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Summary of National Inputs

» all options aimed at attobarn-1 physics
» requires to go far beyond NNLO for theory
» even conservative estimates not reachable with current techniques
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WHERE IS THE BOTTLENECK: MATH VS PHYSICS

The difficulties to reach higher orders arise
because we have defined Quantum Field
Theory not in the optimal way

Math Physics

X {

Find the Slope

* *Mathematics is the language of the Universe”, attributed to Galileo Galilei 1564-1642
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MATH VS PHYSICS IN PQFT

QFT = Quantum Mechanics + space-time

» Loops encode quantum fluctuations at infinite energy
(zero distance). SM/BSM extrapolated at energies

> M Plank

» QED/QCD massless gauge bosons/quarks: quantum

state with /V partons # quantum state with zero energy
emission (infinite distance) of extra partons

» Partons can be emitted in exactly the same direction
(zero distance)
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['t Hooft, Veltmann 1972]

MODIFY THE DIMENSIONS OF THE SPACE-TIME [Giambiagi, Bollini 1972]

Dimensional Regularization DREG

d=4-"12¢

Qualitative interpretation: A way to give some
extra space to the colliding particles

Intrinsic infinities appear as poles in the extra

dimensions: 1/¢ after integration over loop
momenta and phase-space

different quantum fluctuations should contribute
with poles of opposite sign, such that theoretical
predictions for physical observables remain finite

_ _ ] https://www.pinterest.es/pin/
Mathematically well-defined but unphysical, and  311733605450189454/

difficult to implement at higher orders



OUTLINE | AIMED FULLY LOCAL AND IN THE PHYSICAL FOUR DIMENSIONS

G. Rodrigo, Wien seminar

of scales is wel

ASYMPTOTIC EXPANSIONS

LTD works in the Euclidean space of the
loop three-momenta where the hierarchy

| defined

LOOP-TREE DUALITY (LTD)

open loop amplitudes to non-
disjoint trees by introducing a )
number of on-shell conditions

LOCAL RENORMALISATION

Suppress bad behavior at very high
energies such that UV singularities

are cancelled locally ind = 4

equal to the number of loops
#* Generalized Unitarity

T~

spa9e/<tim dmkerﬁo& \ \\ X \L i

Introduce mappings of momenta between the virtual
and real kinematics such that soft and collinear

dimensions. Real and virtual contributions generated
simultaneously

FOUR DIMENSIONAL UNSUBTRACTION (F% ,

singularities are cancelled locally in d = 4 space-time
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Gell-Mann suggested to study
GRAVITY INSPIRED (QUANTUM THEORY OF GRAVITATION, 1963) massless Yang-Mills theory

R. P. Feynman, Closed Loop And Tree Diagrams. (talk),

Magic Without Magic: J. A. Wheeler, A Collection of Essays in Honor of his Sixtieth Birthday.
Edited by John R. Klauder, 1972, p.355
In *Brown, L.M. (ed.): Selected papers of Richard Feynman* 867-887

Closed Loop and Tree Diagrams

_

We shall show that any diagram with closed loops can be expressed in terms
of sums (actually integrals) of tree diagrams. In each of these tree diagrams
there is, in addition to the external particles of the original closed loop diagram,
certain particles in the 1n1t1al and In the final state of the tree dlagram ‘These

/\.e e sy br > ImiChtorn that a part“
repre< nt propagition of the saflle F#rticle.



IT'S ALL ABOUT THE TINY +I0 FROM

PAGATORS

) =
F4) g7 — m? + i0

» MATH: the +i0 is a small quantity usually ignored, assuming that
the analytical continuation to the physical kinematics is well

defined

» PHYSICS: the +i0 encodes CAUSALITY | positive frequencies
are propagated forward in time, and negative backward



CAUCHY RESIDUE THEOREM
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' [Catani et al. JHEP 0809, 065]

THE LOOP-TREE DUALITY (LTD)

Feynman Propagator +i0:
positive frequencies are propagated
forward in time, and negative backward

Gr(g;) =

G. Rodrigo, Wien seminar

g? — m? + i0

Cauchy residue theorem
In the loop energy complex plane

527](\}) 1o plane

X X X

selects residues with definite positive
energy and negative imaginary part

In arbitrary coordinate systems: reduce
the dimension of the integration domain
by one unit
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ONLY SINGLE CUT TREES Z W™ [Catani et al. JHEP 0809, 065]

