Precise strong coupling determinations from tau decays and $e^{+} e^{-} \rightarrow$ hadrons

Diogo Boito
University of Vienna
University of São Paulo

- DB, M. Golterman, K. Maltman, S. Peris, M.V. Rodrigues and W. Schaaf, arXiv:20I2.10440, PRD (202I).
- DB.V. Mateu, arXiv:I9|2:06237 PLB (2020), 200 I:II04 I JHEP (2020)
- DB.V Mateu and MV Rodrigues, in preparation

α_{s} in 2021

Precision: cross-sections for the LHC, top-quark observables, SM vacuum...

Precision: cross-sections for the LHC, top-quark observables, SM vacuum...

The strong coupling in 2021

Tensions in determinations from same data

Event shapes give systematically lower results

Starting to be dominated by lattice (some uncertainties should still be scrutinised?)

Strong coupling from quarkonium sum rules

- DB.V. Mateu, arXiv:I9|2:06237 PLB (2020), 200 I:I I 04 I JHEP (2020)
- DB.V Mateu and MV Rodrigues, in preparation

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}|0\rangle
$$

Correlators with massive quarks: expansion around $q^{2}=0$

$$
R_{q \bar{q}}(s)=\frac{\sigma_{e^{+} e^{-} \rightarrow q \bar{q}+X}(s)}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}(s)} \quad(\text { for } q=c, b)
$$

Using analyticity and unitarity (dispersion relation): sum rules

$$
M_{q}^{V, n}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{q \bar{q}}(s)=\left.\frac{12 \pi^{2} Q_{q}^{2}}{n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} s^{n}} \Pi_{q}^{V}(s)\right|_{s=0}
$$

Shifman, Vainshtein, Zakharov ‘79
We restrict the sum rules to $n \leq 4$. Typical scale m_{q} / n.

Perturbative expansion

$\hat{M}_{q}^{X, n}=\frac{1}{\left(2 \bar{m}_{q}\right)^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}\left(\bar{m}_{q}\right)}{\pi}\right]^{i} c_{i}^{X, n} \quad$ (summing logs)
Known up to $\mathcal{O}\left(\alpha_{s}^{3}\right)$ for $n \leq 4$
Chetyrkin, Kühn, Sturm '06; Boughezal, Czakon, Schutzmeier '06 Maier, Maierhöfer, Smirnov '08/'09; Maier and Marquard 'I7

General expansion in terms of the two scales (using RG)

$$
M_{q}^{(n)}=\frac{1}{\left[2 \bar{m}_{b}\left(\mu_{m}\right)\right]^{2 n}} \sum_{i=0}\left[\frac{\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{a=0}^{i} \sum_{b=0}^{[i-1]} c_{i, a, b}^{(n)}\left(n_{f}\right) \ln ^{a}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{b}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Highly sensitive to the mass, ideal for quark-mass determinakions

We consider dimensionless ratios of moments

$$
R_{q}^{X, n} \equiv \frac{\left(M_{q}^{X, n}\right)^{\frac{1}{n}}}{\left(M_{q}^{X, n+1}\right)^{\frac{1}{n+1}}} \quad \text { Central object of this part }
$$

...similar to the ones used in lattice studies of the PS correlators
Maezawa, Petreczky 'I6
Perturbative expansion

$$
R_{b}^{V, n}=\sum_{i=0}\left[\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{k=0}^{[i-1]} \sum_{j=0}^{[i-2]} r_{i, j, k}^{(n)} \ln ^{j}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{k}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Example

$$
a_{s}=\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}
$$

$R_{c}^{V, 2}=1.0449\left[1+0.57448 a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2}\right.$
DB, Mateu ‘I9

$$
\left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
$$

Almost insensitive to the quark mass (only through logs at $\mathcal{O}\left(\alpha_{s}^{2}\right)$) Sensitive to the coupling.
Available at $\mathrm{N}^{3} \mathrm{LO}$ up to $R_{q}^{V, 3}$
Can be accurately determined from data.

Ratios of moments: strong coupling extraction

Perturbative expansion

$$
\begin{aligned}
R_{c}^{V, 2}=1.0449[1+0.57448 & a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2} \\
& \left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
\end{aligned}
$$

Typical size of pt. corrections: $13 \%, 7 \%$, and 5% (for charm with $n=1,2,3$)

Ratios of moments: strong coupling extraction

Perturbative expansion

$$
\begin{gathered}
R_{c}^{V, 2}=1.0449\left[1+0.57448 a_{s}+\left(0.32576+2.3937 L_{\alpha}\right) a_{s}^{2}\right. \\
\left.-\left(2.1093+4.7873 L_{m}-6.4009 L_{\alpha}-9.9736 L_{\alpha}^{2}\right) a_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right)\right]
\end{gathered}
$$

