
  1

Infrared Singularities and the 
Precision Frontier

Raoul Röntsch
  

University of Vienna

2 December 2019



  2

Introduction

● Standard Model: an 
elegant and 
mathematically 
consistent description 
of particle behavior.

● Study behavior of particles 
in controlled environments: 
colliders.

● E.g. Large Hadron Collider.
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The LHC Thus Far

● The Expected: the Higgs boson.

● The Unexpected: no physics 
Beyond the SM.
–

–

–

–

–

– But we know SM is incomplete...
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PRECISION FRONTIER

● How precise do we need to be?
➢ Suppose we have BSM physics at scale 
➢ Difficult to produce directly at LHC, but have indirect impact.
➢ Simple scaling argument: 

● Is this achievable experimentally?
➢ Yes!

➢ “Except for rare decays, the overall 
uncertainties will be dominated by the 
theoretical systematics, with a precision 
close to percent level.”

- Report on Physics Potential of the HL-LHC, 
submitted to CERN Council



  7

Surviving At The Precision Frontier
● Is this achievable theoretically?

➢ Factorization theorem:

➢ Potential showstopper: (uncontrolled) nonperturbative effects in hadron 
collision.

➢ Nonperturbative effects appear at 

➢ So it is feasible theoretically...

➢ ... but challenging!

NO PAIN

NO GAIN
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The LHC Precision Programme

Requires progress in every aspect of collider physics.

PDFs Fixed order

ResummationParton showers

● Technical challenges: deep understanding of QFTs of SM:
– Interesting on purely theoretical as well as phenomenological 

grounds.

Image: S. Höche
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The LHC Precision Programme

Requires progress in every aspect of collider physics.

PDFs Fixed order

Resummation

● Technical challenges: deep understanding of QFTs of SM:
– Interesting on purely theoretical as well as phenomenological 

grounds.
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Fixed-order calculations 
● Expansion in strong coupling of QCD                and in 

electroweak (EW) coupling

● Two challenges:
– Multiloop calculations;

– Treating infrared (IR) singularities.

LO NLO QCD NNLO QCD N3LO QCD NLO EW NLO QCD-NLO EW

Order of 
magntiude

~10% ~1% ~1%Special 
processes

Special 
processes/high 
energies
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Infrared Singularities

● Virtual and real corrections separately have IR 
divergences (soft and/or collinear radiation).

● Unphysical, will cancel when combining real and 
virtuals (Kinoshita-Lee-Nauenberg).

● Virtual corrections: divergences as explicit poles  
in amplitudes.

● Real corrections: divergences from integrating 
over phase space.

● But: then lose information on kinematic 
observables.
– Needed for fully differential calculations.

● Need to extract singularities from real emissions 
without losing kinematical information on 
radiated parton.

      Subtraction scheme.

Virtual 
corrections

Real 
corrections
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Subraction Schemes

● Fully solved at NLO.
● NNLO: greatly complicated by convoluted 

singularity structure (“overlapping” singularities).

[Catani, Seymour ‘96; Frixione, Kunszt, Signer ‘96]

● Several proposed 
solutions; successful 
phenomenological 
applications for 2    2 
processes

“the NNLO revolution”

Slide from G. Heinrich
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Subtraction Schemes at NNLO
None of the NNLO subtraction schemes are completely satisfactory:
● Fully local;
● Fully analytic;
● Applicable to any process at the LHC:

➢ Initial state partons;

➢ Final state parton

Analytic Local FS 
Colour

IS 
Colour

Antenna

STRIPPER

CoLoRFul      ~

Inspired by Nigel Glover, Amplitudes 2015
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Subtraction Schemes at NNLO
None of the NNLO subtraction schemes are completely satisfactory:
● Fully local;
● Fully analytic;
● Applicable to any process at the LHC:

➢ Initial state partons;

➢ Final state parton

Can we construct a method that ticks all the boxes?

● Efficient subtractions for richer phenomenology in higher multiplicity 
processes.

● Theoretical clarity by identifying singular structures.
● Eventual automation of NNLO calculations.
● Connections with electroweak corrections, matching of NNLO to parton 

showers, ...