THE LOOP-TREE DUALITY (LTD)

One-loop amplitudes in any relativistic, local and unitary QFT represented
as a linear combination of N single-cut phase-space/dual amplitudes |
non-disjoint trees (at higher orders: number of cuts equal to the
number of loops)

1

[ venllGar=-| +ene ¥ sw]]Gaiq
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dual propagator k;=¢g;—q;, ¢ = \/ q; +m? — 10

S sl
SIS

» LTD realised by modifying the customary +i0 prescription of the Feynman propagators
(only the sign matters), it encodes in a compact way the effect of multiple-cut
contributions that appear in the Feynman’s Tree Theorem

» Lorentz invariant, best choice n* = (1,0) : energy component integrated out, remaining
integration in Euclidean space



WHEN A BRANCH GETS BROKEN: SINGULARITIES OF SINGLE CUT TREES

THE DUAL FOREST | CAUSALITY

o

threshold h

G. Rodrigo, Wien seminar
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» LTD is equivalent to integrate along the forward
on-shell hyperboloids (light-cones for massless)
or positive energy modes

> The dual integrand becomes singular when a
second propagator gets eventually on-shell

> The location of singularities is determined by a
linear identity in the on-shell energies

/1———+q(+)+q(+)+k — ()

where

(+)—\/q,,+m 10 k q] q;




WHEN A BRANCH GETS BROKEN: SINGULARITIES OF SINGLE CUT TREES

THE DUAL FOREST | CAUSALITY

$o
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threshold RN

y3 \:\
$z

S = 2a)" Gplgs 4) 8(g) + (i < )

> Time-like distance (causally connected): generates
physicalthreshold singularities: always +i0

> Space-like distance: there is a perfect cancellation of
singularities, due to the dual +i0 prescription

: (1) — +—\0 2 2

> Light-like distance: both singular configurations,
partial cancellation, IR singularities remain in a
compact region



WHEN A BRANCH GETS BROKEN: SINGULARITIES OF SINGLE CUT TREES

THE FEYNMAN'S FOREST | CAUSALITY

-——
PRGN

$o

threshold h
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FIT:  F0 = Q)™ Gulg) 8(g) + (i < j)

> Time-like distance (causally connected): physics
does not depend on the FTT or LTD representation

k. 2 _ (m. )2
lim F = O Ki) O = (m; & ;)7 + 0 <(/1ﬁ+)0)
A0 Y X;j (—/Il;fJr + 10) J

> Space-like distance: there is mismatch in the +i0
prescription

lim &\ ~ + +@<(/1-J-r)>
=0 Y = +0 0 AT +40 /

> needs to be compensated by the contribution from
multiple cuts



Buchta PhD2015
Buchta, et al. EPJC 77 (2017) 274

G. Rodrigo, Wien seminar

LTD SINGULAR STRUCTURE
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> non-causal singularities (forward-forward in blue): undergo dual cancellations among dual pairs

> causal singularities (forward-backward in orange): bounded to a compact region, which is of
the size of the hard scale, collapse to a finite segment for infrared singularities ( — FDU)

> Numerical integration in the Euclidean space of the loop three-momenta, CPU/GPU time do not
scale significantly with the number of legs



NUMERICAL INTEGRATION

Buchta PhD2015

Buchta, et al. EPJC 77 (2017) 274

Rank Tensor Hexagon Real Part Imaginary Part Time|s]
P20 1 SecDec —1.21585(12) x 10~1° 36
LTD —1.21552(354) x 1071 6
P21 3 SecDec 4.46117(37) x 107 5498
LTD 4.461369(3) x 107 11
P22 1 SecDec 1.01359(23) x 107%  +i 2.68657(26) x 10~ 33
LTD 1.01345(130) x 10715 +4 2.68633(130) x 10715 72
P23 2 SecDec 2.45315(24) x 107 —i 2.06087(20) x 10712 337
LTD 2.45273(727) x 10712 —i 2.06202(727) x 10712 75
P24 3 SecDec —2.07531(19) x 107 +1 6.97158(56) x 1077 14280
LTD —2.07526(8) x 107° +1 6.97192(8) x 1077 85

G. Rodrigo, Wien seminar

Table 5: Tensor hexagons involving numerators of rank one to three.