Typical size of pt. corrections: $13 \%, 7 \%$, and 5% (for charm with $n=1,2,3$)

Non-perturbative contributions: gluon-condensate contri. known to NLO.

$$
\Delta M_{n}^{X,\left\langle G^{2}\right\rangle}=\frac{1}{\left(4 M_{q}^{2}\right)^{n+2}}\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle_{\mathrm{RGI}}\left[\left[a_{X}\left(n_{f}\right)\right]_{n}^{0}+\frac{\alpha_{s}^{\left(n_{f}\right)}\left(\mu_{\alpha}\right)}{\pi}\left[a_{X}\left(n_{f}\right)\right]_{n}^{1}\right]
$$

Added as an estimate of non-perturbative uncertainties.
Completely irrelevant for the bottom-quark case.

$$
R_{b}^{V, n}=\sum_{i=0}\left[\frac{\alpha_{s}\left(\mu_{\alpha}\right)}{\pi}\right]^{i} \sum_{k=0}^{[i-1]} \sum_{j=0}^{[i-2]} r_{i, j, k}^{(n)} \ln ^{j}\left(\frac{\mu_{m}}{\bar{m}_{b}\left(\mu_{m}\right)}\right) \ln ^{k}\left(\frac{\mu_{\alpha}}{\bar{m}_{b}\left(\mu_{m}\right)}\right)
$$

Independent scale variation important for conservative error estimate

$$
\bar{m}_{q} \leq \mu_{\alpha}, \mu_{m} \leq \mu_{\max } \quad \text { With } \mu_{\max }=4(15) \mathrm{GeV} \text { for charm (bottom) }
$$

With the following constraint

$$
1 / \xi \leq\left(\mu_{m} / \mu_{\alpha}\right) \leq \xi \quad \text { with } \quad \xi=2 \text { our (canonical) choice }
$$

Aways checking order-by-order convergence.

$$
M_{q}^{V, n}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{q \bar{q}}(s)=(\text { resonan. })+\int_{\substack{\text { Resonance data } \\ s_{\mathrm{th}} \\ \text { Combined R data }}}^{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\max }}^{\infty} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)
$$

Dehnadi, Hoang, Mateu, Zebarjad 'II, Dehnadi, Hoang, Mateu ‘I5
Exp moments determined from resonances and combined R data.
Correlations must be taken into account in the procedure.
Parametrize the continuum contribution (highly linear dependence on the coupling) (including mass corrections)

Experimental ratios of moments

$$
M_{q}^{V, n}=\int \frac{\mathrm{d} s}{s^{n+1}} R_{q \bar{q}}(s)=\text { (resonan.) }+\int_{s_{\text {th }}}^{s_{\max }} \frac{d s}{s^{n+1}} R_{q \bar{q}}(s)+\int_{s_{\max }}^{\text {Resombined } \mathrm{R} \text { data }} \underset{s^{n+1}}{\infty} \frac{d s}{s_{q}}(s)
$$

Slightly update as compared with the original works. Dehnadi, Hoang, Mateu, Zebariad ’।I, Dehnadi, Hoang, Mate ‘15 Cross checked with other R-data combinations Keshavarzi, Nomura, Teubner 'I8

For the charm quark ratios we have

$$
R_{c}^{V, 2}=\left(1.1173-0.1330 \Delta_{\alpha}\right) \pm 0.0022
$$

$$
\begin{aligned}
& {\left[\sigma_{\mathrm{rel}}=0.98 \%\right]} \\
& {\left[\sigma_{\mathrm{rel}}=0.22 \%\right]}
\end{aligned}
$$

$$
R_{c}^{V, 3}=\left(1.03535-0.04376 \Delta_{\alpha}\right) \pm 0.00084 . \quad\left[\sigma_{\mathrm{rel}}=0.104 \%\right]
$$

Continuum contribution smaller for higher n

Results for charmonium sum rules

$$
\alpha_{s} \text { with } n_{f}=4 \text { and } R_{c}^{V, n} \text { with } n=1,2, \text { and } 3
$$

Perturbative error analysis

$$
1 / \xi \leq\left(\mu_{m} / \mu_{\alpha}\right) \leq \xi
$$

$$
\xi=1 \rightarrow \mu_{m}=\mu_{\alpha}
$$

$$
\xi=2 \text { our (canonical) choice }
$$

$$
100 \times\left[\frac{\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)}{\left.\alpha_{s}^{\left.n_{f}=5\right)}\left(m_{Z}\right)\right|_{\xi=2}}-1\right] \text { from } R_{c}^{V, i}
$$

Small variations in the central values ($\sim 0.5 \%$)