Analytic Local FS 
Colour

IS 
Colour

Antenna

STRIPPER

CoLoRFul      ~

Inspired by Nigel Glover, Amplitudes 2015
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Taming Infrared Singularities

1. Singular limits needed for NNLO 
calculations.

2. Phase space partitioning.

3. Parametrization of radiative phase 
space.

4. Sector decomposition of phase space.

     STRIPPER

[Catani, Grazzini, de Florian, Campbell, 
Glover, Bern, Dixon, Dunbar, Kosower, Uwer, 
Del Duca, Frizzo, Maltoni, Kilgore, Schmidt,..., 
~ Y2K]

[Frixione, Kunszt, Signer ‘96]

[Anastasiou, Melnikov, Petriello ‘03, ’04]

● Problem: underlying physics obscured.
➢ Energies and angles treated on same footing.

● How can we construct something with greater clarity?

[Czakon ‘10, ’11]

20 years in the making:
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Taming Infrared Singularities
Use the fact that soft and collinear limits commute!

● No overlap between soft and collinear limits 

can be treated independently.
● Energies and angles decouple.

● Colour coherence:
➢ Used in resummation/PS, not 

manifest in subtraction schemes.

➢ Soft gluon cannot resolve details of 
collinear splitting.

➢ Only sensitive to overall colour 
charge.

Not true for propagators: have behavior                            so limits do not commute.

Is true for physical (gauge invariant, onshell) QCD amplitudes.



  18

Nested Soft-Collinear Subtractions

● Colour coherence + sector 
decomposition of the phase space:  

     nested soft-collinear subtraction 
scheme.

Using colour coherence leads to dramatic simplifications.
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Nested Soft-Collinear Subtractions

● Colour coherence + sector 
decomposition of the phase space:  

     nested soft-collinear subtraction 
scheme.

Using colour coherence leads to dramatic simplifications.

● Minimal structure with clear 
physical origin of singularities.

● Final result remarkably simple.
● Handles massive partons.
● Natural alpha-parameters.
● Two kinds of collinear limit: small & 

large rapidity separations.
    resummation/parton showers?

✔ Fully local.
✔ Analytic.
✔ Can handle initial state 

and final state partons.
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Building Towards Generality

● Highly non-trivial!
● Break it down according to origin of radiation:

Aim: formula for fully local, fully analytic subtraction of IR singularities 
in arbitrary production process.
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● Highly non-trivial!
● Break it down according to origin of radiation:

IS Colour only

IS+FS 
Colour

Aim: formula for fully local, fully analytic subtraction of IR singularities 
in arbitrary production process.

● Complete control on each block, then put them together.

FS Colour only
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Building Towards Generality

● Highly non-trivial!
● Break it down according to origin of radiation:

IS+FS 
Colour

Aim: formula for fully local, fully analytic subtraction of IR singularities 
in arbitrary production process.

FS Colour only

See also [Caola, Delto, Frellesvig, Melnikov ‘18]; [Delto, Melnikov ‘19] – double-soft 
and triple-collinear counterterms.

[Caola, Melnikov, R.R., 
hep-ph/1907.05398]

[Asteriadis, Caola, Melnikov, 
R.R.,

hep-ph/1910.13761]

[Caola, Melnikov, R.R. 
hep-ph/1902.02081]

IS Colour only
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Building Towards Generality
● These building blocks allow NNLO corrections to                        (V=any color singlet).

● Full generality (2 or more jets): colour-correlations.
● New structures in e.g. real-virtual limits:

● Colour-correlations in double-soft eikonal have a simpler structure:

Double-soft counterterms almost all known:

– arbitrarily many massless hard partons;

– Back-to-back massive hard partons

[Delto, Caola, Frellesvig, Melnikov ‘18]

[Behring, Bizon ‘19]

[Catani, Grazzini, ‘99]

[Catani, Grazzini, ‘00]

Don’t expect any insurmountable obstacles from colour-correlated limits!



  25

Towards collider phenomenology

● Constructed the nested soft-collinear subtraction scheme using color 
coherence + sector decomposition of radiatve phase space.

● Identify building blocks to generalize to arbitrary production processes at LHC: 
– Initial-initial; 
– Final-final; 
– Initial-final.

Brief recap:

Absolute control on each block:

● < per mille agreement with analytic results.

