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1. Jet Substructure and Angularities
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Jet Angularities

Jet substructure techniques are a set of tools to study the radiation pattern inside a jet

Berger, Kucs, Sterman, 03

τb =
1

Q

∑
iεX

|~pt i | e−b|ηi | ; b > −1

includes

Thrust: τ =
1

Q

∑
iεX

|~pt i | e−|ηi | (b = 1)

Broadening: e =
1

Q

∑
iεX

|~pt i | (b = 0)

Varying ’b’ changes the sensitivity to the splitting angle of a collinear radiation in the jet.

,



5/33

What’s interesting about Angularities ?

Possibility to tune b exposes us to a wealth of information than its special limits of
b = 0 and b = 1 separately.

If measured relative to thrust axis, angularities close to b = 0 sensitive to recoil
while when b & 1, recoil becomes power suppressed.

,
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What’s interesting about Angularities ?

Possibility to tune b exposes us to a wealth of information than its special limits of
b = 0 and b = 1 separately.

If measured relative to thrust axis, angularities close to b = 0 sensitive to recoil
while when b & 1, recoil becomes power suppressed.

If measured relative to broadening axis, all angularity exponents become recoil-free.
Larkoski, Neill, Thaler, 2014
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Modes and Scalings

pc(n) ∼ Q(λ2, 1, λ) pc(n̄) ∼ Q(1, λ2, λ) ps ∼ Q(λ1+b, λ1+b, λ1+b)

Angularities allow to study the transition between SCETI and SCETII theories.

,
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Case Study: e+ e− Angularity Distributions relative to thrust-axis

Only collinear and soft modes contribute. Hard mode is the same as for any
e+ e− → di-jet observables.

SCETI has been used for all b & 1 angularities to NNLL
′

accuracy but fails as b
approaches 0. Hornig, Lee, Ovanesyan, 09; Bell, Hornig, Lee, Talbert, 18

For b = 0, SCETII framework has been applied and the results are available to
NNLL accuracy. Becher, Bell, Neubert, 11; Chiu, Jain, Neill, Rothstein, 11;

Becher and Bell, 12

I will describe a novel framework based on SCETII that can be applied to the whole
range of angularity exponents.

No hadronization corrections are included in this talk.

,
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2. Factorization theorem for angularities

,
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Factorization Theorem for Angularities

Adapting a broadening-like factorization theorem for all angularity exponents

1

σ0

d2σ

dτLdτR
= H(Q;µ) ·

[
Jn ⊗ Jn̄ ⊗ S

]
(τ, ~p⊥)

All fields and measurement
operators are b-dependent.

As ∼ (λ1+b, λ1+b, λ1+b) rather than
As ∼ (λ, λ, λ) specific to
broadening.

,
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Why does it work ?

Turning to the generalized soft function for angularities

S(τ sn , τ
s
n̄ , ~p

2
t ,
~k 2
t ) = # tr〈0|S†n̄ Sn δ

(2−2ε)(~p⊥ + Pn⊥) δ(τ sn − τ̂ sn̂ )

δ(2−2ε)(~k⊥ + P̄n⊥) δ(τ sn̄ − τ̂ sˆ̄n ) S†n Sn̄|0〉 .

As b → 1, Pn⊥ and P̄n⊥ measure transverse momentum of ultrasoft modes which scales as
λ2.

Factoring out δ(2−2ε)(~p⊥) δ(2−2ε)(~k⊥) gives jet ans soft function for thrust and the
factorization theorem reduces to

1

σ0

dσ

dτLdτR
= H(Q;µ) ·

[
Jn ⊗ Jn̄ ⊗ S

]
(τ )

We keep the transverse momentum convolutions for all b values and show that recoil gives
only power suppressed terms when b approaches 1.

,
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3. The Zero-bin and Coupled distributions
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The one-loop jet function

p

�

p

�

(a) (b) (c)

(d) (e)

�

p−� p

Only diagram (b) exhibits a zero-bin. The unsubstracted result is given as

J (1)
b,unsub(τ, 0) =

2

1 + b

αs(µ)CF

π

eεγEw2

Γ(1− ε)

( µ
Q

)2ε( ν
Q

)η 1

τ1+ 2ε
1+b

∫ 1

0
dx [(1−x)−b+x−b]

2ε
1+b

(1− x)

x1+η

with x = l−/Q.