Diagonal variation: errors underestimated by a factor of up bo ~2.0

Perturbative error analysis

Order by order convergence

Results

| flavor | n | $\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$ | $\sigma_{\text {pert }}$ | $\sigma_{\exp }$ | $\sigma_{m_{q}}$ | $\sigma_{\text {np }}$ | $\sigma_{\text {total }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bottom | 1 | 0.1183 | 0.0011 | 0.0089 | 0.0002 | 0.0000 | 0.0090 |
| | 2 | 0.1186 | 0.0011 | 0.0046 | 0.0001 | 0.0000 | 0.0048 |
| | 3 | 0.1194 | 0.0013 | 0.0029 | 0.0001 | 0.0000 | 0.0032 |
| charm | 1 | 0.1168 | 0.0010 | 0.0028 | 0.0003 | 0.0006 | 0.0030 |
| | 2 | 0.1168 | 0.0015 | 0.0009 | 0.0003 | 0.0007 | 0.0019 |
| | 3 | 0.1173 | 0.0020 | 0.0005 | 0.0003 | 0.0006 | 0.0022 |

Results

| flavor | n | $\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$ | $\sigma_{\text {pert }}$ | $\sigma_{\exp }$ | $\sigma_{m_{q}}$ | $\sigma_{\text {np }}$ | $\sigma_{\text {total }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bottom | 1 | 0.1183 | 0.0011 | 0.0089 | 0.0002 | 0.0000 | 0.0090 |
| | 2 | 0.1186 | 0.0011 | 0.0046 | 0.0001 | 0.0000 | 0.0048 |
| | 3 | 0.1194 | 0.0013 | 0.0029 | 0.0001 | 0.0000 | 0.0032 |
| charm | 1 | 0.1168 | 0.0010 | 0.0028 | 0.0003 | 0.0006 | 0.0030 |
| | 2 | 0.1168 | 0.0015 | 0.0009 | 0.0003 | 0.0007 | 0.0019 |
| | 3 | 0.1173 | 0.0020 | 0.0005 | 0.0003 | 0.0006 | 0.0022 |

$$
\alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
$$

Results

flavor		${ }^{=5)}(m$	$\sigma_{\text {pe }}$	$\sigma_{\text {exp }}$	$\sigma_{m_{q}}$	σ_{np}	$\sigma_{\text {total }}$
bottom	1	0.1183	0.0011	0.0089	0.0002	0.0000	0.0090
	2	0.1186	0.0011	0.0046	0.0001	0.0000	0.0048
	3	0.1194	0.0013	0.0029	0.0001	0.0000	0.0032
Trend to Larger values			0.0010	0.0028	0.0003	0.0006	0.0030
charm	2	0.1168	0.0015	0.0009	0.0003	0.0007	0.0019
	3	0.1173	0.0020	0.0005	0.0003	0.0006	0.0022

$$
\alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
$$

(Re)analysis of lattice data for pseudo-scalar charm-quark moments

Results from lattice correlators

Data for moments of the pseudo-scalar corrents are available from the lattice

moment	$[6]$	$[9]$	$[10]$	$[11]$	$[12]$
$M_{c}^{P, 0}$	$1.708(7)$	$1.709(5)$	$1.699(9)$	$1.705(5)$	-
$R_{c}^{P, 1}$	-	-	$1.199(4)$	$1.1886(13)$	$1.188(5)$
$R_{c}^{P, 2}$	-	-	$1.0344(13)$	$1.0324(16)$	$1.0341(19)$

[6] HPQCD, Allison et al, Phys. Rev. D (2008)
[9] McNeile et al., Phys. Rev. D (20।0)
[10] Maezawa and Petreczky, Phys. Rev. D (2016)
[11] Petreczky and Weber, Phys. Rev. D (2019)
[12] Nakayama, Fahy, Hashimoto, Phys. Rev. D (20|6)

We use the ratios and the 0-th moment to extract alpha_s and reassess pt. errors

 bo more
conservative pl. theory errors

Ref.	$\alpha_{s}^{\left(n_{f}=5\right)}\left(m_{Z}\right)$	$\sigma_{\text {pert }}$	$\sigma_{\text {lattice }}$	$\sigma_{m_{c}}$	$\sigma_{\text {NP }}$	$\sigma_{\text {total }}$
Allison et al. [6]	0.1179	0.0019	0.0006	0.0003	0.0004	0.0020
McNeile et al. [9]	0.1180	0.0019	0.0005	0.0003	0.0004	0.0020
Maezawa et al. [10]	0.1171	0.0018	0.0008	0.0003	0.0004	0.0020
Petreczky et al. [11]	0.1177	0.0019	0.0005	0.0003	0.0004	0.0020

Main result

Main result

Extraction from charm-quark vector-current moment ratios:

$$
\begin{aligned}
& \text { Larger errors } \\
& \alpha_{s}\left(m_{Z}\right)=0.1168(10)_{\mathrm{pt}}(28)_{\exp }(6)_{\mathrm{np}}=0.1168(30)\left[R_{c}^{V, 1}\right], \\
& \alpha_{s}\left(m_{Z}\right)=0.1168(15)_{\mathrm{pt}}(9)_{\exp }(7)_{\mathrm{np}}=0.1168(19)\left[R_{c}^{V, 2}\right] \\
& \alpha_{s}\left(m_{Z}\right)=0.1173(20)_{\mathrm{pt}}(5)_{\exp }(6)_{\mathrm{np}}=0.1173(22)\left[R_{c}^{V, 3}\right], \text { Large values of } \mathrm{n}
\end{aligned}
$$

Very conservative errors (with diagonal scale variation error would be +/-0.0013)
Continuum contribution treated self-consistently (fixing it would give smaller errors).

