Infrared Singularities and the Precision Frontier

Raoul Röntsch

University of Vienna 2 December 2019

Introduction

- Study behavior of particles in controlled environments: colliders.
- E.g. Large Hadron Collider.

Standard Model: an elegant and mathematically consistent description of particle behavior.

The LHC Thus Far

• The Expected: the Higgs boson.

• The Unexpected: no physics Beyond the SM.

- But we know SM is incomplete...

The LHC Thus Far

• The Expected: the Higgs boson.

Understand EWSB.

• The Unexpected: no physics Beyond the SM.

Discover or constrain BSM physics.

- But we know SM is incomplete...

The LHC Thus Far

• The Expected: the Higgs boson.

• The Unexpected: no physics Beyond the SM.

- But we know SM is incomplete...

PRECISION FRONTIER

• How precise do we need to be?

Suppose we have BSM physics at scale

 $\Lambda_{NP} \sim 1 - \text{ few TeV}$

- Difficult to produce directly at LHC, but have indirect impact.
- Simple scaling argument:

$$\frac{Q^2}{\Lambda_{\rm NP}^2} \sim \left(\frac{100 \text{ GeV}}{1 \text{ TeV}}\right)^2 \sim \text{few}\%$$

- Is this achievable experimentally?
 - > Yes!
 - "Except for rare decays, the overall uncertainties will be dominated by the theoretical systematics, with a precision close to percent level."

- Report on *Physics Potential of the HL-LHC,* submitted to CERN Council

Surviving At The Precision Frontier

- Is this achievable theoretically?
 - Factorization theorem:

$$d\sigma = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) d\hat{\sigma}_{ij}(\{p_i\}, \mu^2, x_1, x_2) \left(1 + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)\right)$$

- Potential showstopper: (uncontrolled) nonperturbative effects in hadron collision.
- > Nonperturbative effects appear at $\Lambda_{\rm QCD}/Q \sim (300~{\rm MeV})/(30~{\rm GeV}) \sim 1\%$
- So it is feasible theoretically...
- ... but challenging!

The LHC Precision Programme

Requires progress in every aspect of collider physics.

- image. S. Hoche
- Technical challenges: deep understanding of QFTs of SM:
 - Interesting on purely theoretical as well as phenomenological grounds.

The LHC Precision Programme

Requires progress in every aspect of collider physics.

Image: S. Höche

- Technical challenges: deep understanding of QFTs of SM:
 - Interesting on purely theoretical as well as phenomenological grounds.

Fixed-order calculations

- Expansion in strong coupling of QCD $\alpha_s \sim 0.1$ and in electroweak (EW) coupling $\alpha \sim 0.01$

- Two challenges:
 - Multiloop calculations;
 - Treating infrared (IR) singularities.

Fixed-order calculations

- Expansion in strong coupling of QCD $\alpha_s \sim 0.1$ and in electroweak (EW) coupling $\alpha \sim 0.01$

- Two challenges:
 - Multiloop calculations;
 - Treating infrared (IR) singularities.

Infrared Singularities

Virtual corrections

Real corrections

- Virtual and real corrections separately have IR divergences (soft and/or collinear radiation).
- Unphysical, will cancel when combining real and virtuals (Kinoshita-Lee-Nauenberg).
- Virtual corrections: divergences as explicit poles in amplitudes.
- Real corrections: divergences from integrating over phase space.
- **But:** then lose information on kinematic observables.
 - Needed for fully differential calculations.
- Need to extract singularities from real emissions without losing kinematical information on radiated parton.
 - Subtraction scheme.

Subraction Schemes

- Fully solved at NLO. [Catani, Seymour '96; Frixione, Kunszt, Signer '96]
- NNLO: greatly complicated by convoluted singularity structure ("overlapping" singularities).
- Several proposed solutions; successful phenomenological applications for 2-2 processes

"the NNLO revolution"

				NN	LO			
	 anter 	nna						$\gamma + jet$
	• qt						TT	$ep \rightarrow \text{jet}$
	N-jet	tiness					HI WW	$H(m_t \to \infty)$ HW HZ
			ved r.s.				ZH	$\gamma\gamma$
	o proje	ction to	Born			7.	ZZ	W + jet
	colorf	ul				$Z\gamma$	νν γ	2 + jet $ep \rightarrow 2 \text{ jets}$
				$\operatorname{diff} W$	Z		pp	$\rightarrow 2 \text{jets}$
			diff <i>I</i>	I	$\gamma\gamma$		Z -	⊢ jet
		diff	H H		WH	$-\sigma_{ m tot} t$	t $H - H - H - H - H - H - H - H - H - H$	+ Jet $(m_t \to \infty)$ et $(m_t \to \infty)$
	$\sigma_{ m tot}$ V	VH		$\sigma_{ m t}$	$_{ m ot}Hjj({ m VI})$	3F)	H + j	et $(m_t \rightarrow \infty)$
	$\sigma_{ m tot} H$		e^+e^- -	$\rightarrow 3 \text{jets}$			$t \overline{t}_{H}$	ii (VBF)
σ_1	tot W/Z		e ⁺ e ⁻ -	\rightarrow event sh	apes		e^+	$e^- \rightarrow 3 \text{jets}$
01	2003	2005	2007	2009	2011	2013	2015	2017

Slide from G. Heinrich

Subtraction Schemes at NNLO

None of the NNLO subtraction schemes are completely satisfactory:

- Fully local;
- Fully analytic;
- Applicable to any process at the LHC:
 - Initial state partons;
 - Final state parton

	Analytic	Local	FS Colour	IS Colour
Antenna	1	×	1	1
STRIPPER	×	1	1	1
CoLoRFul	~	1	1	×

Inspired by Nigel Glover, Amplitudes 2015

Subtraction Schemes at NNLO

None of the NNLO subtraction schemes are **completely satisfactory**:

- Fully local;
- Fully analytic;
- Applicable to any process at the LHC:
 - Initial state partons;
 - Final state parton

	Analytic	Local	FS Colour	IS Colour
Antenna	1	X	1	1
STRIPPER	×	1	1	1
CoLoRFul	~	1	1	×

Inspired by Nigel Glover, Amplitudes 2015

Can we construct a method that ticks all the boxes?

- Efficient subtractions for richer phenomenology in higher multiplicity processes.
- Theoretical clarity by identifying singular structures.
- Eventual automation of NNLO calculations.
- Connections with electroweak corrections, matching of NNLO to parton showers, ...

Taming Infrared Singularities

20 years in the making:

- 1. Singular limits needed for NNLO calculations.
- 2. Phase space partitioning.
- 3. Parametrization of radiative phase space.
- 4. Sector decomposition of phase space.
 - → STRIPPER

[Catani, Grazzini, de Florian, Campbell, Glover, Bern, Dixon, Dunbar, Kosower, Uwer, Del Duca, Frizzo, Maltoni, Kilgore, Schmidt,..., ~ Y2K]

[Frixione, Kunszt, Signer '96]

[Anastasiou, Melnikov, Petriello '03, '04]

[Czakon '10, '11]

- Problem: underlying physics obscured.
 - Energies and angles treated on same footing.
- How can we construct something with greater clarity?

Taming Infrared Singularities

Use the fact that soft and collinear limits commute!

Not true for propagators: have behavior $f(x, y) = \frac{x}{x+y}$ so limits do not commute.

Is true for physical (gauge invariant, onshell) QCD amplitudes.

