Flavour Anomalies

Antonio Pich

IFIC, U. Valencia – CSIC

Wien on-line seminar, 12 January 2021

Many Interesting Flavour Anomalies

b
ightarrow c au
u, $b
ightarrow s \mu^+ \mu^-$, $(g-2)_{\mu,e}$, $\tau^\pm
ightarrow \pi^\pm K_S
u$, $\Delta a_{
m CP}^{D^0}$, V_{ub} , V_{ud} , \cdots

Some already gone: $B \to \tau \nu$, $W \to \tau \nu$, $\varepsilon'_K / \varepsilon_K$, ε_K , V_{cb} , \cdots

Not easy common explanation (within appealing BSM models)

Separate analyses are (perhaps) more enlightening

CP Violation in $K \rightarrow \pi \pi$

$$\eta_{00} \equiv \frac{\mathcal{M}(K_L^0 \to \pi^0 \pi^0)}{\mathcal{M}(K_S^0 \to \pi^0 \pi^0)} \equiv \varepsilon - 2\varepsilon' \qquad , \qquad \eta_{+-} \equiv \frac{\mathcal{M}(K_L^0 \to \pi^+ \pi^-)}{\mathcal{M}(K_S^0 \to \pi^+ \pi^-)} \equiv \varepsilon + \varepsilon'$$

• Indirect CP: $|\varepsilon| = \frac{1}{3} |\eta_{00} + 2\eta_{+-}| = (2.228 \pm 0.011) \cdot 10^{-3}$ • Direct CP: $\operatorname{Re}(\varepsilon'/\varepsilon) = \frac{1}{3} \left(1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right| \right) = (16.6 \pm 2.3) \cdot 10^{-4}$ First evidence in 1988 by NA31

Flavour Anomalies

Time evolution of ε'/ε predictions:

10^{-3} units

- 1983	SD (<i>Q</i> ₆), LO	\sim 2	Gilman-Hagelin
- 1990-2000	SD, large m_t (Q_8), NLO	$\sim {\rm few} \cdot 10^{-1}$	Munich, Rome
	+ models of LD contributions	$\sim \mathcal{O}(1)$	Dortmund, Trieste
- 1999-2001	$SD + LD \ (\chi PT)$ at NLO	1.7 ± 0.9	Scimemi-Pallante-Pich
- 2000-2003	models of LD contributions	$\sim \mathcal{O}(1)$	Lund, Marseille
- 2003	NLO isospin breaking in χPT	1.9 ± 1.0	Cirigliano-Ecker-Neufeld-Pich
- 2015	Lattice	$\textbf{0.14} \pm \textbf{0.70}$	RBC-UKQCD
- 2015-2017	Dual QCD, Lattice input	$\textbf{0.19} \pm \textbf{0.45}$	Munich
- 2017	NLO χ PT re-analysis	1.5 ± 0.7	Gisbert-Pich
- 2019	χPT re-analysis of NLO IB	1.4 ± 0.5	Cirigliano-Gisbert-Pich-Rodríguez
- 2020 (April)	Lattice re-analysis (no IB)	2.17 ± 0.84	RBC-UKQCD
- 2020 (May)	Lattice input + χ PT IB	1.74 ± 0.61	Munich
	Lattice input + naive IB	1.39 ± 0.52	

Flavour Anomalies

Empirical $A[K^{0} \to \pi^{+}\pi^{-}] = A_{0} e^{i\delta_{0}} + \frac{1}{\sqrt{2}} A_{2} e^{i\delta_{2}} \equiv A_{1/2} + \frac{1}{\sqrt{2}} A_{3/2}$ $A[K^{0} \to \pi^{0}\pi^{0}] = A_{0} e^{i\delta_{0}} - \sqrt{2} A_{2} e^{i\delta_{2}} \equiv A_{1/2} - \sqrt{2} A_{3/2}$ $A[K^{+} \to \pi^{+}\pi^{0}] = \frac{3}{2} A_{2} e^{i\delta_{2}} \equiv \frac{3}{2} A_{3/2}$

Δ*I* = 1/2 Rule: ω ≡ Re(A₂)/Re(A₀) ≈ 1/22
 Strong Final-State Interactions: δ₀ − δ₂ ≈ 45°

• Unitarity: $\delta_0 = (39.2 \pm 1.5)^\circ \Rightarrow A_0 \approx 1.3 \times \text{Dis}(\mathcal{A}_0)$

$$K$$
 π π π π

$$A_{I} = \operatorname{Dis}(\mathcal{A}_{I}) \sqrt{1 + \tan^{2} \delta_{I}} \qquad \qquad \tan \delta_{I} = \frac{\operatorname{Abs}(\mathcal{A}_{I})}{\operatorname{Dis}(\mathcal{A}_{I})}$$

