Two-pion contributions to the anomalous magnetic moment of the muon

Peter Stoffer

Faculty of Physics, University of Vienna

October 13, 2020

Seminar on Particle Physics University of Vienna

1

Outline

- 1 Introduction
- Standard Model prediction for the muon g-2
- 3 Hadronic light-by-light scattering
- 4 Hadronic vacuum polarization
- 5 Summary and outlook

Overview

Magnetic moment

relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}} \vec{s}$$

 g_{ℓ} : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_e = 2$
- anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM

Electron vs. muon magnetic moments

influence of heavier virtual particles of mass M scales as

$$\frac{\Delta a_{\ell}}{a_{\ell}} \propto \frac{m_{\ell}^2}{M^2}$$

- a_e used to determine $lpha_{
 m QED}$
- $(m_{\mu}/m_e)^2 \approx 4 \times 10^4 \Rightarrow$ muon is much more sensitive to new physics, but also to EW and hadronic contributions
- a_{τ} experimentally not yet known precisely enough

Muon anomalous magnetic moment $(g-2)_{\mu}$

experimental progress in near future:

- FNAL expected to improve precision by a factor of 4
- theory needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

Muon anomalous magnetic moment $(g-2)_{\mu}$

experimental progress in near future:

- FNAL expected to improve precision by a factor of 4
- theory needs to reduce SM uncertainty!

Photo: Glukicov (License: CC-BY-SA-4.0)

$(g-2)_{\mu}$: theory vs. experiment

- discrepancy between SM and experiment 3.7σ
- hint to new physics?
- size of discrepancy points at electroweak scale
 heavy new physics needs some enhancement mechanism
- theory error completely dominated by hadronic effects

Overview

SM theory white paper

```
\rightarrow T. Aoyama et al. (Muon g-2 Theory Initiative) arXiv:2006.04822 [hep-ph], to appear in Physics Reports
```

- community white paper on current status of SM calculation
- new consensus on SM prediction, ready for comparison with upcoming FNAL result
- many improvements on hadronic contributions

QED and electroweak contributions

- full $\mathcal{O}(\alpha^5)$ calculation by Kinoshita et al. 2012 (involves 12672 diagrams!)
- EW contributions (EW gauge bosons, Higgs)
 calculated to two loops (three-loop terms negligible)

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
QED total	116 584 718.931	0.104
EW	153.6	1.0
Theory total	116 591 810	43

Hadronic contributions

- quantum corrections due to the strong nuclear force
- much smaller than QED, but dominate uncertainty

hadronic vacuum polarization (HVP)

$$a_{\mu}^{\rm HVP} = 6845(40) \times 10^{-11}$$

$$a_{\mu}^{\mathsf{HLbL}} = 92(18) \times 10^{-11}$$

Hadronic vacuum polarization (HVP)

- at present evaluated via dispersion relations and cross-section input from $e^+e^- \rightarrow$ hadrons
- lattice QCD making fast progress
- intriguing discrepancies between e^+e^- experiments
- 2.3σ discrepancy between dispersion relations and latest lattice results → S. Borsanyi et al., arXiv:2002.12347 [hep-lat]

Hadronic vacuum polarization (HVP)

photon HVP function:

$$\sim\sim\sim i(q^2g_{\mu\nu}-q_{\mu}q_{\nu})\Pi(q^2)$$

unitarity of the S-matrix implies the optical theorem:

$$\operatorname{Im}\Pi(s) = \frac{s}{e(s)^2} \sigma(e^+e^- \to \text{hadrons})$$

Dispersion relation

causality implies analyticity:

Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{s' - s} ds'$$

deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'$$

HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\text{HVP}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{thr}}}^{\infty} ds \, \frac{\hat{K}(s)}{s} \, \sigma(e^+e^- \to \text{hadrons})$$

- basic principles: unitarity and analyticity
- direct relation to data: total hadronic cross section $\sigma(e^+e^- \to {\rm hadrons})$
- dedicated e^+e^- program (BaBar, Belle, BESIII, CMD3, KLOE, SND)

Hadronic light-by-light (HLbL)

- dominating contributions evaluated with dispersion relations
- hadronic models for subdominant contributions
- matching to asymptotic constraints
- lattice-QCD result compatible, but larger uncertainty
 weighted average