- Colour coherence:
 - Used in resummation/PS, not manifest in subtraction schemes.
 - Soft gluon cannot resolve details of collinear splitting.
 - Only sensitive to overall colour charge.
- No overlap between soft and collinear limits
 can be treated independently.
- Energies and angles decouple.

Nested Soft-Collinear Subtractions

Using colour coherence leads to dramatic simplifications.

- Colour coherence + sector decomposition of the phase space:
 - → nested soft-collinear subtraction scheme.

Eur. Phys. J. C (2017) 77:248 DOI 10.1140/epjc/s10052-017-4774-0	The European Physical Journal C	CrossMark
Regular Article - Theoretical Physics		
Nested soft-collinear subtractions in	NNLO QCD computation	ons
Fabrizio Caola ^{1,2,a} , Kirill Melnikov ³ , Raoul Röntsch ³		
 ¹ CERN, Theoretical Physics Department, Geneva, Switzerland ² IPPP, Durham University, Durham, UK ³ Institute for Theoretical Particle Physics, KIT, Karlsruhe, Germany 		
Received: 12 February 2017 / Accepted: 19 March 2017 / Published onli © The Author(s) 2017. This article is an open access publication	ne: 18 April 2017	

Nested Soft-Collinear Subtractions

Using colour coherence leads to dramatic simplifications.

- Colour coherence + sector decomposition of the phase space:
 - → nested soft-collinear subtraction scheme.
 - Fully local.
 - Analytic.
 - Can handle initial state and final state partons.

Nested Soft-Collinear Subtractions

Using colour coherence leads to dramatic simplifications.

- Colour coherence + sector decomposition of the phase space:
 - → nested soft-collinear subtraction scheme.
 - Fully local.
 - Analytic.
 - Can handle initial state and final state partons.

- Minimal structure with clear physical origin of singularities.
- Final result remarkably simple.
- Handles massive partons.
- Natural alpha-parameters.
- Two kinds of collinear limit: small & large rapidity separations.
 - → resummation/parton showers?

<u>Aim</u>: formula for fully local, fully analytic subtraction of IR singularities in arbitrary production process.

- Highly non-trivial!
- Break it down according to origin of radiation:

<u>Aim</u>: formula for fully local, fully analytic subtraction of IR singularities in arbitrary production process.

- Highly non-trivial!
- Break it down according to origin of radiation:

• Complete control on each block, then put them together.

<u>Aim</u>: formula for fully local, fully analytic subtraction of IR singularities in arbitrary production process.

- Highly non-trivial!
- Break it down according to origin of radiation:

See also [Caola, Delto, Frellesvig, Melnikov '18]; [Delto, Melnikov '19] – double-soft and triple-collinear counterterms.

- These building blocks allow NNLO corrections to $pp \rightarrow V + j$ (V=any color singlet).
- Full generality (2 or more jets): colour-correlations.
- New structures in e.g. real-virtual limits:

$$f_{abc} \langle \mathcal{M}^{(0)}(\{p\}) | T_k^a T_i^b T_j^c | \mathcal{M}^{(0)}(\{p\}) \rangle$$

[Catani, Grazzini, '00]

• Colour-correlations in double-soft eikonal have a simpler structure: [Catani, Grazzini, '99]

$$\Rightarrow \frac{1}{2} \sum_{i,j,k,l} S_{ij}(q_1) S_{kl}(q_2) |\langle \mathcal{M}(\{p\}) | \{\vec{T}_i \cdot \vec{T}_j, \vec{T}_k \cdot \vec{T}_l\} |\mathcal{M}(\{p\}) \rangle|^2$$
$$- C_A \sum_{i,j} S_{ij}(q_1, q_2) |\langle \mathcal{M}(\{p\}) | \vec{T}_i \cdot \vec{T}_j | \mathcal{M}(\{p\}) \rangle|^2$$

Double-soft counterterms almost all known:

- arbitrarily many massless hard partons;

[Delto, Caola, Frellesvig, Melnikov '18]

- Back-to-back massive hard partons

[Behring, Bizon '19]

Don't expect any insurmountable obstacles from colour-correlated limits!

Towards collider phenomenology

Brief recap:

- Constructed the nested soft-collinear subtraction scheme using color coherence + sector decomposition of radiatve phase space.
- Identify building blocks to generalize to arbitrary production processes at LHC:
 - Initial-initial;
 - Final-final;
 - Initial-final.

Absolute control on each block:

• < per mille agreement with analytic results.

Excellent numerical performance so far:

- Initial-initial processes (Drell-Yan, Higgs production): per mille accuracy on NNLO cross section in ~ 1 CPU hour.
- By comparison: MATRIX takes ~ 20 CPU days

[Grazzini, Kallweit, Wiesemann, '18]

Towards collider phenomenology

Used these results for collider phenomenology:

- Mixed scalar-pseudoscalar Higgs to NNLO (initial-initial) [Jaquier, RR, '19]
- Mixed QCD-EW in Drell-Yan (abelianized initial-initial) [Delto, Jaquier, Melnikov, RR, '19]
- WH(→bb) to NNLO (initial-initial + final-final)
 [Caola, Luisoni, Melnikov, RR, '17]

Future plans:

- Initial-final: DIS \rightarrow VBF;
- Heavy flavor production;
- Excellent numerical performance \Rightarrow 2 \rightarrow 3 processes;
- N3LO using slicing or Projection-to-Born.

Fundamental property of the Higgs: parity.

Pseudoscalar state ruled out, but may be admixture of scalar and pseudoscalar.

Framework: Higgs Characterization model: [Artoisenet et al. '13]

• Effective Lagrangian for spin-0 particle coupling to gluons and (neutral) EW vector bosons.

$$\mathcal{L}_{\text{eff}} \supset \left\{ \begin{aligned} c_{\alpha} \kappa_{\text{SM}} \frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} &- \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \\ &- \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} \right] - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu} G^{\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu} \tilde{G}^{\mu\nu} \right] \\ &- \frac{1}{4} \frac{1}{4} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{4} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} \right] \right\} H.$$

Parity of Higgs controlled by $c_{\alpha} = \cos(\alpha); s_{\alpha} = \sin(\alpha)$

- Theory predictions:
 - Differential, include mixing but LO or NLO;
 - [Gao et al. '10; Artoisenet et al. '13; Maltoni, Mawatari, Zaro '14]
 - NNLO but inclusive and no mixing. [Harlander, Kilgore '02, Anastasiou, Melnikov '03]
- Amplitudes required for NNLO known.

[Ravindran, Smith, van Neerven '05; Ahmed *et al.* '15; Berger, Del Duca, Dixon '07; Badger, Glover '06; Glover, Mastrolia, Williams '08; Dixon, Glover, Khoze '04; Dixon, Sofianatos '09]

- Scalar-pseudoscalar interference at NNLO?
- Impact of NNLO corrections on distributions?

[Jacquier, R.R., '19]

 Inclusive results (undecayed Higgs) → No scalar-pseudoscalar interference in inclusive cross section at NNLO.