Main result

Extraction from charm-quark vector-current moment ratios:

$$
\begin{gathered}
\alpha_{s}\left(m_{Z}\right)=0.1168(10)_{\mathrm{pt}}(28)_{\exp }(6)_{\mathrm{np}}=0.1168(30)\left[R_{c}^{V, 1}\right], \\
\alpha_{s}\left(m_{Z}\right)=0.1168(15)_{\mathrm{pt}}(9)_{\exp }(7)_{\mathrm{np}}=0.1168(19)\left[R_{c}^{V, 2}\right] \\
\alpha_{s}\left(m_{Z}\right)=0.1173(20)_{\mathrm{pt}}(5)_{\exp }(6)_{\mathrm{np}}=0.1173(22)\left[R_{c}^{V, 3}\right], \\
\text { Large values of } \mathrm{n}
\end{gathered}
$$

Very conservative errors (with diagonal scale variation error would be +/-0.0013)
Continuum contribution treated self-consistently (fixing it would give smaller errors).

Perturbative behaviour and renormalons

large- β_{0} results

Large- β_{0} calculation of heavy-quark current correlators

Results available in the literature only for the moments of the vector current
Grozin \& Sturm ‘04

$$
j_{\mu}^{V}=\bar{\psi} \gamma_{\mu} \psi, \quad j_{\mu}^{A}=\bar{\psi} \gamma_{\mu} \gamma_{5} \psi, \quad j^{S}=\bar{\psi} \psi \quad \text { and } \quad j^{P}=i \bar{\psi} \gamma_{5} \psi
$$

We have calculated for the first time the corresponding result for A, S and PS cases
DB,V Mateu, M.V. Rodrigues, in preparation

large- β_{0} results

$$
M_{n}^{V}=\left[12 \pi^{2} Q_{q}^{2} \frac{3}{16 \pi^{2}}\right] \frac{g_{n}^{V}(0)}{\left(4 m^{2}(\mu)\right)^{n}} A_{n}^{V}(\mu)
$$

After renormalization and expressing everything in terms of the $\overline{\mathrm{MS}}$ Mass

$$
\hat{A}_{n}^{\delta}=1+\frac{1}{\beta_{0}} \int_{0}^{\infty} \mathrm{d} u e^{-u / \beta\left(\alpha_{s}\left(\mu_{0}\right)\right)} S_{n}^{\delta}(u)+\mathcal{O}\left(\frac{1}{\beta_{0}^{2}}\right)
$$

General structure of the Borel Eransform of the moments

$$
\begin{aligned}
& S_{n}^{V}(u)=\frac{8 n}{u}+\left(\frac{e^{5 / 3} \mu_{0}^{2}}{m^{2}}\right)^{u} \frac{\operatorname{Csc}(\pi u) \Gamma(n+u)}{4^{u} \Gamma(3 / 2+n+u)} \pi^{3 / 2}(-1+u)(u+1+n) N_{n}^{V}(u) \\
& \begin{array}{c}
u=-1,-2,-3 \ldots \\
\\
\hline \text { UV renorm. }
\end{array} \\
& u=2,3,4 \ldots \\
& \text { IR renorm. } u
\end{aligned}
$$

Non-Erivial polynomials in u for each value of n

$$
\begin{aligned}
& N_{1}^{V}(u)=\frac{u^{3}}{9}+\frac{29 u^{2}}{27}+\frac{92 u}{27}+3 \\
& N_{2}^{V}(u)=\frac{u^{5}}{96}+\frac{7 u^{4}}{54}+\frac{2887 u^{3}}{2592}+\frac{7393 u^{2}}{1296}+\frac{2095 u}{162}+10
\end{aligned}
$$

large- β_{0} results

Ratios of moments

$$
R_{n}^{V}=\frac{\left(M_{n}^{V}\right)^{\frac{1}{n}}}{\left(M_{n+1}^{V}\right)^{\frac{1}{n+1}}}
$$