Propagator Real Part Imaginary Part
: 2.530(4) x 10~ | +i8.514(1) x 10~
{.p3 X L.p5 8.08(4) x 10~ 10 6.144(5) x 10~ 13

Table 1: Scalar and tensor decagon with all internal masses different.




SINGULARITIES OF SINGLE-CUT TREES AND THE FOREST
WHEN A BRANCHES GET BROKEN
energy of the on-shell

propagator smaller than the energy of

the emitted particles Space-like or
light-like at energy of the on-shell

propagator larger than the energy of the emitted

time-like or light-like

particle(s)
this other propagator eventually
on-shell
this propagator on-shell
» Threshold singularities occur when a » Virtual particle emitted and absorbed on-shell

second propagator gets on-shell: consistent

, » Potential threshold and IR singularities cancel
with Cutkosky

in the sum of single-cut trees: non-causal

» It becomes collinear (soft) when a single >

T _ Non-singular configurations at very large energies
massless particle is emitted

(UV) expected to be suppressed. If not
» Causally connected sufficiently suppressed, renormalise

G. Rodrigo, Wien seminar




AT TWO LOOPS

UNITARITY THRESHOLD / TRIPLE COLLINEAR

(+) (+) (+) _ —
9o T 90 * 9o — Kijko =0

&+ G. Rodrigo, Wien seminar
F2) &)




LOCAL UV RENORMALISATION

> Expand propagators and numerators around a UV propagator [Reuschle et al., similar to
Pittau’s FDR in the UV]

Grlquy) = > {42 | Lﬂj ' ki} — {/12%2;\74‘ (1 _/12)/4%\/ | /IC]UV . ki}

gy — Mgy +10

» and adjust subleading terms, c;y, to subtract only the pole (Z\TS scheme), or to define any
other renormalisation scheme. For the scalar two point function

> Integration on the UV on-shell hyperboloid: loop three-momentum unconstrained, but
loop contributions suppressed for loop energies larger than Uyvy

2
Icnt _ [ 1 1 + oy Huv
Uv — : :
¢ @iy — ugy +i0)? qiy — Py + 10
> dual representation needs to deal with multiple poles [Bierenbaum et al.]
T
£ g 2 :
? cnt __ 5(QUV) . 3 Cuv Huv q[(;{/)o = \/ q[zw + M%V — 10
o IUV _ 2 1 2 ’
= 4 o) (+) 4 (+) Hernandez-Pinto, Sborlini, GR, JHEP 1602, 044
S quv.,0 quv.,0
2
s
0



FINITE HELICITY AMPLITUDES

Driencourt, GR, Sborlini, Torres, 1911.11125
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LOCAL UV RENORMALIZATION

A

-0.0010 |- $1p=8
-0.0015 |-
-0.0020 |-

-0.0025 |-

|||||||||||||||||||||

H—yy |

Helicity: ++
.....................
100 120 140 160 180 200
m?
.......................

Helicity: +++
S13=12 S12==1/3, Sp3=-1/7 |
H — ggg

lllllllllllllllllllll

> UV finite helicity amplitudes, but unintegrated
amplitudes locally singular

(L) — (L) _ (L) L) [ —
AP =dV Ay Aiy| =0

> Subtract not only logarithmic UV singularities,
but also linear and quadratic

> Disentangle the UV from the IR behaviour in
scaleless integrals (e.g. self-energies)

vvvvvvvvvvvvvvvvvvvvv

Helicity: ++++
s=-5

Yy =y

t=—12




Driencourt, PhD thesis 2019
Driencourt-Mangin, Sborlini, GR, Torres, JHEP 1902,143
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LOCAL UV RENORMALISATION: MULTILOOP

{|£1|—>oo {|e1| fixed {|£1|—)oo

1£5| fixed €3] — o0 €3] — o0
> Multiple UV limit
- {ﬂzquV + (1 =22 pisy | /lij,UV Gruv T (1 — W) iy l2 1 2 gjuv * ki}