Pure scalar Pure pseudoscalar Equal admixture

	$\sigma^{\rm LO} \ [{\rm pb}]$	$\sigma^{\rm NLO} \ [{\rm pb}]$	$\sigma^{\rm NNLO} [\rm pb]$
$\cos(\alpha) = 1$	$15.13^{-14\%}_{+16\%}$	$34.81_{+20\%}^{-14\%}$	$43.85_{+9\%}^{-9\%}$
$\cos(\alpha) = 0$	$34.04_{+16\%}^{-14\%}$	$79.01^{-15\%}_{+20\%}$	99.46 $^{-9\%}_{+9\%}$
$\cos(\alpha) = \sqrt{1/2}$	$24.59^{-14\%}_{+16\%}$	$56.91^{-15\%}_{+20\%}$	$71.66^{-9\%}_{+9\%}$

Average of these two

• With decay $H \to ZZ^* \to e^- e^+ \mu^- \mu^+$ and cuts on leptons

	$\sigma^{\rm LO}$ [ab]	$\sigma^{\rm NLO}$ [ab]	$\sigma^{\rm NNLO}$ [ab]]
$\cos(\alpha) = 1$	$10.6^{-14\%}_{+15\%}$	$23.5^{-14\%}_{+19\%}$	$29.1_{+8\%}^{-8\%}$	
$\cos(\alpha) = 0$	$0.0151^{-14\%}_{+15\%}$	$0.0344_{+19\%}^{-14\%}$	$0.0428^{-8\%}_{+8\%}$	
$\cos(\alpha) = \sqrt{1/2}$	$8.61^{-14\%}_{+15\%}$	$19.2^{-14\%}_{+19\%}$	$23.7^{-8\%}_{+8\%}$	NOT average
$\cos(\alpha) = 0.6$	$9.95^{-14\%}_{+15\%}$	$22.4^{-14\%}_{+19\%}$	$27.7^{+8\%}_{-8\%}$	of these two

- Pseudoscalar decays are suppressed.
- Scalar-pseudoscalar interference between production and decay.
- Scale uncertainties & NNLO corrections largely independent of scalar-pseudoscalar mixing.

Angular distribution sensitive to the parity of the Higgs:

$$\Phi = \frac{\vec{q_1} \cdot (\hat{n}_1 \times \hat{n}_2)}{|\vec{q_1} \cdot (\hat{n}_1 \times \hat{n}_2)|} \times \arccos\left(-\hat{n}_1 \cdot \hat{n}_2\right)$$

 $\vec{q_1}$: Three-momentum of Z_1 in Higgs rest frame.

 $\vec{q}_{i1(2)}$: Three-momentum of lepton(antilepton) from decay of Z₁ in Higgs rest frame.

$$\hat{n}_i = \frac{\vec{q}_{i1} \times \vec{q}_{i2}}{|\vec{q}_{i1} \times \vec{q}_{i2}|}$$

[Gao et al. '10]

- NLO corrections have mild dependence on observable (due to cuts).
- NNLO corrections flat.
- Corrections largely independent of scalar-pseudoscalar mixing.

Mixed QCD-EW corrections in DY

- Since $\alpha \sim \alpha_s^2 \sim 0.01$, usually NNLO QCD and NLO EW is sufficient for percent precision.
- Need mixed QCD-EW corrections for:
 - Ultra-high precision observables;
 - High energy processes.
 [Alioli *et al.*, '16]
 - E.g. W-mass measurements: target accuracy is 10 MeV; QCD-EW corrections lead to shifts ~ 10 MeV

[Dittmaier, Huss, Schwinn '15; Carloni Calame et al., '17]

• Challenges:

Simultaneous treatment of IR QCD and QED divergences.

Massive two-loop amplitudes

Pole approximation: Systematic means of factorizing corrections in production and decay in resonance region. [Dittmaier, Huss, Schwinn, '14]

- Goal: Assess impact of QCD-EW correction on distributions in charged-current (CC) and neutral-current (NC) DY production near resonance.
 - ✓ Mixed factorizable QCD-QED corrections to NC DY.

Prod. x Decay ~ NLO x NLO.

Prod. x Prod: Abelianize NNLO QCD corrections Inclusive: [De Florian, Der, Fabre, '18] Differential: [Delto, Jaquier, Melnikov, RR, '19]

> Mixed factorizable **QCD-EW** corrections to **NC** DY (work in progress).

- Only need QCD-EW amplitudes, cf. [Kilgore, Sturm '11; Bonciani et al. '17, Ajjath et al. '19]
- > Mixed factorizable **QCD-EW** correction to **CC** DY (work in progress).
 - Charged-current corrections.

Fiducial results*

$$\begin{aligned} \Delta_{\alpha_s^2} &= -(1.2 \cdot 10^{-2}) ,\\ \Delta_{\alpha} &= (3.0 \cdot 10^{-3})_P - (7.2 \cdot 10^{-3})_D - (1.6 \cdot 10^{-3})_W ,\\ \Delta_{\alpha_s \alpha} &= -(1.5 \cdot 10^{-4})_{P \otimes P} - (4.9 \cdot 10^{-3})_{P \otimes D} - (0.3 \cdot 10^{-3})_{P \otimes W} \end{aligned}$$

- NLO EW and QCD-EW corrections smaller than NNLO QCD corrections.
- QCD-EW Prod. x Decay relatively large compared to NLO EW selection criteria affected by QCD radiation.
- Prod. x Prod corrections < per mille
 - Large cancellation among partonic channels.
- Photon-induced contributions ~ 15% of Prod. x Prod.

*Lepton definition following [Alioli *et al.* '16]: combine photon and lepton if

$$R_{\ell^{\pm}\gamma} = \sqrt{(y_{\ell^{\pm}} - y_{\gamma})^2 + (\varphi_{\ell^{\pm}} - \varphi_{\gamma})^2} < 0.1$$

$$\begin{array}{ll} p_{\perp,\ell_1} > 24 \ {\rm GeV} \ , \quad p_{\perp,\ell_2} > 16 \ {\rm GeV} \ , \quad |y_{\ell_i}| < 2.4 \\ 50 \ {\rm GeV} < m_{\ell \overline{\ell}} < 120 \ {\rm GeV} \end{array}$$

36

Associated Production $WH(\rightarrow b\overline{b})$

- Associated production ("*Higgsstrahlung*") has 3rd and 4th highest production cross section.
- Direct access to VVH couplings.

- $H \rightarrow b\overline{b}$ gives direct access to Yukawa coupling of *b*-quark.
- Most common decay mode but difficult to measure (large QCD background).
- Can be measured in boosted Higgs kinematics both bquarks inside fat jet.

[Butterworth, Davison, Rubin, Salam '08]

Requires Higgs production with associated jet or EW vector boson.

Quite complicated final state (boost, jet properties, etc)

need **reliable** theoretical predictions for signal and background.

Associated Production $WH(\rightarrow b\overline{b})$

• NNLO corrections in narrow-width approximation [Caola, Luisoni, Melnikov, R.R. '17]

• Confirmed results of [Ferrera, Somogyi, Tramontano '17] (see also [cf. Astill, Bizon, Re, Zanderighi '18])

Associated Production $WH(\rightarrow b\overline{b})$

- Parton showers* capture NNLO effects to ~10%.
- Discrepancy:
 - Higher logs captured by parton showers.
 - Hard effects captured by fixed order.
 - Different jet algorithms:
 - NNLO: flavor-kT only option with massless *b*-quarks.
 - PS: anti-kT and MC truth similar to experiments.

*HWJ generator from POWHEG-Box with MiNLO; $H \rightarrow b\overline{b}$ through PYTHIA.