Borel representation of the ratios of moments

$$
R_{n}^{V}=\left(\frac{9}{4} Q_{q}^{2}\right)^{\frac{1}{n(n+1)}} \frac{\left(g_{n}^{V}(0)\right)^{\frac{1}{n}}}{\left(g_{n+1}^{V}(0)\right)^{\frac{1}{n+1}}}\left[1+\frac{1}{\beta_{0}} \int_{0}^{\infty} d u e^{-u / \hat{a}(\mu)} B_{n}^{V}(u)+\mathcal{O}\left(\frac{1}{\beta_{0}^{2}}\right)\right]
$$

DB,V Mateu, M.V. Rodrigues, in preparation
Borel Eransform

$$
B_{n}^{V}(u)=\frac{S_{n}^{V}(u)}{n}-\frac{S_{n+1}^{V}(u)}{n+1}
$$

Explicibly

$$
\begin{aligned}
B_{n}^{V}(u) & =\left(\frac{e^{5 / 3} \mu^{2}}{m^{2}}\right)^{u} \frac{\operatorname{Csc}(\pi \mathrm{u}) \pi^{3 / 2}(-1+u)}{4^{u}} \\
& {\left[\frac{\Gamma(n+u)(u+1+n) N_{n}^{V}(u)}{n \Gamma(3 / 2+n+u)}-\frac{\Gamma(n+u+1)(u+2+n) N_{n+1}^{V}(u)}{(n+1) \Gamma(5 / 2+n+u)}\right] }
\end{aligned}
$$

large- β_{0} results

Renormalon cancelation in the R n ratios (vector case)

Cancellation of the $u=-1$ renormalon

Cancellation of the $u=2$ renormalon

large- β_{0} results

Renormalon cancelation in the $R \ldots n$ ratios (vector case)

Cancellation of the $u=-1$ renormalon

Cancellation of the $u=2$ renormalon

large- β_{0} results

R_{n}^{V}

charm

large- β_{0} results

Toy extraction of α_{s} in large- β_{0} with the Borel sum as "experiment"

Trends in alpha_s values qualitatively corroborated by large-beta0 results.
One order more in the pt. series should lead to more stable results.

Partial conclusions

Conclusions

α_{s} can be extracted reliably from R data with 4 , and 5 active flavours.
Ratios of moments of bottomonium vector-current correlators ideal from the theory view point, but larger exp. errors.

Ratios tend to have good perturbative expansion (renormalon cancelations).

At present, best determination from charm ratio with $n=2$:

$$
\alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
$$

Our results are obtained with a conservative error estimate.

PS current moments (from lattice) give stable results but with larger uncertainty. Our analysis of the perturbative error is more conservative than original studies

Strong coupling below charm $\left(n_{f}=3\right)$

- DB, M. Golterman, A. Kheshavarzi, K. Maltman, D. Nomura, S. Peris, T. Teubner, arXiv:I805.08I76
Phys. Rev. D 98 n. 7074030 (2018)
-DB, M. Golterman, K. Maltman, S. Peris, M.V. Rodrigues and W. Schaaf, arXiv:2012.I0440
Phys. Rev. D IO3 034028 (202I)

Inclusive process at low energies

$\tau \rightarrow$ (hadrons) $+\nu_{\tau}$

Massless (V\&A) correlators

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}| \rangle
$$

Theory input

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}|0\rangle
$$

Below charm one works with massless correlators.

$$
\begin{aligned}
& \frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \tilde{\Pi}(z) \approx N_{c}\left(1+\frac{\delta^{(0)}}{}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DVs}}\right) \\
& \delta^{(0)}=\sum_{n}^{4} c_{n} \alpha_{s}^{n} \\
& \sim \frac{\alpha_{s}}{\pi} \approx \frac{0.3}{\pi} \sim 10 \%
\end{aligned}
$$

Gorishnii, Kataev, Larin '91 Baikov, Chetyrkin, Kühn '08
Surguladze\&Samuel '91

$$
\begin{array}{cccc}
\alpha_{s}^{1} & \alpha_{s}^{2} & \alpha_{s}^{3} & \alpha_{s}^{4} \\
\delta_{\mathrm{FO}}^{(0)}= & 0.1012 & +0.0533+0.0273 & +0.0133
\end{array}
$$

Theory input

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}|0\rangle
$$

Below charm one works with massless correlators.

$$
\begin{gathered}
\frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \tilde{\Pi}(z) \approx N_{c}\left(1+\frac{\delta^{(0)}}{\frac{1}{2}}+\delta_{\mathrm{EW}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DVs}}\right) \quad \delta^{(0)}=\sum_{n}^{4} c_{n} \alpha_{s}^{n} \\
\sim \frac{\alpha_{s}}{\pi} \approx \frac{0.3}{\pi} \sim 10 \%
\end{gathered}
$$