> Most subtle steep the adjustment of the subleading terms, d;v,, to be in agreement with e.g.
the MS scheme

3 3
<*Q[ B —of (ILI)JV —- 4 (21:1)JV>UV2 — dyv /414JV[ <GF(q1,UV)) (GF(CIZ,UV))
£\t

0.0

T T T T '_ T T T T T P n
4 . LTD ] . LTD
. ] P1
— Analytical 1 — Analytical
1.2r b -0.5}¢ i P12=>»— P12 == P12=>»—
: P2
oF Huy=Mul2 i
S ac -1.0F | P2 p2

H — yy at two-loops

[Analytic expressions from Aglietti, Bonciani,
Degrassi, Vicini, JHEP 0701 (2007) 021]

-2.0
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Sborlini, Driencourt-Mangin, Hernandez-Pinto, GR, JHEP 1608, 160

FOUR-DIMENSIONAL UNSUBTRATION (FDU) @ NLG

> The LTD representation of the renormalised loop cross-section: one single
integral in the loop three-momentum

faot = [ [ 2Re 1 3 MV G ) - MEGlao)
41
» A partition of the real phase-space
S Ril{p)nsr) = 1

> The real contribution mapped to the Born kinematics + loop three-momentum

/N+1 oy = /N /K Z Ti(a:) Ri({p}}) ML (P52

{r’tN+1—= (g ApPL}nN)



MAPPING COLLINEAR/SOFT DEGENERATE STATES

qdi—1

/

/

Py

~

0 (qi)

» Motivated by the factorisation properties of QCD: assuming ql.” on-shell, and close to
collinear with pl.”,we define the momentum mapping

Pt =q,

2
m m L n (Qz_pz)
D; :p_Q+ap7 7 ’
oot Y 2p5 - (¢ — i)
p;-“:(l—()zi)p?, p;c'u:pga k#%]

All the primed momenta (real process) on-shell and momentum conservation:
pl.” is the emitter, pj” the spectator needed to absorb momentum recoil

> Quasi-collinear configurations can also be conveniently mapped such that the
massless limit is smooth [Sborlini, Driencourt-Mangin, GR, JHEP 1610, 162]

G. Rodrigo, Wien seminar
v



DEGENERATE IR STATES MAPPED TOGETHER | UV SUPPRESSED

LTD / FDU IN THE LOOP THREE-MOMENTUM SPACE
g

P P
q3

p3 P3
A1

\pz

q2

“~~<._threshold

~

soft

|-
©
=
=
o)
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C
Q0
o
D
| -
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o
o
©)

» The bulk of the physics is in the “low”

energy region of the loop momentum
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Sborlini, Driencourt-Mangin, GR, JHEP 1610, 162

BENCHMARK APPLICATION: A* — gg(g)

0-6, T T T T T T T T T T T T T
o Analytical (DREG) _06 _
"l '« FDU/LTD :
_ 4 Huv=2 4 $12 -0.8t
éio.sk 3
| T
0.2f :L—, -1.0
| | 2
0.1 k Hyv=4/ S12 12 H- qa i — r
e -1.2+
0.0 0.2 0.4 0.6 0.8 |
oo : — Analytical (DREG)
— Analytical (DREG) -14
i ° FDU/LTD
"I« FDU/LTD /
I 0.4 0.6 0.8
_ t Huv=2 4/ $12 m
fio.sf
, * Excellent agreement with analytic DREG
0.2F
> Efficient numerical implementation
0.1 » Hov =1/ 12 12 $->qq A - .
*  Smooth massless limit
0.0 0.2 0.4 0.6 0.8



Driencourt, Sborlini, GR, EPJC 78 (2018) 231
SCALE HIERARCHIES WELL DEFINED IN EUCLIDEAN SPACE Plenter, GR, arXiv:2005.02119
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ASYMPTOTIC EXPANSIONS

» Expansion of dual propagators
1 (—4A;)"

G 2 () = —
D) = T A ok, 24 Qg Ky + Ty — 107 k™!