[Luisoni, Nason, Oleari, Tramontano '13]; [Nason '04]; [Frixione, Nason, Oleari '07]; [Alioli, Nason, Oleari, Re '10]; [Hamilton, Nason, Zanderighi '12]; [Hamilton, Nason, Oleari, Zanderighi '13] [Sjostrand, Mrenna, Skands '08]

Associated Production $WH(\rightarrow b\overline{b})$

- Results insensitive to jet algorithm.
- Sensitive to jet radius.

[cf. Astill, Bizon, Re, Zanderighi '18]

- Want NNLO calculation with jets as done in experiments.
- Using conventional jet algorithms will require calculation with massive b-quarks (work in progress).
- Recent $H \rightarrow b\overline{b}$ with massive b-quarks in NSCS scheme [Behring, Bizon '19]
 - Resolved a theoretical issue relating to the interference with $H \rightarrow gg$ decay.

Looking to the future

- Mixed QCD-EW corrections to DY.
- $WH(\rightarrow b\overline{b})$ with bottom quark masses.
- VBF @ NNLO.
- Mass effects in heavy flavour (bottom & charm quark) production:
 - EW boson + heavy flavour quark(s).
- $2 \rightarrow 3$ production at NNLO (once two-loop amplitudes available):
 - Trijet production (strong coupling, jet substructure);
 - *H*+2*j* production (disentangle GF and VBF production modes);
 - $V+b\overline{b}$ production (background to associated production, understanding of heavy flavor production);
 - *t*t̄*H* production (direct measurement of top Yukawa).
 - ...
- N3LO:
 - DY;
 - Higgs;
 - VBF.
 - ...
- Match to PS?
- ...

CONCLUSION

- Demands of high precision programme require the utmost in theoretical advances.
- Despite successes of IR subtraction schemes, ultimate scheme yet to be developed.
- Proposed nested soft-collinear subtraction scheme:
 - Fully local, fully analytic, remarkably straightforward.
 - Building block for subtraction for arbitrary processes.
 - Huge phenomenological potential enable precision to maximize discovery potential of the LHC.

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

NESTED SOFT-COLLINEAR SUBTRACTION

FKS subtraction at NLO: Notation

Consider real corrections to color singlet production

 $q(p_1)\bar{q}(p_2) \to V + g(p_4):$

F

$$d\sigma^{R} = \frac{1}{2s} \int [dg_{4}] F_{LM}(1, 2, 4) \equiv \langle F_{LM}(1, 2, 4) \rangle.$$

$$L_{M}(1, 2, 4) = dLips_{V} |\mathcal{M}(1, 2, 4, V)|^{2} \mathcal{F}_{kin}(1, 2, 4, V)$$

$$Lorentz-inv.$$
Phase space for Matrix- element sq.
$$Matrix-$$
element sq.
$$IR-safe$$
observable
$$IR-safe$$

$$IR-safe$$
observable
$$IR-safe$$

Define **soft** and **collinear** operators:

$$S_i A = \lim_{E_i \to 0} A \qquad C_{ij} A = \lim_{\rho_{ij} \to 0} A \qquad \rho_{ij} = 1 - \cos \theta_{ij}$$

FKS subtraction at NLO: Subtraction

Remove singular limits and add back as subtraction terms:

 $\langle F_{LM}(1,2,4) \rangle = \langle (I - C_{41} - C_{42})(I - S_4)F_{LM}(1,2,4) \rangle + \\ \langle S_4 F_{LM}(1,2,4) \rangle + \\ \langle (C_{41} + C_{42})(I - S_4)F_{LM}(1,2,4) \rangle$

- First term: finite, can be integrated numerically in 4-dimensions.
- Second term: soft subtraction term gluon decouples completely (need upper bound: E_{max}).
- Third term: collinear and soft+collinear subtraction terms gluon decouples partially or completely.
- Singularities made explicit by integrating subtraction terms over phase space of unresolved gluon.

FKS subtraction at NLO: finite result

- Combining with virtual corrections and pdf renormalization \rightarrow cancel poles.
- Take $\epsilon \rightarrow 0$ limit to get finite remainder NLO correction:

$$2s \cdot d\hat{\sigma}^{\text{NLO}} = \left\langle F_{LV}^{\text{fin}}(1,2) + \frac{\alpha_s(\mu)}{2\pi} \left[\frac{2}{3} \pi^2 C_F - 2\gamma_q \log\left(\frac{\mu^2}{s}\right) \right] F_{LM}(1,2) \right\rangle$$
$$- \frac{\alpha_s(\mu)}{2\pi} \int_0^1 dz \left[\hat{P}_{qq,R}^{(0)}(z) \ln\left(\frac{\mu^2}{s}\right) + \mathcal{P}_{qq}'(z) \right] \left\langle \frac{F_{LM}(z \cdot 1,2)}{z} + \frac{F_{LM}(1,z \cdot 2)}{z} \right\rangle$$
$$+ \left\langle \hat{O}_{\text{NLO}} F_{LM}(1,2,4) \right\rangle.$$

$$\begin{split} \hat{O}_{\rm NLO} &= (I - C_{41} - C_{42})(I - S_4) \\ \hat{P}_{qq,R}^{(0)} &= C_F \left(2D_0(z) - (1 + z) \right) \\ \mathcal{P}_{qq}'(z) &= -C_F \left[-4D_1(z) - (1 - z) + 2(1 + z)\log(1 - z) \right] \\ \gamma_q &= 3/2C_F \end{split}$$
(AP splitting function without delta function)

FKS subtraction at NLO: finite result

- Combining with virtual corrections and pdf renormalization \rightarrow cancel poles.
- Take $\epsilon \rightarrow 0$ limit to get finite remainder NLO correction:

$$2s \cdot d\hat{\sigma}^{\text{NLO}} = \left\langle F_{LV}^{\text{fin}}(1,2) + \frac{\alpha_s(\mu)}{2\pi} \left[\frac{2}{3} \pi^2 C_F - 2\gamma_q \log\left(\frac{\mu^2}{s}\right) \right] F_{LM}(1,2) \right\rangle$$
$$- \frac{\alpha_s(\mu)}{2\pi} \int_0^1 dz \left[\hat{P}_{qq,R}^{(0)}(z) \ln\left(\frac{\mu^2}{s}\right) + \mathcal{P}_{qq}'(z) \right] \left\langle \frac{F_{LM}(z \cdot 1,2)}{z} + \frac{F_{LM}(1,z \cdot 2)}{z} \right\rangle$$
$$+ \left\langle \hat{O}_{\text{NLO}} F_{LM}(1,2,4) \right\rangle.$$

Sum of:

- LO-like terms, with or without convolutions with splitting functions.
- Real emission term, with singular configurations removed by iterated subtraction.
- Finite remainder of virtual corrections.

Real-real subtractions at NNLO

Aim to replicate NLO results as much as possible at NNLO. Consider real-real correction to color singlet production

$$q(p_1)\bar{q}(p_2) \to V + g(p_4) + g(p_5) :$$
$$d\sigma^{RR} = \frac{1}{2s} \int [dg_4] [dg_5] F_{LM}(1, 2, 4, 5)$$

IR singularities from

- g_4 and/or $g_5 \rightarrow$ soft.
- g_4 or $g_5 \rightarrow$ collinear to initial state partons.
- g_4 or $g_5 \rightarrow$ collinear to each other.
- g_4 and g_5 collinear to same initial state parton (triple collinear limit).