• Analyticity: $\Delta \operatorname{Dis} (\mathcal{A}_{l})[s] = \frac{1}{\pi} \int dt \, \frac{\operatorname{Abs} (\mathcal{A}_{l})[t]}{t - s - i\epsilon} + \text{subtractions}$ Large δ_{0} \rightarrow Large Abs (\mathcal{A}_{0}) \rightarrow Large correction to $\operatorname{Dis} (\mathcal{A}_{0})$

Claims of an ε'/ε anomaly originate in incorrect treatments of the $\pi\pi$ cut

A. Pich

SM Prediction of ε'/ε

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez, 1911.01359

A. Pich

Flavour Anomalies

First evidence of C/P in charm decays (5.3σ)

LHCb 1903.08726 $\Delta a_{\mathcal{CP}} = (-15.4 \pm 2.9) \cdot 10^{-4}$, $\Delta a_{\mathcal{CP}}^{\mathrm{dir}} = (-15.7 \pm 2.9) \cdot 10^{-4}$

Large uncertainty in SM prediction:

- Naive perturbative QCD (+ LCSR) \Rightarrow $|\Delta a_{CP}^{dir}| \le 3 \cdot 10^{-4}$ Chala et al, 1903.10490
- Re-scattering: $\Delta a_{CP}^{dir} \rightarrow \Delta U = 0$ rule in charm Grossman-Schacht, 1903.10952

 $|V_{ud}| = 0.97373$ (31)

Date of analysis

2010

2000

1990

 $1 - \sum_{i} |V_{ui}|^2 = \begin{cases} 0.00206 \ (68)_{K \to \pi \ell \nu} & 3.0 \ \sigma \\ 0.00144 \ (70)_{K \to \ell \nu, \pi \ell \nu} & 2.0 \ \sigma \end{cases}$

A. Pich

Flavour Anomalies

2020

LHCb, 1711.05623:
$$\mathcal{R}_{J/\psi} \equiv \frac{\mathcal{B}(B_c \to J/\psi \pi \bar{\nu}_{\tau})}{\mathcal{B}(B_c \to J/\psi \mu \bar{\nu}_{\mu})} = 0.71 \pm 0.17 \pm 0.18$$
 (1.7 σ) $\mathcal{R}_{J/\psi}^{SM} \approx 0.26 - 0.28$
Belle, 1903.03102: $F_L^{D^*} = 0.60 \pm 0.08 \pm 0.04$ (1.6 σ) $F_{L,SM}^{D^*} = 0.455 \pm 0.003$
Belle, 1612.00529: $\mathcal{P}_{\tau}^{D^*} = -0.38 \pm 0.51^{+0.21}_{-0.16}$ $\mathcal{P}_{\tau,SM}^{D^*} = -0.499 \pm 0.003$

Possible Caveats / Constraints:

③ Differential distributions. Polarizations:

Data self-consistency

4 Time evolution of data:

Effective Field Theory

 $C^X_{AB}\big|^{\rm SM}=0$

$$\mathcal{H}_{eff}^{b \to c\tau\nu} = \frac{4G_F}{\sqrt{2}} V_{cb} \left\{ \mathcal{O}_{LL}^V + \sum_{A,B=L,R} \left[C_{AB}^V \mathcal{O}_{AB}^V + C_{AB}^S \mathcal{O}_{AB}^S + C_{AB}^T \mathcal{O}_{AB}^T \right] + \text{h.c.} \right\}$$

 $\mathcal{O}_{AB}^{V} = \left(\bar{c}\,\gamma^{\mu}\mathcal{P}_{A}b\right)\left(\bar{\tau}\gamma_{\mu}\mathcal{P}_{B}\nu\right), \qquad \mathcal{O}_{AB}^{S} = \left(\bar{c}\,\mathcal{P}_{A}b\right)\left(\bar{\tau}\mathcal{P}_{B}\nu\right), \qquad \mathcal{O}_{AB}^{T} = \delta_{AB}\,\left(\bar{c}\,\sigma^{\mu\nu}\mathcal{P}_{A}b\right)\left(\bar{\tau}\sigma_{\mu\nu}\mathcal{P}_{A}\nu\right)$

Many analyses (usually with single operator/mediator and partial data information) Freytsis et al, Bardhan et al, Cai et al, Hu et al, Celis et al, Datta et al, Bhattacharya et al, Alonso et al, ...