Excellent numerical performance so far:

● Initial-initial processes (Drell-Yan, Higgs production): per mille accuracy 
on NNLO cross section in ~ 1 CPU hour.

● By comparison: MATRIX takes ~ 20 CPU days [Grazzini, Kallweit, 
Wiesemann, ‘18]
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Towards collider phenomenology
Used these results for collider phenomenology:

● Mixed scalar-pseudoscalar Higgs to NNLO (initial-initial)

[Jaquier, RR, ‘19]

● Mixed QCD-EW in Drell-Yan (abelianized initial-initial)

[Delto, Jaquier, Melnikov, RR, ‘19]

● WH(→bb) to NNLO (initial-initial + final-final)

[Caola, Luisoni, Melnikov, RR, ‘17]

Future plans:

● Initial-final: DIS →VBF;

● Heavy flavor production;

● Excellent numerical performance     2→3 processes;

● N3LO using slicing or Projection-to-Born.
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Mixed Scalar-Pseudoscalar Higgs

Framework: Higgs Characterization model:
● Effective Lagrangian for spin-0 particle coupling to gluons and (neutral)  EW 

vector bosons.

[Artoisenet et al., ‘13]

Parity of Higgs controlled by 

[Artoisenet et al. ‘13]

Fundamental property of the Higgs: parity.

Pseudoscalar state ruled out, but may be 
admixture of scalar and pseudoscalar.
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Mixed Scalar-Pseudoscalar Higgs
● Theory predictions:

– Differential, include mixing but LO or NLO;

– NNLO but inclusive and no mixing.

● Amplitudes required for NNLO known.

● Scalar-pseudoscalar interference at NNLO?
● Impact of NNLO corrections on distributions?

[Harlander, Kilgore ‘02, Anastasiou, Melnikov ‘03] 

[Gao et al. ‘10; Artoisenet et al. ‘13; Maltoni, Mawatari, Zaro ‘14]

[Ravindran, Smith, van Neerven ‘05; Ahmed et al. ‘15;  Berger, Del Duca, Dixon ‘07; 
Badger, Glover ‘06; Glover, Mastrolia, Williams ‘08; Dixon, Glover, Khoze ‘04; Dixon, 
Sofianatos ‘09]
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Mixed Scalar-Pseudoscalar Higgs
[Jacquier, R.R., ‘19]

● Inclusive results (undecayed Higgs)       No scalar-pseudoscalar interference 
in inclusive cross section at NNLO.

● Pseudoscalar decays are suppressed.
● Scalar-pseudoscalar interference between production and decay.
● Scale uncertainties & NNLO corrections largely independent of scalar-pseudoscalar 

mixing.

Pure scalar

Pure pseudoscalar

Equal admixture

NOT average 
of these two

● With decay                                             and cuts on leptons

Average of these two
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Angular distribution sensitive to the parity of the Higgs:

Three-momentum of Z1 in Higgs rest frame.

Mixed Scalar-Pseudoscalar Higgs

Three-momentum of lepton(antilepton) 
from decay of Z1 in Higgs rest frame.

● NLO corrections have mild 
dependence on observable (due to 
cuts).

● NNLO corrections flat.
● Corrections largely independent of 

scalar-pseudoscalar mixing.

[Gao et al. ‘10]
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Mixed QCD-EW corrections in DY
● Since                        , usually NNLO QCD and NLO EW is sufficient for 

percent precision.
● Need mixed QCD-EW corrections for:

– Ultra-high precision observables;

– High energy processes.

[Alioli et al., ‘16]

– E.g. W-mass measurements:  target accuracy is 10 MeV; QCD-EW corrections 
lead to shifts ~ 10 MeV

[Dittmaier, Huss, Schwinn ‘15; Carloni Calame et al., ‘17]

● Challenges:

Simultaneous treatment of IR QCD and 
QED divergences.

Massive two-loop amplitudes
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Mixed QCD-EW corrections

Prod. x Decay Prod. x Prod.Charged-current

Non-factorizable

Pole approximation: Systematic means of factorizing corrections in 
production and decay in resonance region.