Color coherence

- On-shell, gauge-invariant QCD scattering amplitudes : color coherence.
- Used in resummation & parton showers; not manifest in subtractions.
- Soft gluon cannot resolve details of collinear splittings; only sensitive to total color charge.

No overlap between soft and collinear limits -- can be treated independently:

- Regularize soft singularities first, then collinear singularities.
- Energies and angles decouple.

Treatment of real-real singularities

- Step 1: Limit operators.
 - Recall $S_i A = \lim_{E_i \to 0} A$ $C_{ij} A = \lim_{\rho_{ij} \to 0} A$. $(\rho_{ij} = 1 \cos \theta_{ij})$
 - NNLO-like:

$$\mathcal{S}A = \lim_{E_4, E_5 \to 0} A, \text{ at fixed } E_5/E_4,$$
$$\mathcal{C}_i A = \lim_{\rho_{4i}, \rho_{5i} \to 0} A, \text{ with non vanishing } \rho_{4i}/\rho_{5i}, \rho_{45}/\rho_{4i}, \rho_{45}/\rho_{5i}.$$

- Step 2: Order gluon energies $E_4 > E_5$. $2 \text{ s} \cdot \mathrm{d}\sigma^{\mathrm{RR}} = \int [\mathrm{d}g_4] [\mathrm{d}g_5] \theta(E_4 - E_5) F_{LM}(1, 2, 4) \equiv \langle F_{LM}(1, 2, 4, 5) \rangle.$
 - Gluon energies bounded by $E_{\rm max}$.
 - Energies defined in CoM frame.
 - Soft singularities: either double soft or g_5 soft.

Soft singularities

• **Step 3:** Regulate the *soft* singularities:

 $\langle F_{LM}(1,2,4,5) \rangle = \langle \mathscr{S}F_{LM}(1,2,4,5) \rangle + \langle S_5(I - \mathscr{S})F_{LM}(1,2,4,5) \rangle + \langle (I - S_5)(I - \mathscr{S})F_{LM}(1,2,4,5) \rangle.$

- First term: both g_4 and g_5 soft.
- Second term: g_5 soft, soft singularities in g_4 are regulated.
- Third term: regulated against all soft singularities,
- All three terms contain (potentially overlapping) collinear singularities.

Phase-space partitioning

Step 4: Introduce phase-space partitions

$$1 = w^{14,15} + w^{24,25} + w^{14,25} + w^{15,24}$$

with

$$C_{42}w^{14,25} = C_{51}w^{14,25} = C_{45}w^{14,25} = 0$$

$$C_{41}w^{15,24} = C_{52}w^{15,24} = C_{45}w^{15,24} = 0$$

$$W^{14,25} \text{ contains } C_{41}, C_{52}$$

$$w^{15,24} \text{ contains } C_{42}, C_{51}$$

$$Double \text{ collinear partition}$$

Phase-space partitioning

• Double collinear partition – large rapidity difference.

• Triple collinear partition – large/small rapidity difference.

Overlapping singularities remain – need one last step to separate these.

Sector Decomposition

- Step 5: Sector decomposition:
- Define angular ordering to separate singularities.

$$1 = \theta \left(\eta_{51} < \frac{\eta_{41}}{2} \right) + \theta \left(\frac{\eta_{41}}{2} < \eta_{51} < \eta_{41} \right) + \theta \left(\eta_{41} < \frac{\eta_{51}}{2} \right) + \theta \left(\frac{\eta_{51}}{2} < \eta_{41} < \eta_{51} \right) \equiv \theta^{(a)} + \theta^{(b)} + \theta^{(c)} + \theta^{(d)}.$$

Thus the limits are

 $\eta_{ij} = \rho_{ij}/2$

- Sectors *a*,*c* and *b*,*d* same to $4 \leftrightarrow 5$, but recall <u>energy ordering</u>.
- Angular phase space parametrization [Czakon '10].

Removing collinear singularities

Then we can write soft-regulated term as

$$\langle (I - S_5)(I - \mathscr{S})F_{LM}(1, 2, 4, 5) \rangle = \langle F_{LM}^{s_r c_s}(1, 2, 4, 5) \rangle + \langle F_{LM}^{s_r c_t}(1, 2, 4, 5) \rangle + \langle F_{LM}^{s_r c_r}(1, 2, 4, 5) \rangle,$$

$\langle F_{LM}^{s_rc_r}(1,2,4,5)\rangle$

- All singularities removed through nested subtractions evaluated in 4dimensions.
- Only term involving fully-resolved real-real matrix element.

$\left\langle F_{LM}^{s_rc_{s,t}}(1,2,4,5)\right\rangle$

- Contain (soft-regulated) single and triple collinear singularities.
- Matrix elements of lower multiplicity.
- Partitioning factors and sectors: one collinear singularity in each term.

Treating singular limits

We have four singular subtraction terms:

 $\langle \mathcal{S}F_{LM}(1,2,4,5) \rangle \quad \langle S_5(I-\mathcal{S})F_{LM}(1,2,4,5) \rangle \quad \langle F_{LM}^{s_r c_s}(1,2,4,5) \rangle \quad \langle F_{LM}^{s_r c_t}(1,2,4,5) \rangle$

We know how to treat them:

- Gluon(s) decouple partially or completely.
- Decouple completely:
 - Integrate over gluonic angles and energy.
- Decouple partially:
 - Integrate over gluonic angles.
 - Integral(s) over energy \rightarrow integrals over splitting function in *z*.
- Analytic results for nontrivial integrals from double-soft and triple-collinear limits calculated in [Caola, Delto, Frellesvig, Melnikov '18; Delto, Melnikov '19].
- Significant analytic simplifications on recombining sectors after integration.

Treating singular limits

After integration: subtraction terms written as lower multiplicity terms:

• LO-like:

 $\langle F_{LM}(z \cdot 1, \overline{z} \cdot 2) \rangle, \langle F_{LM}(z \cdot 1, 2) \rangle, \langle F_{LM}(1, z \cdot 2) \rangle, \langle F_{LM}(1, 2) \rangle$

(no final state partons).

• NLO-real-like (regulated by iterative subtraction):

 $\langle \mathcal{O}_{NLO}F_{LM}(z \cdot 1, 2, 4) \rangle$, $\langle \mathcal{O}_{NLO}F_{LM}(1, z \cdot 2, 4) \rangle$, $\langle \mathcal{O}_{NLO}F_{LM}(1, 2, 4) \rangle$ (maximum one final state parton).

convoluted with splitting functions with explicit singularities.

• Pole cancellation within each structure.

Finite remainders

- Relatively compact expressions for finite remainders for each lower-multiplicity structure.
- Familiar structures appear, e.g.

$$d\sigma_{z1,2,4} = \frac{\alpha_s(\mu^2)}{2\pi} \int_0^1 dz \left\{ \hat{P}_{qq,R}^{(0)}(z) \left\langle \log \frac{\rho_{41}}{4} \mathcal{O}_{\rm NLO} \left[\tilde{w}_{5||1}^{41,51} \frac{F_{\rm LM}(z \cdot 1, 2, 4)}{z} \right] \right\rangle \right\}$$
$$+ \left[\frac{\mathcal{P}_{qq}'(z) - \hat{P}_{qq,R}^{(0)}(z) \log\left(\frac{\mu^2}{s}\right)}{z} \right] \mathcal{O}_{\rm NLO} \frac{F_{\rm LM}(z \cdot 1, 2, 4)}{z} \right\}$$

$$d\sigma_{z1,\bar{z}2} = \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^2 \int_0^1 dz d\bar{z} \left[\mathcal{P}'_{qq}(z) - \log\left(\frac{\mu^2}{s}\right) \hat{P}^{(0)}_{qq,R}(z)\right]$$
$$\times \left[\mathcal{P}'_{qq}(\bar{z}) - \log\left(\frac{\mu^2}{s}\right)) \hat{P}^{(0)}_{qq,R}(z)\right] \frac{F_{LM}(z \cdot 1, \bar{z} \cdot 2)}{z\bar{z}}$$

• Same functions that appeared at NLO (as expected...)