Global fit to all data:	$(q^2 \text{ distributions included})$ $ u_L $ Murgui-Penűelas-Jung-Pich, 1904.0 $ u_R $ Mandal-Murgui-Penűelas-Pich, 2004.0	9311 6726
Assumptions	• $C_{AB}^{\chi} \neq 0$ for 3 rd fermion generation only • EWSB linearly realized $\rightarrow C_{RL}^{V} = 0$ • CP symmetry \rightarrow Real Wilson coefficients	
A. Pich	Flavour Anomalies	12

Global fit to all data: ν_L

$F_L^{D^*}, B_{10}$	Min 1	Min 2	
$\chi^2/{ m d.o.f.}$	37.4/54	40.4/54	
c_{LL}^V	0.09 + 0.13 - 0.12	0.34 + 0.05 - 0.07	$\mathcal{B}(B_c \to \tau \bar{\nu}) < 10$
c_{RL}^{S}	0.09 + 0.12 - 0.61	-1.10 + 0.48 - 0.07	$F_{I}^{D^{*}}$ included
c_{LL}^S	-0.14 + 0.52 - 0.07	-0.30 + 0.11 - 0.50	_
c_{LL}^T	$0.008 + 0.046 \\ - 0.044$	0.093 + 0.029 - 0.030	

- Strong preference for New Physics $(\chi^2_{SM} \chi^2 = 31.4)$
- No clear preference for a particular Wilson coefficient in the global minimum
- Min 1 compatible with a global modification of the SM (Fitting only C^V_{LL} just increases χ² by 1.4)
- Min 2 is further away from the SM & involves large scalar contributions
- $F_L^{D^*}$ difficult to accommodate at 1σ
- Complex C_{AL}^{χ} do not improve the χ^2 , but open many more solutions
- Including C_{RL}^{V} slightly improves the agreement with data (χ^2 /d.o.f. = 32.5/53). Two additional fine-tuned solutions with $C_{LL}^{V} \sim -0.9$

Global Fit within ν_R Scenarios

Mandal-Murgui-Peñuelas-Pich, 2004.06726

Sc 1: \mathcal{O}_{LR}^{V} , \mathcal{O}_{RR}^{V} , \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} , \mathcal{O}_{RR}^{T} , \mathcal{O}_{LL}^{V}
Sc 2: \mathcal{O}_{LR}^{V} , \mathcal{O}_{RR}^{V} , \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} , \mathcal{O}_{RR}^{T}
So 3, V^{μ} : \mathcal{O}_{RR}^{V} So 4, Φ : \mathcal{O}_{LR}^{S} , \mathcal{O}_{RR}^{S} [b: $+ \mathcal{O}_{LL}^{S}$, \mathcal{O}_{RL}^{S}]
$ \begin{split} & \tilde{Sc} 5, \ \boldsymbol{U}_1^{\boldsymbol{\mu}} \colon \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{V}}, \ \boldsymbol{\mathcal{O}}_{LR}^{\boldsymbol{S}} [b: + \mathcal{O}_{LL}^{\boldsymbol{V}}, \ \mathcal{O}_{RL}^{\boldsymbol{S}}] \\ & \tilde{sc} c, \ \tilde{R}_2 \colon \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{S}}, \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{T}} \\ & \tilde{sc} c, S_1 \colon \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{V}}, \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{S}}, \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{T}}, \ \boldsymbol{\mathcal{O}}_{RR}^{\boldsymbol{T}} [b: + \mathcal{O}_{LL}^{\boldsymbol{V}}, \ \mathcal{O}_{LL}^{\boldsymbol{S}}, \ \mathcal{O}_{LL}^{\boldsymbol{T}}] \\ & \tilde{sc} c, \ \tilde{\boldsymbol{v}}_2^{\boldsymbol{\mu}} \colon \ \boldsymbol{\mathcal{O}}_{LR}^{\boldsymbol{S}} \\ \end{split} $