Gorishnii, Kataev, Larin '91 Baikov, Chetyrkin, Kühn '08
Surguladze\&Samuel '91
$\alpha_{s}^{1} \quad \alpha_{s}^{2} \quad \stackrel{\alpha_{s}^{3}}{3} \quad \alpha_{s}^{4}$
$\delta_{\mathrm{FO}}^{(0)}=0.1012+0.0533+0.0273+0.0133=0.1952$
$\delta_{\mathrm{CI}}^{(0)}=0.1375+0.0262+0.0104+0.0072=0.1814$
pt. correction is $\mathbf{\sim 2 0 \%}$

Moments dominated by perturbation theory

Theory input

Discrepancy between FO and CIPT
 linked to an incoherent Erealment of the OPE (previously assumed to be the same for both prescriptions)

I will avoid results from CIPT because of potential inconsistent treatment of the OPE

Theory input

Discrepancy between F0 and CIPT
 Linked to an incoherent Ereakment of the OPE (previously assumed to be the same for both prescriptions)

$$
\begin{array}{cccc}
& \begin{array}{c}
\text { Gorishnii, Kataev, Larin ’9l } \\
\text { Surguladze\&Samuel '91 }
\end{array} & \text { Baikov, Chetyrkin, Kühn ‘08 } \\
\alpha_{s}^{1} & \alpha_{s}^{2} & \alpha_{s}^{3} & \alpha_{s}^{4} \\
\delta_{\text {FO }}^{(0)}=0.1012+0.0533+0.0273+0.0133=0.1952
\end{array}
$$

I will avoid results from CIPT because of potential inconsistent treatment of the OPE

Strategy

Integrated moments

Sum rules

(using Cauchy's theorem)

$$
\frac{1}{s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) \frac{1}{\pi} \operatorname{Im} \Pi(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}}^{\text {experiment }} d z w(z) \Pi(z)
$$

Strategy

Integrated moments

sum rules

(using Cauchy's theorem)

$$
\frac{1}{s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) \frac{1}{\pi} \operatorname{Im} \Pi(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w(z) \Pi(z)
$$

theory

$$
\rho(s)=\frac{1}{\pi} \operatorname{Im} \Pi(\mathrm{~s})=\frac{1}{12 \pi^{2}} R(s)
$$

spectral function
R ratio (in ere-)

$$
\Pi_{\mu \nu}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{J_{\mu}(x) J_{\nu}(0)^{\dagger}\right\}|0\rangle
$$

Perturbation theory + Condensates (OPE)

Mass corrections

EM and EW corrections

Duality Violations (consistency check)

$$
\sum_{n=0}^{4} a_{\mu}^{n} \sum_{k=1}^{n+1} k c_{n, k}\left(\log \frac{-s}{\mu^{2}}\right)^{k-1}+\frac{C_{4}}{Q^{4}}+\frac{C_{6}}{Q^{6}}+\frac{C_{8}}{Q^{8}}+\cdots
$$

Known up to α_{s}^{4}

Baikov, Chetyrkin, Kühn ‘08

$$
\frac{m_{s}^{2}\left(\mu^{2}\right)}{6 \pi^{2}} \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n} \sum_{k=0}^{n} f_{n k}\left(\log \frac{-z}{\mu^{2}}\right)^{k}
$$

$\rightarrow \quad \frac{1}{6 \pi^{2}} c_{01} \rightarrow \frac{1}{6 \pi^{2}} c_{01}\left(1+\frac{\alpha}{4 \pi}\right) \quad S_{\mathrm{EW}}$
$\rightarrow \quad \rho(s)_{\mathrm{DV}}=e^{-\delta-\gamma s} \sin (a+b s)$
O. Catà, M. Golterman, S. Peris '05, '06, '08 DB, Caprini, Golterman, Maltman, Peris, PRD 'I8

Theory input: moments and general strategy

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z)
$$

1. Good perturbative behaviour.

$$
w(y) \rightarrow 1
$$

2. Small condensate contributions.
3. Suppression of DVs.

$$
\begin{aligned}
& 1-y^{2} \\
& (1-y)^{2}(1+2 y) \\
& \left(1-y^{2}\right)^{2}
\end{aligned}
$$

$$
\frac{-1}{2 \pi i} \oint_{|z|=s_{0}} d z w(z) \tilde{\Pi}(z) \approx N_{c}\left(1+\delta^{(0)}+\delta_{\mathrm{EM}}+\delta_{\mathrm{OPE}}+\delta_{\mathrm{DVs}}\right)
$$

Theory input: choice of weight functions

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z) \quad \begin{aligned}
& w(y) \rightarrow 1 \\
& 1-y^{2} \\
& (1-y)^{2}(1+2 y) \\
& \left(1-y^{2}\right)^{2}
\end{aligned}
$$

1. Good perturbative behaviour.

Reconstruction of the series at high orders.