Finite remainders

- New functions are relatively simple...
- Extension of NLO calculation to NNLO:
 - LO and NLO results convoluted with known functions.
 - Nested subtraction for real-real contribution.

 $d\hat{\sigma}_{F_{LM}(z,1,2)}^{NNLO}(\mu^2 = s) =$ $\left[\frac{\alpha_s(\mu)}{2\pi}\right]^2 \int dz \left\{ C_F^2 \left[8\tilde{\mathcal{D}}_3(z) + 4\tilde{\mathcal{D}}_1(z)(1+\ln 2) + 4\tilde{\mathcal{D}}_0(z) \left[\frac{\pi^2}{3}\ln 2 + 4\zeta_3\right] \right] \right\}$ $+\frac{5z-7}{2}+\frac{5-11z}{2}\ln z+(1-3z)\ln 2\ln z+\ln(1-z)\left[\frac{3}{2}z-(5+11z)\ln z\right]$ $+2(1-3z)\text{Li}_2(1-z)$ $+ \left(1-z\right) \Big[\frac{4}{3} \pi^2 + \frac{7}{2} \ln^2 2 - 2 \ln^2 (1-z) + \ln 2 \big[4 \ln (1-z) - 6 \big] + \ln^2 z$ $+ \text{Li}_{2}(1-z) + (1+z) \left[-\frac{\pi^{2}}{3} \ln z - \frac{7}{4} \ln^{2} 2 \ln z - 2 \ln 2 \ln (1-z) \ln z \right]$ $+4 \ln^2(1-z) \ln z - \frac{\ln^3 z}{3} + [4 \ln(1-z) - 2 \ln 2] \text{Li}_2(1-z)$ + $\left[\frac{1+z^2}{1-z}\right] \ln(1-z) \left[3 \text{Li}_2(1-z) - 2 \ln^2 z\right] - \frac{5-3z^2}{1-z} \text{Li}_3(1-z)$ $+\frac{\ln z}{(1-z)}\left[12\ln(1-z)-\frac{3-5z^2}{2}\ln^2(1-z)-\frac{7+z^2}{2}\ln 2\ln z\right]$ + $C_A C_F \left[-\frac{22}{3} \tilde{D}_2(z) + \left(\frac{134}{9} - \frac{2}{3} \pi^2 \right) \tilde{D}_1(z) + \left[-\frac{802}{27} + \frac{11}{18} \pi^2 \right] \right]$ $+(2\pi^2-1)\frac{\ln 2}{3}+11\ln^2 2+16\zeta_3\Big]\hat{D}_0(z)+\frac{37-28z}{9}+\frac{1-4z}{3}\ln 2$ $-\left(\frac{61}{9} + \frac{161}{18}z\right)\ln(1-z) + (1+z)\ln(1-z)\left[\frac{\pi^2}{3} - \frac{22}{3}\ln 2\right]$ $-(1-z)\left[\frac{\pi^2}{6} + \text{Li}_2(1-z)\right] - \frac{2+11z^2}{3(1-z)} \ln 2\ln z - \frac{1+z^2}{1-z} \text{Li}_2(1-z) \times$ × $[2 \ln 2 + 3 \ln(1-z)]$ + $R_{+}^{(\epsilon)} \mathcal{D}_{0}(z) + R^{(\epsilon)}(z) \left\{ \left\langle \frac{F_{LM}(z \cdot 1, 2)}{z} \right\rangle \right\}$.

Validation of Results

[Anastasiou, Melnikov '04]

[Hamberg, Matsuura, van Neerven '89]

- Exhaustively tested against analytic results for
 - ✓ Drell-Yan production
 - Higgs production
 - Good control in extreme kinematic regions.

[Caola, Melnikov, R.R. '17]

 < per mille agreement for all NNLO contributions, including numerically tiny ones.

		/	
Channel	Color structures	Numerical result (n)	Analytic result (nb)
$q_i \bar{q}_i o gg$	—	8.351(1)	8.3516
$q_i \bar{q}_i \to q_j \bar{q}_j$	$C_F T_R n_{\rm up}, \ C_F T_R n_{\rm dn}$	-2.1378(5)	-2.1382
9645 (325) 953 9 533868	$C_F(C_A - 2C_F)$	$-4.8048(3) \cdot 10^{-2}$	$-4.8048 \cdot 10^{-2}$
	$C_F T_R$	$5.441(7) \cdot 10^{-2}$	$5.438 \cdot 10^{-2}$
$q_i q_j \to q_i q_j \ (i \neq -j)$	$C_F T_R$	0.4182(5)	0.4180
	$C_F(C_A - 2C_F)$	$-9.26(1)\cdot 10^{-4}$	$-9.26\cdot10^{-4}$
$q_ig + gq_i$		-9.002(9)	-8.999
gg	-	1.0772(1)	1.0773

Table 1: Different contributions to the NNLO *coefficient* for on-shell Z production at the 13 TeV LHC with $\mu_R = \mu_F = 2m_Z$. All the color factors are included in the numerical results. The residual Monte-Carlo integration error is shown in brackets. See text for details.

[Caola, Melnikov, R.R. '19]

Validation of Results

Implies absolute control on physical results.

• Higgs production cross sections: per mille accuracy in ~ 1 CPU hr.

LHC. For this study, we set $\mu_R = \mu_F = m_H$. Running for less than an hour on a single core of a standard laptop, we obtain

 $\sigma_{\rm H}^{\rm LO} = 17.03(0) \text{ pb}; \qquad \sigma_{\rm H}^{\rm NLO} = 30.25(1) \text{ pb}; \qquad \sigma_{\rm H}^{\rm NNLO} = 39.96(2) \text{ pb}.$ (5.1)

• Drell-Yan production with symmetric cuts on final state leptons: 2 per mille accuracy in ~1 CPU hr.