$\mathcal{B}(B_c \rightarrow \tau \bar{\nu})$	$\chi^2/d.o.f$	Pull _{SM}			Pull _{SM}	p-value
		$\bar{P}_{\tau}^{D^*}$, $F_L^{D^*}$	\mathcal{R}_{D,D^*}	$d\Gamma/dq^2$		
2.16%	52.87/59					69.95%
< 10%	37.26/53	0.007	2.08	0.0414	2.4	95.02%
< 10%	38.86/53	0.001 🗶	2.08	0.0006	2.2	92.68%
< 30%	36.42/53	0.022	2.08	0.0866	2.5	96.00%
< 30%	38.54/53	0.011	2.08	0.000	2.2	93.21%
< 10%	38.54/54	0.006 🗡	2.32	0.0113	2.5	93.20%
< 10%	39.05/54	0.004 🗡	2.32	0.0003	2.4	93.73%
< 30%	38.33/54	0.035 🗡	2.32	0.0023	2.5	94.73%
< 30%	38.80/54	0.025 🗶	2.32	0*	2.4	94.09%
< 10%	39.50/58	0.150 🗡	3.65	0.0835	3.7 🗸	97.00%
< 10%	49.93/57	0.079 🗡	2.34 🗡	0*	1.2	73.52%
< 10%	49.93/57	0.079 🗡	2.34 🗡	0*	1.2	73.52%
< 30%	44.49/57	0.311 🗡	2.66 🗡	0*	2.4	88.62%
< 30%	44.49/57	0.311 🗶	2.66 🗶	0*	2.4	88.62%
< 10%	43.56/55	0.054 🗡	2.07 🗡	0*	1.9	86.70%
< 30%	40.03/55	0.218	2.52	0*	2.5	93.54%
< 10%	39.39/57	0* 🗡	3.22	0.0981	3.2 ✓	96.36%
< 10%	39.37/55	0* 🗡	3.34	0.0060	2.6	94.47%
< 10%	44.20/58	0* 🗡	3.34	0*	2.9	90.93%
< 10%	39.21/57	0.126 🗡	3.22	0.0616	3.3 √	96.53%
< 10%	39.06/55	0.014 🗶	2.56	0.0112	2.7	94.87%
< 10%	47.32/57	0.259 🗡	2.56 🗡	0*	1.9	81.60%
	$\begin{array}{c} \mathcal{B}(B_e \to \tau \bar{\nu}) \\ \hline \\ & < 10\% \\ < 10\% \\ < 30\% \\ < 30\% \\ < 30\% \\ < 00\% \\ < 30\% \\ < 10\% \\ < 30\% \\ < 00\% \\ < 30\% \\ < 00\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10\% \\ < 10$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

A. Pich

Data consistently below SM predictions Large hadronic uncertainties

 $(1-3 \sigma \text{ tensions})$

$B o K^* \mu^+ \mu^- o K \pi \, \mu^+ \mu^-$

C. Langenbruch, LHC implications 2018

NP or SM cc-loop?

Violations of Lepton Flavour Universality

Flavour Anomalies

- $B_s^0 \to \mu^+ \mu^-$ strongly constrains pseudoscalar operators and bounds $C_{10,\mu}^{\rm NP}$
- Preferred solutions: $C_{9,\mu}^{\rm NP} \neq 0$ or $C_{9,\mu}^{\rm NP} \approx -C_{10,\mu}^{\rm NP} \neq 0$
- Slight tension (2σ) in current $B_s^0 \to \mu^+\mu^-$ world average favours $C_{9,\mu}^{\rm NP} C_{10,\mu}^{\rm NP}$
- Recent data allow more space for right-handed currents
- Additional solutions with LFU components (Algueró et al, 1809.08447)
- SMEFT: $b \to c\tau\nu$ and $b \to s\ell\ell$ anomalies \Longrightarrow Large $b \to s\tau\tau$

 $(\bar{Q}_{2}\gamma^{\mu}Q_{3})(\bar{L}_{3}\gamma_{\mu}L_{3}) + (\bar{Q}_{2}\gamma^{\mu}\sigma^{\prime}Q_{3})(\bar{L}_{3}\gamma_{\mu}\sigma^{\prime}L_{3}) \approx 2\left[(\bar{c}_{L}\gamma_{\mu}b_{L})(\bar{\tau}_{L}\gamma^{\mu}\nu_{\tau L}) + (\bar{s}_{L}\gamma_{\mu}b_{L}))(\bar{\tau}_{L}\gamma^{\mu}\tau_{L})\right]$

A. Pich

Leptoquark Solutions

 $\mathcal{L}_{\text{eff}} = -\frac{1}{n^2} \lambda_{ij}^q \lambda_{\alpha\beta}^\ell \left[C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) \right]$ $+ C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) \left(\bar{L}_L^\alpha \gamma^\mu L_L^\beta \right)$

 $U(2)_{q} \otimes U(2)_{\ell}$ Family Symmetry

Angelescu et al. 1808.08179

Model	$R_{D^{(*)}}$	$R_{K^{(\ast)}}$	$R_{D^{(*)}} \ \& \ R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	X *	×*
$R_2 = (3, 2, 7/6)$	\checkmark	X *	×
$S_3 = (\bar{3}, 3, 1/3)$	×	\checkmark	×
$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark	\checkmark
$U_3 = (3, 3, 2/3)$	×	\checkmark	×