Avoid moments with linear kerm in \times (firse IR renormalon)

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z)
$$

2. Small condensate contributions.

$$
\begin{aligned}
& w_{0}(y)=1 \\
& w_{2}(y)=1-y^{2} \\
& w_{3}(y)=(1-y)^{2}(1+2 y) \\
& w_{4}(y)=\left(1-y^{2}\right)^{2}
\end{aligned}
$$

Tiny condensate contributions
Only D=6
Only $D=6$ and 8 Tau Kin. Moment
Only D=6 and 10

Avoid higher orders in the OPE! (Asymptotic expansion)

3. Suppression of duality violations.

DVs are the "OPE of the OPE". Perturbation theory is only asymptotic

$$
R \sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+e^{-p / \alpha_{s}\left(Q^{2}\right)}
$$

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z)
$$

3. Suppression of duality violations.

DVs are the "OPE of the OPE". Perturbation theory is only asymptotic

$$
R \sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+e^{-p / \alpha_{s}\left(Q^{2}\right)} \rightarrow R \sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+\sum_{k}^{k^{*}} \frac{C_{2 k}}{Q^{2 k}}
$$

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z) \quad w(y) \rightarrow \frac{1}{1-y^{2}} \begin{aligned}
& (1-y)^{2}(1+2 y) \\
& \left(1-y^{2}\right)^{2}
\end{aligned}
$$

3. Suppression of duality violations.

DVs are the "OPE of the OPE". Perturbation theory is only asymptotic

$$
R \sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+e^{-p / \alpha_{s}\left(Q^{2}\right)}->\sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+\sum_{k}^{k^{*}} \frac{C_{2 k}}{Q^{2 k}}
$$

The OPE is also only asymptotic
These are the DVs

$$
R \sim \sum_{n}^{n^{*}} r_{n} \alpha_{s}^{n+1}+\sum_{k}^{k^{*}} \frac{C_{2 k}}{Q^{2 k}}+e^{-\gamma q^{2}} \kappa \sin \left(\alpha+\beta q^{2}\right)
$$

DV suppression: higher energies and/or zeros in $w(x)$ for $x=1$.

One of the main messages

Higher suppression of D.Vs comes with the price of additional (unknown) higher D contributions from the OPE.

DV strategy
DB, M. Golterman, K. Maltman, S. Peris, M. V. Rodrigues and W. Schaaf,
2012.10440

- Accept some D.Vs and have very litlle contamination on the OPE side.

$$
w(y)=\left(1-y^{2}\right)^{n}
$$

A Pich, A. Rodriguez-Sanchez 1605.06830

- Suppress D.Vs strongly bub need to ignore the higher order conbributions on the OPE side (loo many parameters).
(Serious issues with the truncation of the OPE)
DB, M. Golterman, K. Maltman, S. Peris ‘16

Data

$$
\tau \rightarrow \text { (hadrons) }+\nu_{\tau}
$$

$\tau \rightarrow$ (hadrons) $+\nu_{\tau}$

- V+A inclusive data from LEP
- V \& A can be separated unambiguously for most channels (not all)
- Not all channels are measured (MC inputs)

Davier et al '14

OPAL '98

$\tau \rightarrow($ hadrons $)+\nu_{\tau}$

Results were always based on OPAL or ALEPH (never combined)
$\tau \rightarrow$ (hadrons) $+\nu_{\tau}$

New vector isovector spectral function

* Combined data for 2pi and 4pi channels from ALEPH \& OPAL Data combination done with same algorithm used in R-data combination for the muon 9^{-2}. Keshavarzi, Nomura, Teubner ' 18
* Exp. data only: all residual channels extracted from recent cross-section measurement in $e^{+} e^{-}$

```
NO MC inputs
```

* All results updated for recent branching ratio measurements

Combination of $2 \pi+4 \pi$ channels

Good χ^{2} both locally and globally, no χ^{2} inflation needed
DB, Golterman, Maltman, Peris, Rodrigues and Schaaf, arXiv:20I2.I 0440

$\tau \rightarrow($ hadrons $)+\nu_{\tau}$

8 residual channels extracted from electroproduction data Dramatic improvement for higher multiplicity modes (near end point)
No MC input.

$\tau \rightarrow$ (hadrons $)+\nu_{\tau}$

Final new vector-isovector spectral function Combined 2pi + 4pi from ALEPH and OPAL + 8 residual channels from $e^{+} e^{-}$

■ Total

- $2 \mathrm{pi}+4 \mathrm{pi}$
\triangle Residual

Data

$$
e^{+} e^{-} \rightarrow \text { (hadrons) }
$$

Keshavarzi, Nomura,Teubner 'I8

$e^{+} e^{-} \rightarrow$ hadrons

$R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \quad \sum_{e^{-}}^{e_{\gamma}^{+}} \min _{\gamma}$
New compilation of R-ratio data
(see also Davier et al 'I7, Jegerlehner 'I6)