Q2=£,m A

> wrt Expansion by Regions [Smirnov, Beneke]: it does not
» mix UV with IR. Only the first terms might need local
renormalisation

q=L4—p M
> Expansion by dual regions
M?* > {m*p*} | p* > {m*,M*} | p* = (m+ M)*(1—8), B—0" :
Cn@i in the loop three-momentum
0.0005 -
I'io M? + p? p? + M? 2Mp cosh (, [—mE 20) i
A a2 a2 2 + M2 _ m2 -T |
712 G /e exp ( -53F - zO)
Q7 M? p? M p exp (—\/ —mL 20> 0.0003 -
Gp(4q1)
'y —M?— % p? + m? 2m p cosh (\/—% + 1,0) 0.0002 —
Aoy 2+ m?+ %g_ M2 2 +m?— M2 Ty full integrand
my/p? m MpB o001~ f | L emea- 1st order
mVr - 0 - —ME 4
7'21 " v T o - ) 0 2 I L 2nd order
2 —M? 2 mp ex —\/—M—FZO) I
@ i pop i 0.0000 1

M
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OPENING THE LOOPS IN SUCCESSION

LTD BEYOND ONE-LOOP

R. P. Feynman, Closed Loop And Tree Diagrams. (talk 1972),
In *Brown, L.M. (ed.): Selected papers of Richard Feynman* 867-887

FIGURE 7.
y’i\z) Q‘ @ Opening a double ring.

If there is more than one loop in the original diagram, the loops may be
opened in succession. Choose any one loop; that is, integration over any one

> After the first LTD round the position of the poles in the complex plane is momentum
dependent

(1) Use a general identity to transform into Feynman propagators the dual propagators
that enter the successive LTD rounds [Bierenbaum et al., 2010]

> First full two-loop calculation (H — yy) with local UV renormalization [Driencourt et al., 2019]

* Analytic proof of the dual cancellation of unphysical (hon-causal) singularities, causal and
anomalous thresholds as well as infrared in a compact region (— FDU) [Aguilera et al., 2019]

(2) Average over all possible momentum flows [Runkel et al., 2019]: cumbersome symmetry factors

(3) Keep track of the position of the poles and close the Cauchy contour either from
above or from below to cancel that dependence [Capatti et al., 2019]

»  Numerical test of dual cancellations



OPENING TO NON-DISJOINT TREES Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,
+ CAUSALITY GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

LTD TO ALL ORDERS AND POWERS

» Multi-loop scattering amplitude: 2 sets of momenta that depend on L loop
momenta or a linear combination

d\V(1,...,n) = [ N{ 3 Apy) Ge(1,..., n)
£ty

= H (GF(%‘))ai

ielu...Un

> The dual function involving two sets that depend on the same loop momentum:

momenta in the set f remain off-shell » Cauchy contour always from below the
real axis
Gp(s;t) = — 2mi Z Res <GF(S, 1), Im(ng; ) < O) * valid for arbitrary powers and Lorentz
= invariant [Catani et al. JHEP 0809, 065]

* reverse momenta, if necessary, to keep
a coherent momentum flow

» The nested residue involving several sets t—>1 (g~ —q;)

G. Rodrigo, Wien seminar

Gp(1,..srsn) = =2y Res (GD(l,..., r—1;r,m),Im(g,) < 0)

L. Er



Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,

LTD TO ALL ORDERS AND POWERS GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

MULTILOOP TOPOLOGIES  Z:acrimsree=

4, =titk, q,=—C1—0+k,

1 1 12 1 12

n n n
I MLT NMLT N2MLT
&
é Maximal Loop Next-to-maximal Next-to-next-to-maximal
(55 Topology Loop Topology Loop Topology
ke 1
S unique topology both topologies starting
¢ at two loops at three loops

12



OPENING TO NON-DISJOINT TREES Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,
+ CAUSALITY GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

MAXIMAL LOOP TOPOLOGY

1 1
1
‘ S
= D
|
n ! n

» extremely simple and symmetric LTD representation, proven by induction and
directly independent of the position of the poles in the complex plane

n

(L) _ (L) . 1 _ .

A (1,...,n) = [ Y AP, - LT+ L)
10 i=1

> causal singularities when on-shell momenta get aligned [Aguilera et al. JHEP 1912, 163]

dP1,...,n—1;n)| - dP12,...,n) | AV .. T DIl gen = EYA,2, ., 7)

n onshell

> non-causal singularities (unphysical) entangled among dual pairs, they cancel

Y23, . )+ P13, m2) - d9(1,2,3,..,1) - 41,23, ..., 7)

G. Rodrigo, Wien seminar

> What if we reorder the loop lines? Do we get a different representation?