Possible UV completions:

- 4321 model Di Luzio et al Bordone et al
- (Pati-Salam)³
- PS + VLF Calibbi et al
- Warped PS Blanke-Crivellin
- SU(5) GUT (R₂ & S₃) Becirevic et al
- S₁ & S₃

•

Crivellin et al. Buttazzo et al. Marzocca

Lepton Flavour Universality in W Decays

2007.14040

Electron Anomalous Magnetic Moment

Morel et al, Nature 588 (2020) 61

New measurement of α

 α^{-1} (**Rb**) = 137.035 999 206 (11)

 $8.1\times 10^{-11} \text{ accuracy}$

 $5.8\,\sigma$ discrepancy with Cs experiment

$$\begin{split} \Delta a_e &\equiv a_e^{\rm exp} - a_e^{\rm SM} \\ &= \begin{cases} (-8.8 \pm 3.6) \cdot 10^{-13} & (\text{Cs}, -2.4\sigma) \\ (+4.8 \pm 3.0) \cdot 10^{-13} & (\text{Rb}, +1.6\sigma) \end{cases} \end{split}$$

Summary

- Flavour structure and *C/P* are major pending questions
- Important cosmological implications (Baryogenesis)
- Sensitive to New Physics: Flavour Anomalies!

Intriguing signals (Most anomalies related to 3rd family)

Many questions. Higher statistics & better systematics (QCD) needed

Eagerly awaiting new experimental results

Backup

Anatomy of ε'/ε calculation

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = -\frac{\omega_{+}}{\sqrt{2}|\varepsilon|} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 - \Omega_{\text{eff}}\right) - \frac{\operatorname{Im} A_{2}^{\text{emp}}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$

 $\mathcal{A}_{n}^{(X)} = a_{n}^{(X)} \left[1 + \Delta_{L} \mathcal{A}_{n}^{(X)} + \Delta_{C} \mathcal{A}_{n}^{(X)} \right]$ Cirigliano-Gisbert-Pich-Rodríguez 2019

1 $O(p^4) \chi PT$ Loops: Large correction (NLO in $1/N_c$) FSI $\Delta_L \mathcal{A}_{1/2}^{(8)} = 0.27 + 0.47 i$; $\Delta_L \mathcal{A}_{3/2}^{(g)} = -0.50 - 0.21 i$ **2** $O(p^4)$ LECs fixed at $N_C \rightarrow \infty$: Small correction $\Delta_C [\mathcal{A}_{1/2}^{(8)}]^- = 0.10 \pm 0.05$; $\Delta_C [\mathcal{A}_{3/2}^{(g)}]^- = -0.19 \pm 0.19$ **3** Isospin Breaking $O[(m_u - m_d) p^2, e^2 p^2]$: Sizeable correction $\Omega_{\rm off} = 0.11 \pm 0.09$ Re(g₈), Re(g₂₇), $\chi_0 - \chi_2$ fitted to data 4

Sensitivity to individual Wilson coefficients

Solid (dashed) lines indicate ranges satisfying $Br(B_c \rightarrow \tau \nu) < 10\%$ (30%). Fainted lines do not fulfil this constraint

D* Observables

It is not possible to accommodate all D^* data at 1σ

$$C_P \equiv \frac{C_{S_R}}{C_{S_R}} - C_{S_L}$$

Flavour Anomalies

Predictions from global fit:

Many possibilities:

- L_{μ} - L_{τ} Altmannshofer et al, ...
- Z' + VLQ Kamenik et al
- Fermiophobic Falkowski et al
- Horizon. Sym. Guadagnoli et al
- Faisel-Tandeam, ...

More possibilities...

μ Anomalous Magnetic Moment

Aoyama et al, 2006.04822

 $\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} = (279 \pm 76) \cdot 10^{-11}$ (3.7 σ)

New a_{μ} measurement eagerly expected

μ Anomalous Magnetic Moment

Belle does not see any asymmetry at the 10⁻² level

$$A_i^{\text{CP}} \simeq \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^+} - \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^+}$$

bins (*i*) of $W = \sqrt{\varrho^2}$
 $\beta = K_s$ direction in hadronic rest frame

 $\psi = \tau$ direction

BaBar signal incompatible (with EFT) with other sets of flavour data

Cirigliano-Crivellin-Hoferichter, 1712.06595

Rendón-Roig-Toledo, 1902.08143