η regulates the divergence at x → 0, only when b ≤ 0.

,
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The Zero-bin of the jet function

The zero-bin becomes non-trivial for generalized angularities. The same observation was
also made recently in 2012.09212 for recoil-free version of angularities.

The zero-bin for generalized angularities gives

J (1)
b,unsub(τ, 0) =

2

1 + b

αs(µ)CF

π

eεγEw2

Γ(1− ε)

( µ
Q

)2ε( ν
Q

)η 1

τ1+ 2ε
1+b

∫ ∞
0

dx [1 + x−b]
2ε

1+b
1

x1+η

Zero-bin gives η-divergence for all b exponents.

(1/ε2,	1/ε) (1/η,	1/ε2,	1/ε)

b-
independent

UV 
divergences

+
net rapidity
divergence

b > 0

,
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The Zero-bin of the jet function

The zero-bin becomes non-trivial for generalized angularities. The same observation was
also made recently in 2012.09212 for recoil-free version of angularities.

The zero-bin for generalized angularities gives

J (1)
b,unsub(τ, 0) =

2

1 + b

αs(µ)CF

π

eεγEw2

Γ(1− ε)

( µ
Q

)2ε( ν
Q

)η 1

τ1+ 2ε
1+b

∫ ∞
0

dx [1 + x−b]
2ε

1+b
1

x1+η

Zero-bin gives η-divergence for all b exponents.

b-
dependent

UV
divergences

+

b < 0

,
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The one-loop soft function

(a) (b) (c) (d)

At one-loop, need to compute only diagram (a). The one-loop soft function computes to

S(1)(τL, τR , ~p
2
t ,
~k 2
t ) =

αs(µ)CF

π

µ2εeεγE

Γ(1− ε)
νη w2 Q δ(τL) δ(~k 2

t ) θ
(( |~pt |

Q τR

)1/b
− 1
)

× (~p 2
t ) −1−ε− η+1

2

∣∣∣1− (Q τR
|~pt |

)2/b∣∣∣−η∣∣b∣∣ (Q τR
|~pt |

)1−η/b +

{
τL ↔ τR
~k 2
t ↔ ~p 2

t

}
.

This result holds for all angularity exponents.

,
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Dealing with Coupled Distributions

To avoid coupled distributions in τ and ~pt , we perform a change of variables

v =
Q τ

|~pt |
for b > 0 ; ~u =

~pt
Q τ

for b < 0

In these variables, one-loop soft contains a net η-divergence for b > 0 while no
η-divergence for b < 0, consistent with the one-loop jet function.

This leads to the appearance of a new kind of integral at the level of cross-section,
which provides the correct recoil term at one-loop order.

,
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The one-loop soft function

(a) (b) (c) (d)

At one-loop, need to compute only diagram (a). The one-loop soft function computes to

S(1)(τL, τR , ~p
2
t ,
~k 2
t ) =

αs(µ)CF

π

µ2εeεγE

Γ(1− ε)
νη w2 Q δ(τL) δ(~k 2

t ) θ
(( |~pt |

Q τR

)1/b
− 1
)

× (~p 2
t ) −1−ε− η+1

2

∣∣∣1− (Q τR
|~pt |

)2/b∣∣∣−η∣∣b∣∣ (Q τR
|~pt |

)1−η/b +

{
τL ↔ τR
~k 2
t ↔ ~p 2

t

}
.
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The one-loop soft function
(a) (b) (c) (d)

At one-loop, need to compute only diagram (a). The one-loop soft function computes to

,
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4. Fixed order results

,



18/33

Jet Angularity Cross-Section at O(αs)

b > 0 [
1

σ0

dσ

dτb

]NLO

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

1 + b

ln τb

τb
−

4

1 + b

ln(1− r)

τb

}
SCETI recoil

where, r is given by the solution of

r

(1− r)1+b
= (τb)b

b < 0 [
1

σ0

dσ

dτb

]NLO

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

(1 + b)2

ln τb

τb
−

4

(1 + b)2

ln(1− s)

τb

}

where, s is given by the solution of

s

(1− s)
1

1+b

= τ
− b

1+b
b

,
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Looking at the Recoil Contribution

τ=0.2

τ=0.1

τ=0.05

τ=0.02

-0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

b⟶

s(
τ)

⟶

r(
τ)

⟶

Plotting r(τ) (for b > 0) and s(τ) (for b < 0) as a function of b for different τ values.