● Dominant contributions.
● Differential results: 

[Dittmaier, Huss, Schwinn, ‘15]

● Argued to be 
subleading 

[Dittmaier, Huss, 
Schwinn, ‘14].

● Inclusive results:

[De Florian, Der, 
Fabre, ‘18] – 
comparable to NNLO 
QCD.

● Negligible. 
[Dittmaier, 
Huss, Schwinn, 
‘14] 

[Dittmaier, Huss, Schwinn, ‘14]
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Mixed QCD-EW corrections
● Goal: Assess impact of QCD-EW correction on distributions in 

charged-current (CC) and neutral-current (NC) DY production 
near resonance.
✔  Mixed factorizable QCD-QED corrections to NC DY.

➢  Mixed factorizable QCD-EW corrections to NC DY (work in progress).
 Only need QCD-EW amplitudes, cf. [Kilgore, Sturm ‘11; Bonciani et al. ‘17, Ajjath 

et al. ‘19]

➢  Mixed factorizable QCD-EW correction to CC DY (work in progress).
 Charged-current corrections.

Prod. x Decay ~ NLO x NLO. Prod. x Prod: Abelianize NNLO QCD corrections

Inclusive: [De Florian, Der, Fabre, ‘18]

Differential: [Delto, Jaquier, Melnikov, RR, ‘19]
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Mixed QCD-EW corrections

NNLO QCD:

NLO EW: 

QCD-EW: 

Onshell Z-boson decaying to leptons: Expand
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Mixed QCD-EW corrections
Fiducial results*

*Lepton definition following [Alioli et al. ‘16]: 
combine photon and lepton if 

 

● NLO EW and QCD-EW corrections smaller than NNLO QCD corrections.
● QCD-EW Prod. x Decay relatively large compared to NLO EW – selection 

criteria affected by QCD radiation.
● Prod. x Prod corrections < per mille

– Large cancellation among partonic channels.

● Photon-induced contributions ~ 15% of Prod. x Prod.
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Associated Production WH(→bb)

● H→bb gives direct access to Yukawa coupling of b-quark.
● Most common decay mode but difficult to measure (large 

QCD background).
● Can be measured in boosted Higgs kinematics – both b-

quarks inside fat jet.

[Butterworth, Davison, Rubin, Salam ‘08]
● Requires Higgs production with associated jet or EW vector 

boson.

● Associated production 
(“Higgsstrahlung”) has 3rd and 4th 
highest production cross section.

● Direct access to VVH couplings.

Quite complicated final state (boost, jet properties, etc) 

        need reliable theoretical predictions for signal and background.
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Associated Production WH(→bb)
● NNLO corrections in narrow-width approximation [Caola, Luisoni, Melnikov, R.R. ‘17]

NLO x NLO
NNLO prod.

= NNLO approx.
NNLO decay

● Flavour-kT algorithm to define b-
jets with massless bottom quarks.

[Banfi, Salam, Zanderighi ‘06]

● Confirmed results of [Ferrera, Somogyi, Tramontano ‘17]             
(see also [cf. Astill, Bizon, Re, Zanderighi ‘18]) 
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Associated Production WH(→bb)
● Parton showers* capture NNLO effects 

to ~10%.
● Discrepancy: 

– Higher logs captured by parton showers.

– Hard effects captured by fixed order.

– Different jet algorithms:

– NNLO: flavor-kT – only option with 
massless b-quarks.

– PS: anti-kT and MC truth – similar to 
experiments.

*HWJ generator from POWHEGBox with MiNLO; H→bb through PYTHIA.

[Luisoni, Nason, Oleari, Tramontano ‘13];

[Nason ‘04]; [Frixione, Nason, Oleari ‘07]; [Alioli, Nason, Oleari, Re ‘10];

[Hamilton, Nason, Zanderighi ‘12]; [Hamilton, Nason, Oleari, Zanderighi ‘13]

[Sjostrand, Mrenna, Skands ‘08]



  39

Associated Production WH(→bb)

● Results insensitive to jet algorithm.
● Sensitive to jet radius.