In this case, we use $\mu_R = \mu_F = m_Z$. Running on a single core of a standard laptop for about an hour, we obtain

$$\sigma_{\rm DY}^{\rm LO} = 650.4 \pm 0.1 \text{ pb}; \qquad \sigma_{\rm DY}^{\rm NLO} = 700.2 \pm 0.3 \text{ pb}; \qquad \sigma_{\rm DY}^{\rm NNLO} = 734.8 \pm 1.4 \text{ pb}.$$
 (5.3)

By comparison

Process (\${process_id})	LO runtime (relative uncertainty)	NLO runtime (relative uncertainty)	NNLO runtime (relative uncertainty)	NNLO runtime estimate for 10^{-3} uncertainty
$pp \rightarrow H$	0d 0h 2min	0d 0h 12min	35 d 23 h 23 min	19 d
(pph21)	(1.5×10^{-4})	(2.7×10^{-4})	(7.2×10^{-4})	
$pp \rightarrow e^- e^+$	0d 0h 48 min	0d 2h 24 min	173 d 20 h 36 min	22 d
(ppeex02)	(1.0×10^{-4})	(2.8×10^{-4})	(3.6×10^{-4})	

[Grazzini, Kallweit, Wiesemann, 2018]

SCALAR-PSEUDOSCALAR HIGGS

Renormalization of operator

• Two (bare) effective operators on integrating top loop out:

$$\mathcal{O}_{1}^{B} = G_{a}^{\mu\nu} \tilde{G}_{a,\mu\nu} = \epsilon_{\mu\nu\rho\sigma} G_{a}^{\mu\nu} G_{a}^{\rho\sigma} , \qquad \mathcal{O}_{2}^{B} = \partial_{\mu} \left(\bar{\psi} \gamma^{\mu} \gamma_{5} \psi \right) ,$$
NNLO only

• Mix under renormalization:

 $\mathcal{O}_i^R = \sum_{j=1}^2 Z_{ij} \mathcal{O}_j^B; \qquad Z_{21} = 0$

- No higher corrections to axial anomaly: $\mathcal{O}_2^R = \frac{\alpha_s}{\pi} \frac{n_f}{8} \mathcal{O}_1^R$
- Massless light quarks, only have contribution from $\mathcal{O}_1^B \mathcal{O}_2^B$ \longrightarrow absorbed into \mathcal{O}_2^R

More distributions

Mixed QCD-EW corrections

Prod. x Prod ~ Prod. x Decay here

- Large NNLO QCD corrections (~NLO on Z+jet)
- Prod. x Prod ~ per mille
- Prod. x Decay ~ percent

Prod. x Decay ~ per

mille

- Shape due to interplay of photon radiation from leptons, cuts and boost from QCD ISR

 $2.0\cdot 10^5$

 $\sigma_{\rm LO} + \sigma_{\rm NLO}^{(\alpha_s)}$

66

$WH(\rightarrow b\overline{b})$

A Brief History of VH calculations

- NLO QCD + EW: [Han, Willenbrock '90]; [Baer, Bailey, Owens '93]; [Ohnemus, Stirling '93]; [Mrenna, Yuan '98]; [Spira '98]; [Djouadi, Spira '00]; [Ciccolini, Dittmaier, Kramer '03]; [Denner, Dittmaier, Kallweit, Muck '12].
- NLO QCD + EW + PS: [Frixione, Webber '05]; [Hamilton, Richardson, Tully '09]; [Granata, Lindert, Oleari, Pozzorini '17]; [Luisoni, Nason, Oleari, Tramontano '13].
- NNLO cross section: [Brein, Djouadi, Harlander '04] (after [Hamberg, v. Neerven, Vermaseren '91]); [Harlander, Kilgore '02]); [Brien, Harlander, Wiesemann, Zirke '12]; [VH@NNLO '13.]
- NNLO differential: [Ferrera, Grazzini, Tramontano '11].
- NNLO + PS: [Astill, Bizon, Re, Zanderighi '16].

A Brief History of $VH(\rightarrow bb)$ calculations

- NNLO differential + H → bb (NLO, massless b-quarks): [Ferrera, Grazzini, Tramontano '14].
- NNLO differential + H → bb (NLO, massive b-quarks): [Campbell, Ellis, Williams '16].
- NNLO + PS: [Astill, Bizon, Re, Zanderighi '18].
- H → bb (NNLO, massless b-quarks): [Del Duca, Duhr, Somogyi, Tramontano, Trócsányi '15].
- NNLO differential + H → bb (NNLO, massless bquarks): [Ferrera, Somogyi, Tramontano '17]; [Caola, Luisoni, Melnikov, R.R. '17].

Large QCD corrections observed!

[Ferrera, Somogyi, Tramontano 1705.10304]:

- Semi-boosted: $p_{T,W} > 150 \text{ GeV}$
- ~ 7% effect from corrections to H→bb decay on cross section.
- *b*-jets identified using flavor-kT algorithm

[Banfi, Salam, Zanderighi '06]

- Very large (~60%) correctionsin some regions.
- Strongly phase-space dependent.

QUESTIONS:

- Corrections due to NLO(prod) x NLO(dec) or LO(prod) x NNLO(dec)?
- Simulated using parton shower?

Bottom mass effects in $H \rightarrow bb$

• In $H \rightarrow bb$ decay, want massless b-quarks but non-zero y_b

 $m_b \ll m_H \Rightarrow \mathrm{d}\sigma \sim y_b^2 (A + B \ m_b^2 / m_H^2 + \ldots) = A y_b^2$

• Works at LO & NLO, but not at NNLO - interference terms.

Interference contribution has identical parametric scaling to other NNLO corrections.

Bottom mass interference

Obvious strategy: factor out one power of m_b and then take $m_b = 0$

BUT:

- Reduced matrix elements have unusual IR behaviour: subleading power singularities, e.g. soft singularities from quarks!
- $\log(m_b/m_H)$ don't cancel between real and virtual interference terms cannot take massless limit!
- Cannot be regulated using flavor-kT algorithm (doesn't regulate soft quark singularity).
- Cannot define an inclusive cross section for $H \rightarrow bb$ at NNLO with massless *b*-quarks.
- Calculation in double-log approx: ~ 30% of NNLO corrections to $H \rightarrow bb$ decay.
 - Effect on kinematic distributions?
- Different dependence on bottom Yukawa different behavior in BSM models.

 \Rightarrow NNLO calculation of $H \rightarrow bb$ to massive bottom quarks required.
Corrections to production and decay

 α_s^2 corrections to $pp \rightarrow WH(\rightarrow bb)$:

NNLO prod. x LO decay

NLO prod. x NLO decay

LO prod. x NNLO decay

= NNLO approx.

$$d\sigma_{WH(b\bar{b})} = d\sigma_{WH} \times \frac{d\Gamma_{bb}}{\Gamma_{H}} = \operatorname{Br}(H \to b\bar{b}) \times d\sigma_{WH} \times \frac{d\Gamma_{bb}}{\Gamma_{bb}}$$
Keep fixed
Expand in α_s

Corrections to production and decay

Define
$$d\gamma^{(i)} = \frac{\sum_{j=0}^{i} d\Gamma_{b\bar{b}}^{(j)}}{\sum_{j=0}^{i} \Gamma_{b\bar{b}}^{(j)}}$$
 so that over full decay phase space $\int d\gamma^{(i)} = 1$

Physical cross sections at LO, NLO, NNLO are:

$$d\sigma_{WH(b\bar{b})}^{\rm LO} = {\rm Br}(H \to b\bar{b}) \ d\sigma^{(0)} \ d\gamma^{(0)}$$

$$d\sigma_{WH(b\bar{b})}^{\rm NLO} = {\rm Br}(H \to b\bar{b}) \left[d\sigma^{(0)} \ d\gamma^{(1)} + d\sigma^{(1)} \ d\gamma^{(0)} \right]$$

$$d\sigma_{WH(b\bar{b})}^{\rm NNLO} = {\rm Br}(H \to b\bar{b}) \left[d\sigma^{(0)} \ d\gamma^{(2)} + d\sigma^{(1)} \ d\gamma^{(1)} + d\sigma^{(2)} \ d\gamma^{(0)} \right]$$

$$d\sigma_{WH(b\bar{b})}^{\rm NNLO,approx} = {\rm Br}(H \to b\bar{b}) \left[d\sigma^{(0)} \ d\gamma^{(1)} + d\sigma^{(1)} \ d\gamma^{(0)} + d\sigma^{(2)} \ d\gamma^{(0)} \right]$$

Expansion of denominator \rightarrow separation into production and decay effects at different orders in pQCD not straightforward!