,
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b > 0; small-τ and small-b limit

[
1

σ0

dσ

dτb

]b>0

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

1 + b

ln τb

τb
−

4

1 + b

ln(1− r)

τb

}

r

(1− r)1+b
= τb

Small-τ limit:

r = a1τ
b + a2τ

2b + a3τ
3b + a4τ

4b + . . .

⇒
ln(1− r)

τ
=
∞∑
n=1

cn

τ1−n b

=

d1/be−1∑
n=1

cn

τ1−n b
+ power− corrections

,
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b > 0; small-τ and small-b limit

[
1

σ0

dσ

dτb

]b>0

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

1 + b

ln τb

τb
−

4

1 + b

ln(1− r)

τb

}

r

(1− r)1+b
= τb

Small-b limit:

r = r0 + b r1 + b2 r2 + . . . where,
r0

1− r0
= τb

⇒
ln(1− r)

τ
= −ln 2

[ 1

τ

]
+
−

b

2

[ ln τ

τ

]
+
+

b ln 2

2

[ 1

τ

]
+
+O(b2)

,
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Numerical size of the recoil term compared to leading singular terms

[
1

σ0

dσ

dτb

]b>0

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

1 + b

ln τb

τb
−

4

1 + b

ln(1 − r)

τb

}

[
1

σ0

dσ

dτb

]b<0

τb 6=0

=
αs CF

π

{
−

3

1 + b

1

τb
−

4

(1 + b)2

ln τb

τb
−

4

(1 + b)2

ln(1 − s)

τb

}

b % correction for τb = 0.05 % correction for τb = 0.1 % correction for τb = 0.2
1 2 6 18

0.5 8 16 38
0.25 16 26 54

0 31 45 80
-0.2 15 24 46
-0.5 2 5 13

Relative size of the extra singular contribution compared to the leading singular contribution in the peak region
for the τb distribution, for various values of b. A 2 − 6% correction for b = 1 or −0.5 shows the typical size of

the power corrections due to the additional term.

,
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Event2 comparison

b=0

-5 -4 -3 -2 -1 0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10τ

2
π

α s
σ 0

Δ
dσ
N
LO

dl
og
10

τ

b=0.5 broadening-like fact.

b=0.5 thrust-like fact.

-6 -5 -4 -3 -2 -1 0

-0.4

-0.2

0.0

0.2

0.4

log10τ

2
π

α
s
σ
0

Δ
dσ
N
LO

dl
og
10

τ

b=0.2

-6 -5 -4 -3 -2 -1 0
-0.4

-0.2

0.0

0.2

0.4

log10τ

2
π

α
s
σ
0

Δ
dσ
N
LO

dl
og
10

τ

b=-0.2

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10τ

2
π

α
s
σ
0

Δ
dσ
N
LO

dl
og
10

τ

Difference between Event2 and our results from broadening-like factorization at NLO for dσ/d log10 τ for

different b values.

,
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5. Preliminary NLL results

,



24/33

A few Technicalities

The convolutions in the factorization theorem are known to hold in the τ and ~pt variables.

But the soft function cannot be well-defined in terms of independent distributions in these
variables, for generalized angularities.

,
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A few Technicalities

The convolutions in the factorization theorem are known to hold in the τ and ~pt variables.

But the soft function cannot be well-defined in terms of independent distributions in these
variables, for generalized angularities.

One can use the exponentiation theorem to understand this subtlety.

,
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A few Technicalities

The convolutions in the factorization theorem are known to hold in the τ and ~pt variables.

But the soft function cannot be well-defined in terms of independent distributions in these
variables, for generalized angularities.

One can use the exponentiation theorem to understand this subtlety.

We have verified that the soft function in terms of the redefined still obeys the
exponentiation theorem.

This suggests that the RG equations can be equivalently written down for the new redefined
variables as well.

,
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Anomalous dimension for b > 0 in the conjugate space

The one-loop anomalous dimension for positive-b has the form

γ
(1+)S
µ = −

αs(µ)CF

π

[
2 ln

ν

µ
+

2

b
(− ln(s eγE )− Γ(0, s))

]

γ
(1+)S
ν = −

αs(µ)CF

π

[
ln
(~b 2 µ2 e2γE

4

)]

where, s is Laplace conjugate of v and ~b 2 is the Fourier conjugate of ~p 2
t .

