalon affects the norm of the distribution and might lead to bad
convergence of the distribution if not properly accounted for.



PbHQET Jet function

The relevant diagrams to compute
the jet function for hemisphere p q + p q
R= > ® X2 & > —®
masses at 0(1/f,) are . ' . " —’p
We find .,
e — 20, EU WA W) [31- QLI ] ey
Gple,u) = 20F (1 —2u)1_‘(1—|—u—e)[ (3—26)T(2 — 2¢) | /

where we have taken the Fourier transform w.r.t. § = (s — m?)/m to avoid distributions

ve (@, = 0.9)
We recover the universal cusp anomalous 09
dimension (cross-chek) 0.8 /\
0.7 mmmm ooz
We compute the non-cusp, unambiguous 0.6
anomalous dimension 0.5
Again, for both we find agreement up to O0(a3) 32 :

with the leading flavour structure in full QCD o 1 2 3 4 5 6 7 38



bHQET Jet function

e (1 —u(1l-—w)[3(1-gl1+gr2(1—g ]+ "

Poles Order | Crossed Again \INe d(;l;’i CI‘OSS the
G3(e, 0) (2n+1)/2, n=2,3,4...| simple No poles of G (€, 0)
: =2,3,4... simple Yes The leadi |
Gz(0,u ' " : e leading renormalon
B0 1/2 maple | e lays at u =1/2

This time the leading ambiguity is twice that of the pole mass (except
for a factor of ix):
4CF65/6

Bo

ixAqep Om, = — 2gFe5/6AQOD
0

p

§p=—

Therefore the combination B(x)e%*™» is free from the leading renormalon



Therefore the combination B(x)e™?*™» is free from the leading renormalon.

Expanding m,, in terms of the MS mass breaks bHQET power counting since §m « m

Use instead the MSR mass in an expansion in powers of a(u) with u ~ R ~ 1/x to avoid large
logs

~ =5 s ~ _ i
Re[Binf )(I,p)e Z:xmp] Im[BElnf_S}(x, 1) e—?.zme]

-32 6:- ~*~ B, expanded R=3GeV ] 3% e B, expanded R =3GeV
I - B, and m, expanded 1 asok

—32.8:— —*— m, expanded _ [« _®- m,, expanded !
; -34.0:—\\ .
: -34.1F _
L x=(0.1+0.1) GeV™! :

F —— B, and m, expanded

-33.0f

-33.2} x =(0.1+0.1)GeV™! :

b A=AGY Ho = 2GeV 1 7 u-4cev sto = 2GeV E
F AQCD = 88 MeV ﬁf =160 GeV 7 [ AQCD = 88 MeV ﬁ; = 160 GeV ]

I I I 1 I I 1 1 ] '34'35 I I I I I I i

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

We used complex x since for real x the real part is free from the 1/2 renormalon



Conclussions

- In the large-p, limit we completely know QCD perturbative
series, and we can resum them

- We derived a formalism that recovers the known closed expressions for

- From these expressions we can study their asymptotic behaviour and estimate
the size of hon-perturbative power corrections

- We computed SCET and bHQET matrix elements (
and their anomalous dimensions ( )



Thanks for your
attention