OPENING TO NON-DISJOINT TREES
+ CAUSALITY

Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,
GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

NMLT AND N2MLI: CASCADE FACTORIZATION

e

3 1

(L)
d® (1.,

— o2
=4 MLT

(1)
+'QfMLT

n,12)

(L-2)
(1,2,12) ® A L2(3,...,n)

(1.2)® #9(12) ® oy G, ...,

> causal singularities determined by
subtopologies

G. Rodrigo, Wien seminar

)

T
1 12
@ ®
S
_ : |
23 1 A
v + ®
! 3 12
(L)
'QszMLT(l

— 43
=4 NMLT

(2)
+ 'Q{MLT

L 1,12.23)

(L-3)
(1,2,3,12,23) ® A\L=3(4,..., n)

(L=2)4 7]
(1U2323012) @ SE2@, ..., m)

> factorization conjectured to hold to all

potential topologies at higher orders with
simpler topologies as building blocks



OPENING TO NON-DISJOINT TREES Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,
+ CAUSALITY GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

MASTER OPENING OF SCATTERING AMPLITUDES

> At two loops any scattering amplitude is opened as MLT

12
> At three loops the master opening is N2MLT

N°MLT | —

N2MLT ’ = NMLT

> direct and efficient application to physical scattering processes

G. Rodrigo, Wien seminar
|
|



OPENING TO NON-DISJOINT TREES Aguilera, Driencourt, Hernandez, Plenter, Ramirez, Renteria,
+ CAUSALITY GR, Sborlini, Torres, Tracz, PRL124 (2020) 21, 211602

CAUSAL REPRESENTATION

> What if we reorder the loop lines? Do we get a different representation?

Y ."‘
.

> In fact no (math vs physics), e.g. scalar integral

L (L, L -y
— ? 1,
77, 1245 \ A A ’”‘

(L) _
dMLT(l,..., n) = J

> Independent of the initial momentum flow assignments

> Free of non-causal singularities: conjectured for all topologies and
internal configurations

G. Rodrigo, Wien seminar
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CONCLUSIONS

Theory is already the limiting factor in many L

Current techniques insufficient to match the expect
at future colliders (HL-LHC, FCC, HE-LHC, ILC/CLIC;
SPPC). New theoretical developments needed: numeric, semi-
numeric or analytic

Back to the physical four space-time dimensions and fully local

Loop-tree duality powerful formalism to reveal intriguing
properties of multi-loop scattering amplitudes: manifest causal
structure. Reformulated to all orders in terms of the original
Lorentz-invariant prescription.

Still few phenomenological applications, more to come



FROM SCATTERING AMPLITUDES TO CROSS SECTIONS

CANCELLATIDN OF IR SINGULARITIES & DREG

Cancellation of IR singularities at NLO is satisfactorily solved: efficient algorithms applicable

to any process for which matrix elements are known (Slicing [Giele, Glover, ...] vs Subtraction:
dipole [Catani, Seymour], FKS [Frixione, Kunszt, Signer], NS [Nagy, Soper] )

» At NNLO several working algorithms, successfully applied to specific processes with heavy
computational costs

VV » Antennae Subtraction [Gehrmann et al.]
» ColourfulNNLO Subtraction [Del Duca et al.]
» Geometric Subtraction [Herzog]

I
'''''''''''' » Leading Regions [Anastasiou, Sterman]
SRR » Nested Soft-Collinear Subtraction [Caola et al.]
RV » N-Jettiness [Boughezal, Petriello et al., Gaunt et al.]
. TR » Projection to Born [Bonciani et al.]
g J‘W«HW » gt Substraction [Catani, Grazzini et al.]
§ I:L&L;%;QEL;Q_‘LZ?;:;C'_'L'_‘L;LZZ;EL;-Z_‘LLL' ’ Stripper [Czakon et al']
= RR
% e New strategy at d=4
e, PRI -
i thY%x, » Four-dimensional Regularization (FDR) [Pittau et al ]

: » Four-dimensional Unsubtraction (FDU) [Sborlini et al.]