Theory vs. experiment

$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
116 584 718.931	0.104
153.6	1.0
6845	40
92	18
116 591 810	43
116 592 089	63
279	76
	116 584 718.931 153.6 6 845 92 116 591 810 116 592 089

Overview

Hadronic light-by-light scattering

- previously based only on hadronic models
- first lattice-QCD results \rightarrow T. Blum et al., PRL 124 (2020) 132002

$$a_{\mu}^{\mathrm{HLbL,\ lattice}} = 79(35) \times 10^{-11}$$

- our work: dispersive framework, replacing hadronic models step by step
- dispersion relations + hadronic models

$$a_\mu^{\mathrm{HLbL,\,pheno}} = 94(19)\times 10^{-11}$$

BTT Lorentz decomposition

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074

Lorentz decomposition of the HLbL tensor:

→ Bardeen, Tung (1968) and Tarrach (1975)

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- Lorentz structures manifestly gauge invariant
- scalar functions Π_i free of kinematic singularities
 - ⇒ dispersion relation in the Mandelstam variables

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi_{\mu\nu\lambda\sigma}^{\pi^0\text{-pole}} + \Pi_{\mu\nu\lambda\sigma}^{\mathsf{box}} + \Pi_{\mu\nu\lambda\sigma}^{\pi\pi} + \dots$$

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

one-pion intermediate state

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in first channel

- write down a double-spectral (Mandelstam) representation for the HLbL tensor
- split the HLbL tensor according to the sum over intermediate (on-shell) states in unitarity relations

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\pi}_{\mu\nu\lambda\sigma} + \dots$$

higher intermediate states

Pion pole

- input: doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$
- dispersive analysis of transition form factor:

$$a_{\mu}^{\pi^0\text{-pole}} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$$

→ Hoferichter et al., PRL 121 (2018) 112002, JHEP 10 (2018) 141

Pion-box contribution

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161

- simultaneous two-pion cuts in two channels
- Mandelstam representation explicitly constructed
- q^2 -dependence: pion VFF $F_\pi^V(q_i^2)$ for each off-shell photon factor out
- Wick rotation: integrate over space-like momenta
- dominated by low energies ≤ 1 GeV
- result: $a_{\mu}^{\pi\text{-box}} = -15.9(2) \times 10^{-11}$

Rescattering contribution

- expansion into partial waves
- unitarity gives imaginary parts in terms of helicity amplitudes for γ*γ(*) → ππ:

$$\operatorname{Im}_{\pi\pi} h^{J}_{\lambda_1 \lambda_2, \lambda_3 \lambda_4}(s) \propto \sigma_{\pi}(s) h_{J, \lambda_1 \lambda_2}(s) h_{J, \lambda_3 \lambda_4}^*(s)$$

 resummation of PW expansion reproduces full result: checked for pion box

Topologies in the rescattering contribution

our S-wave solution for $\gamma^*\gamma^* \to \pi\pi$:

two-pion contributions to HLbL:

$$\sum_{x,y,z} \sum_{x,y,z} \sum_{x,z} \sum_{x,z$$

S-wave rescattering contribution

- → Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- pion-pole approximation to left-hand cut $\Rightarrow q^2$ -dependence given by F_π^V
- phase shifts based on modified inverse-amplitude method (f₀(500) parameters accurately reproduced)
- result for S-waves:

$$a_{\mu,J=0}^{\pi\pi,\pi\text{-pole LHC}} = -8(1) \times 10^{-11}$$

• extension to $f_0(980)$ in progress ightarrow Danilkin, Hoferichter, Stoffer

Extension to *D*-waves

- → Hoferichter, Stoffer, JHEP 07 (2019) 073
- inclusion of resonance LHC
- unitarization with Omnès methods

Hadronic light-by-light scattering

 $\begin{tabular}{ll} HLbL\ overview & \to T.\ Aoyama\ \it{et\ al.}, \ arXiv:2006.04822\ [hep-ph] \end{tabular}$

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$
π^0 , η , η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S -wave $\pi\pi$ rescattering	-8	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