Parameters for calculation

- $pp \to W^-(\to e^- \bar{\nu})H(\to b\bar{b})$ at 13 TeV LHC.
- Reconstruct b-jets using flavor-kT algorithm with $\Delta R = 0.5$.
 - > *b*-quarks from $H \rightarrow bb$ as well as NNLO corrections in production and decay.
 - ➢ Require at least one b-jet and one antib-jet with $p_{T,j_b} > 25 \text{ GeV}, \quad |\eta_{j_b}| < 2.5$
- Leptonic cuts: $p_{T,e^-} > 15 \text{ GeV}, \quad |\eta_{e^-}| < 2.5$
- NNPDF3.0 at LO, NLO, NNLO.
- Production scale $\mu_R^2 = \mu_F^2 = (p_W + p_H)^2$; decay $\mu = m_H$.
- Results with and without boosting cut $p_{T,W} > 150 \text{ GeV}$.

Fiducial cross sections (I)

• Without cut on $p_{T,W}$

 $\sigma_{\rm LO} = 15.50^{+0.44}_{-0.56} \text{ fb}, \qquad \sigma_{\rm NLO} = 16.13^{-0.09}_{+0.20} \text{ fb}$ $\sigma_{\rm NNLO} = 15.20^{-0.08}_{+0.11} \text{ fb}, \quad \sigma_{\rm NNLO, approx.} = 16.56^{-0.11}_{+0.16} \text{ fb}.$

• With cut on $p_{T,W}$

 $\sigma_{\rm LO} = 2.027^{-0.013}_{+0.006} \text{ fb}, \qquad \sigma_{\rm NLO} = 2.381^{-0.041}_{+0.055} \text{ fb}$ $\sigma_{\rm NNLO} = 2.357^{-0.026}_{+0.018} \text{ fb} \quad \sigma_{\rm NNLO, approx.} = 2.516^{-0.030}_{+0.025} \text{ fb}.$

- Scale uncertainty: vary production scale by {1/2,2}.
 - ~1% uncertainty underestimate of theory uncertainty.
- 7-8 times fewer events with $p_{T,W}$ cut.

Still ~ 7500 events for HL-LHC.

Fiducial cross sections (II)

• Without cut on $p_{T,W}$

 $\sigma_{\rm LO} = 15.50^{+0.44}_{-0.56} \text{ fb}, \qquad \sigma_{\rm NLO} = 16.13^{-0.09}_{+0.20} \text{ fb}$ $\sigma_{\rm NNLO} = 15.20^{-0.08}_{+0.11} \text{ fb}, \quad \sigma_{\rm NNLO, approx.} = 16.56^{-0.11}_{+0.16} \text{ fb}.$

• With cut on $p_{T,W}$

 $\sigma_{\rm LO} = 2.027^{-0.013}_{+0.006} \text{ fb}, \qquad \sigma_{\rm NLO} = 2.381^{-0.041}_{+0.055} \text{ fb}$ $\sigma_{\rm NNLO} = 2.357^{-0.026}_{+0.018} \text{ fb} \quad \sigma_{\rm NNLO, approx.} = 2.516^{-0.030}_{+0.025} \text{ fb}.$

• NLO corrections ~4% without cut, ~ 17% with cut.

> W recoils against additional radiation at NLO.

- NNLO corrections to production are similar: ~ 3% higher than NLO without cut, ~6% higher with cut.
- "NLO x NLO" and "NNLO decay" corrections decreases the cross section by ~ 9% without the cut, ~ 7% with the cut.
 - Cancellations between NNLO corrections in production and decay strongly dependent on cut.

Invariant mass distribution (I)

Invariant mass of *b*-jets reconstructing the Higgs:

- LO: Delta function at Higgs mass.
- Corrections to decay decrease inv. mass.
- Corrections to production **increase** inv. mass.

With cut on $p_{T,W}$

Confirm results of [Ferrera, Somogyi, Tramantano]:

- Large (~60%) at low invariant mass.
- Sharp decrease at Higgs mass.
- ~ 15% depletion at high inv. mass.
- Expected as full NNLO includes corrections to decay – reduce inv. mass.

Invariant mass distribution (II)

Comparing results without (L) and with (R) cut on $p_{T,W}$

Minor differences:

- Full NNLO corrections shift peak without cut.
- Ratio shows sharper decrease with cut than without.

Contributions of different corrections

Split into "NLO x NLO" and "NNLO decay":

$$\delta_{\text{dec.}} = \text{Br}(H \to b\bar{b}) \, \mathrm{d}\sigma^{(0)} \left(\mathrm{d}\gamma^{(2)} - \mathrm{d}\gamma^{(1)}\right)$$
$$\delta_{\text{NLO}\times\text{NLO}} = \text{Br}(H \to b\bar{b}) \, \mathrm{d}\sigma^{(1)} \left(\mathrm{d}\gamma^{(1)} - \mathrm{d}\gamma^{(0)}\right)$$

Note: $\delta_{\text{dec.}} + \delta_{\text{NLO} \times \text{NLO}} + d\sigma_{\text{NNLO,approx.}} = 1.$

- Below m_{H} :
 - ➤ ~ 20% NLO x NLO
 - ~ 40% NNLO decay
- Above m_H : NLO x NLO only:
 - Expected as NNLO decay reduces invariant mass.

Transverse momentum distribution

Transverse momentum of *b*-jets reconstructing the Higgs:

0.16 $\mathrm{d}\sigma^{\mathrm{NNLO}}/\mathrm{d}p_{T,\perp,b\bar{b}}$ [fb/GeV] NNLO full $\mathrm{d}\sigma^{\mathrm{NNLO}}/\mathrm{d}p_{\perp,b\bar{b}}$ [fb/GeV] 0.020 NNLO, approx -NNLO, approx 0.120.015 0.080.010 0.040.0050 0 ratio 1.1 1.1 ratio 1 0.90.915035050100200250300100 20025050150 $p_{\perp b\bar{b}}$ [GeV] $p_{\perp,b\bar{b}}$ [GeV]

Without cut on $p_{T,W}$

NNLO full

300

350

• Cut substantially reshapes distribution.

> At LO, $p_{T,W} > 150 \text{ GeV} \Rightarrow p_{T,b\bar{b}} > 150 \text{ GeV}.$

- Cut induces Sudakov shoulder below cut 150 GeV. Less prominent when NNLO corrections to decays included.
- Results similar to [Ferrera, Somogyi, Tramontano].

Contributions of different corrections

Breakdown into NLO x NLO and NNLO decays:

- Low p_{τ} : cancellation between NNLO decay and NLO x NLO.
- Sudakov shoulder smeared by NLO x NLO but not NNLO decay.

Parton showers?

Large corrections in regions not populated at LO, only by real emissions.

Small effects elsewhere.

Can parton showers model these effects?

- $p_{T,W}$ > 150 GeV so semi-boosted regime → expect radiation to be soft/collinear and PS to do (reasonably) well.
- Sudakov shoulder at $p_{T,b\bar{b}} = 150 \text{ GeV} \rightarrow \text{ expect PS to do well.}$
- Low invariant mass requires **hard** gluon \rightarrow PS not ideal.