This has some interesting features.

The ν-anomalous dimension here has exactly the form as studied earlier for Higgs-pT
resummation. Chiu, Jain, Neill, Rothstein; 2012.

The second term in the µ-anomalous dimension has a 1/b dependence.

,
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The µ-anomalous dimension

Integration limit proportional to b

The recoil term arises from the phase space cut in the distribution and is lost if there is no
such cut provided by the observable. Consistent with our observation at one-loop order.

NLL result can only be computed numerically. (Work in progress)

,
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Anomalous dimension for b < 0 angularities in conjugate space

Only µ-anomalous dimension.

γ(1−)S = −αs(µ)CF

π

[
~b2

4 b
2F3

(
1, 1; 2, 2, 2;−

~b2

4

)
+

2

b
ln
(
s eγE

µ

Q

)]

where, ~b is Fourier conjugate to ~u and s is Laplace conjugate to τ .

Both the terms contain a 1/b singularity.

As earlier, this is associated with the reduction in the range of integration and hence
the resummed cross-section is finite even for b = 0.

The reduction of this result to jet broadening result in the b → 0 limit is highly
non-trivial in this case. Can only be done at the level of cross-section.

,
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Resummed Angularity cross-section in the b → 0− limit

b → 0− limit

1

σ0

d2σNLL

dτL dτR
= HNLL

[
2
eω0 γE− 2

b
K0

Γ(−ω0)

( µ
Q

)ω0 1

τ 1+ω0
R

∫ 1

0

dx
1− x

x3+ω0

∫ ∞
0

dz J0

(2
√
z(1− x)

x

)
× e−ω0 z 2F3(1,1;2,2,2;−z)

]
× {τL ↔ τR}

where, x =
τ sn
τR

and z =
~b2

4
.

Broadening cross-section Chiu, Jain, Neill, Rothstein; 2012

1

σ0

d2σNLL

d eL d eR
= HNLL

[( µ
Q

)−ωS e−ωS γE

Γ(ωS)

1

e1−ωS
R

(
1− ωS

2−ωS
B1/2(1 + ωS , 0)

)]
× {τL ↔ τR}

,
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The negative-b kernels in b → 0− limit

The two kernels appearing in the b → 0− NLL cross-section expanded in powers of
αs can be written as

ω0 = −αs(µ)

2π b
Γ0 ln

µ

µ0
− α2

s (µ)

8π2 b
Γ0

(
β0 ln2 µ

µ0
+

Γ1

Γ0
ln
µ

µ0

)
+O(α3

s )

K0 = −αs(µ)

4π b
Γ0 ln2 µ

µ0
− α2

s (µ)

16π2 b
Γ0 ln2 µ

µ0

(2

3
β0 ln

µ

µ0
+

Γ1

Γ0

)
+O(α3

s )

Making the canonical choice of scales, i.e µ ∼ Qτ
1

1+b and µ0 ∼ Qτ .

ω0 =
αs(µ)

2π
Γ0 ln τ +

α2
s (µ)

8π2
Γ1 ln τ +O(α3

s )
b→0−−−→ −ωS

K0 ∼ O(b)
b→0−−−→ 0

,
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Comparison to b → 0 (Preliminary)

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

τ ⟶

fu
nc
.⟶ Jet Broadening

Angularity b → 0- limit

Plotting the angularity (red) and broadening (blue) result after cancelling the common terms in
the cross-section. The blue band is obtained by the simultaneous variation of µ and ν.

,
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Summary

1. Jet angularities provide a novel way of looking into the substructure which remains unexposed
while looking at a single event shape observable.

2. The presence of two kinematical scales (Qτ and ~pt), two types of divergences and renormal-
ization scales and a continuous dependence on b, make this analysis very rich and complex
to compute.

3. At NLO, a broadening-like factorization provides angularity distributions for all b > −1.

4. This analysis allows us to smoothly interpolate between the thrust and jet broadening limits.

5. The one-loop framework provides evidence that the NLO singular cross-section for recoil-
sensitive angularities is not-differentiable at b = 0.

6. There is completely different kind and number of divergences for b > 0 and b < 0 angularities,
hence requiring different RG structures.

,
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