Overview

Hadronic vacuum polarization

final white paper number: data-driven evaluation

$$a_{\mu}^{\rm LO\;HVP,\;pheno} = 6\,931(40)\times 10^{-11}$$

average of published lattice-QCD results

$$a_{\mu}^{\rm LO\;HVP,\;lattice\;average} = 7\,116(184)\times 10^{-11}$$

- newest lattice-QCD result
 - → S. Borsanyi et al., arXiv:2002.12347 [hep-lat]

$$a_{\mu}^{\mathrm{LO\;HVP,\;lattice}} = 7\,087(53)\times10^{-11}$$

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- $3\pi\pi$ scattering— $\pi\pi$ scattering

$$\sim : \quad \sigma(e^+e^- \to \pi^+\pi^-) \propto |F_\pi^V(s)|^2$$

analyticity ⇒ dispersion relation for HVP contribution

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- 3 $\pi\pi$ scattering— $\pi\pi$ scattering

$$+ \dots : \quad F_{\pi}^{V}(s) = |F_{\pi}^{V}(s)|e^{i\delta_{1}^{1}(s)+\dots}$$

analyticity ⇒ dispersion relation for pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- **3** $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity, crossing, PW expansion ⇒ Roy equations

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

• Omnès function with elastic $\pi\pi$ -scattering P-wave phase shift $\delta_1^1(s)$ as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

• isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ – ω interference effect)

$$G_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^{2}}^{\infty} ds' \frac{\text{Im} g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^{2}}{s'}}{1 - \frac{9M_{\pi}^{2}}{M_{\omega}^{2}}} \right)^{4},$$

$$g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^{2} - s}$$

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar KK$, ...
- described in terms of a conformal polynomial with cut starting at $\pi^0\omega$ threshold

$$G_{\text{in}}^{N}(s) = 1 + \sum_{k=1}^{N} c_k(z^k(s) - z^k(0))$$

correct P-wave threshold behavior imposed

Relative difference between data sets and fit result

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

Contribution to $(g-2)_{\mu}$

- → Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006
- low-energy $\pi\pi$ contribution:

$$a_{\mu}^{\rm HVP,\pi\pi}|_{\leq 0.63\,\rm GeV} = 132.8(0.4)(1.0)\times 10^{-10}$$

• $\pi\pi$ contribution up to 1 GeV:

$$a_{\mu}^{\mathrm{HVP},\pi\pi}|_{\leq 1\,\mathrm{GeV}} = 495.0(1.5)(2.1) \times 10^{-10}$$

 enters the white-paper value in a conservative merging with direct cross-section integration

Tension with lattice QCD

- → Colangelo, Hoferichter, Stoffer, arXiv:2010.07943 [hep-ph]
- implications of changing HVP?
- modifications at high energies affect hadronic running of $lpha_{
 m QED}^{
 m eff}$ \Rightarrow clash with global EW fits
 - → Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020), Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)
- lattice studies point at region < 2 GeV
- $\pi\pi$ channel dominates
- relative changes in other channels would be prohibitively large

Tension with lattice QCD

- → Colangelo, Hoferichter, Stoffer, arXiv:2010.07943 [hep-ph]
- force a different HVP contribution in VFF fits by including "lattice" datum with tiny uncertainty
- three different scenarios:
 - "low-energy" physics: $\pi\pi$ phase shifts
 - "high-energy" physics: inelastic effects, c_k
 - all parameters free
- study effects on pion charge radius, hadronic running of $\alpha_{\rm QED}^{\rm eff}$, phase shifts, cross sections

- → Colangelo, Hoferichter, Stoffer, arXiv:2010.07943 [hep-ph]
- "low-energy" scenario requires local changes in the cross section of $\sim 8\%$ in the ρ region
- "high-energy" scenario has an impact on pion charge radius and the space-like VFF ⇒ chance for independent lattice-QCD checks

Overview

Summary

- both lattice-QCD and dispersive methods making progress on hadronic contributions to $(g-2)_{\mu}$ \Rightarrow white paper
- achieved precision adequate for first FNAL results
- final FNAL precision goal calls for further improvement in HLbL and HVP

Summary: HLbL

- precise dispersive evaluations of dominant contributions
- models reduced to sub-dominant contributions, but dominate uncertainty

Summary: HVP

- long-standing discrepancy between BaBar/KLOE \Rightarrow wait for new e^+e^- data
- intriguing tension with lattice-QCD \Rightarrow unitarity/analyticity enable **independent checks** via pion VFF and $\langle r_{\pi}^2 \rangle$, in addition to further direct lattice results on HVP