$e^{+} e^{-} \rightarrow$ hadrons

Integrated moments

$$
\frac{1}{12 \pi^{2} s_{0}} \int_{0}^{s_{0}} d s w\left(s / s_{0}\right) R(s)=-\frac{1}{2 \pi i s_{0}} \oint_{|z|=s_{0}} d z w\left(s / s_{0}\right) \Pi(z)
$$

$$
\begin{aligned}
w(y) \rightarrow & 1 \\
& 1-y^{2} \\
& (1-y)^{2}(1+2 y) \\
& \left(1-y^{2}\right)^{2}
\end{aligned}
$$

integrated moments

quantity	error at $s_{0}=4 \mathrm{GeV}^{2}$	OPE coeff: $D=2 k$
$R\left(s_{0}\right)$	4.3%	-
$I^{(w=1)}\left(s_{0}\right)$	$D=2$	
$I^{\left(w=1-y^{2}\right)}\left(s_{0}\right)$	0.73%	$D=2,6$
$I^{\left(w=(1-y)^{2}(1+2 y)\right)}\left(s_{0}\right)$	0.56%	$D=2,6,8$
$I^{\left(w=\left(1-y^{2}\right)^{2}\right)}\left(s_{0}\right)$	0.59%	$D=2,6,10$

Strategy

Much more data in the exclusive region

The precision of α_{s} is determined by the data in the exclusive region

Results

Several fits, single moments or in combination
Many fit windows: $\left[s_{\text {min }}: m_{\tau}^{2}\right]$

$$
\begin{aligned}
& w_{0}(y)=1, \\
& w_{2}(y)=1-y^{2}, \\
& w_{3}(y)=(1-y)^{2}(1+2 y), \\
& w_{4}(y)=\left(1-y^{2}\right)^{2},
\end{aligned}
$$

Consistency between different fits (alpha_s, condensates DV parameters.)

$\tau \rightarrow$ (hadrons) $+\nu_{\tau}$

Consistency between different fits (alpha_s, condensates DV parameters.)

w_{0}	$w_{0} \& w_{2}$	$w_{0} \& w_{3}$	$w_{0} \& w_{4}$
$\alpha_{s}\left(m_{\tau}\right)=0.3077(65)$	$0.3091(69)$	$0.3080(70)$	$0.3079(70)$
$c_{6}=$	$-0.0059(13)$	$-0.0070(12)$	$-0.0068(12)\left[\mathrm{GeV}^{6}\right]$

Final value

$$
\begin{aligned}
\alpha_{s}\left(m_{\tau}\right) & =0.3077 \pm 0.0065_{\text {stat }} \pm 0.0038_{\text {pert }} \\
& =0.3077 \pm 0.0075 \quad\left(n_{f}=3, \text { FOPT }\right)
\end{aligned}
$$

DVs in the analysis from $e^{+} e^{-} \rightarrow$ (hadrons)

- Consistency check: adding DVs is small effect above $\sim 3.2 \mathrm{GeV}^{2}$

Final results (with three flavours)

Results evolved to m_{Z}

$$
\begin{gathered}
\alpha_{s}\left(m_{Z}\right)\left(\overline{\mathrm{MS}}, N_{f}=5\right) \\
\tau \rightarrow(\text { hadrons })+\nu_{\tau} \\
\alpha_{s}\left(m_{Z}\right)=0.1171 \pm 0.0010
\end{gathered}
$$

Results evolved to m_{Z}

$$
\begin{gathered}
\alpha_{s}\left(m_{Z}\right)\left(\overline{\mathrm{MS}}, N_{f}=5\right) \\
\tau \rightarrow \text { (hadrons) }+\nu_{\tau} \\
\alpha_{s}\left(m_{Z}\right)=0.1171 \pm 0.0010
\end{gathered} e^{+} e^{-} \rightarrow \text { (hadrons) } \alpha_{s}\left(m_{Z}\right)=0.1158 \pm 0.0022
$$

$$
\alpha_{s}^{(\mathrm{CIPT})}=0.1191
$$

Conclusions

α_{s} can be extracted reliably from R data with 3,4 , and 5 active flavours.
Smallest uncertainties from hadronic tau decays (~ 0.0010).
Previous results from CIPT were inconsistent (important reduction in theory error).

$$
\begin{gathered}
\tau \rightarrow(\text { hadrons })+\nu_{\tau} \\
\alpha_{s}\left(m_{Z}\right)=0.1171 \pm 0.0010
\end{gathered}
$$

$$
\begin{aligned}
& \text { Ratio of } V \text { charm moments } \\
& \alpha_{s}\left(m_{Z}\right)=0.1168 \pm 0.0019
\end{aligned}
$$

Bottom vector moment ratios and purely $R(s)$ extractions are theoretically clean, but the data is not precise enough (yet).

Conclusions