[cf. Astill, Bizon, Re, Zanderighi ‘18]

● Want NNLO calculation with jets as done in experiments.
● Using conventional jet algorithms will require calculation with 

massive b-quarks (work in progress).
● Recent H→bb with massive b-quarks in NSCS scheme [Behring, 

Bizon ‘19]
– Resolved a theoretical issue relating to the interference with H→gg decay.
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Looking to the future
● Mixed QCD-EW corrections to DY.
● WH(→bb) with bottom quark masses.
● VBF @ NNLO.
● Mass effects in heavy flavour (bottom & charm quark) production:

– EW boson + heavy flavour quark(s).

● 2→ 3 production at NNLO (once two-loop amplitudes available):
– Trijet production (strong coupling, jet substructure);

– H+2j production (disentangle GF and VBF production modes);

– V+bb production (background to associated production, understanding of heavy flavor production);

– ttH production (direct measurement of top Yukawa).

– ...

● N3LO:
– DY;

– Higgs; 

– VBF.

– ...

● Match to PS? 
● ...
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CONCLUSION

● Demands of high precision programme require 
the utmost in theoretical advances.

● Despite successes of IR subtraction schemes, 
ultimate scheme yet to be developed.

● Proposed nested soft-collinear subtraction 
scheme:
✔ Fully local, fully analytic, remarkably straightforward.

✔ Building block for subtraction for arbitrary processes.

✔ Huge phenomenological potential – enable precision 
to maximize discovery potential of the LHC.
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THANK YOU FOR YOUR ATTENTION
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BACKUP SLIDES
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NESTED SOFT-COLLINEAR SUBTRACTION
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FKS subtraction at NLO: Notation
Consider real corrections to color singlet production 

Lorentz-inv. 
Phase space for 
V (incl. delta-fn)

Matrix-
element sq.

IR-safe 
observable Integration in 

partonic CoM 
frame

Define soft and collinear operators:
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FKS subtraction at NLO: Subtraction
Remove singular limits and add back as subtraction terms:

● First term: finite, can be integrated numerically in 4-dimensions.
● Second term: soft subtraction term – gluon decouples 

completely (need upper bound:         ).
● Third term: collinear and soft+collinear subtraction terms – 

gluon decouples partially or completely.
● Singularities made explicit by integrating subtraction terms over 

phase space of unresolved gluon.
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FKS subtraction at NLO: finite result
● Combining with virtual corrections and pdf renormalization → cancel poles.
● Take           limit to get finite remainder – NLO correction:

(AP splitting function without delta function)
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FKS subtraction at NLO: finite result
● Combining with virtual corrections and pdf renormalization → cancel poles.
● Take           limit to get finite remainder – NLO correction:

Sum of:
● LO-like terms, with or without convolutions with splitting functions.
● Real emission term, with singular configurations removed by iterated subtraction.
● Finite remainder of virtual corrections.
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Real-real subtractions at NNLO
Aim to replicate NLO results as much as possible at NNLO.

Consider real-real correction to color singlet production 

IR singularities from

●       and/or      → soft.

●       or     → collinear to initial state partons.

●       or     → collinear to each other.

●       and      collinear to same initial state parton (triple collinear limit).
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Color coherence
● On-shell, gauge-invariant QCD scattering amplitudes : color coherence.
● Used in resummation & parton showers; not manifest in subtractions.

● Soft gluon cannot resolve details of collinear splittings; only sensitive to total 
color charge.

No overlap between soft and collinear limits -- can be treated 
independently:
● Regularize soft singularities first, then collinear singularities.
● Energies and angles decouple.
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Treatment of real-real singularities
● Step 1: Limit operators.

– Recall

– NNLO-like:

● Step 2: Order gluon energies 

– Gluon energies bounded by 

– Energies defined in CoM frame.

– Soft singularities: either double soft or      soft.



  52

Soft singularities 

● Step 3: Regulate the soft singularities:

● First term: both      and      soft.
● Second term:      soft, soft singularities in      are regulated.
● Third term: regulated against all soft singularities, 
● All three terms contain (potentially overlapping) collinear 

singularities.
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● Step 4: Introduce phase-space partitions

and

Triple collinear 
partition

with

Double collinear 
partition

Phase-space partitioning
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Phase-space partitioning
● Double collinear partition – large rapidity difference.

                                       

                                                 ~ NLO x NLO      simple

                                            

Overlapping singularities remain – need one last step to separate these.

● Triple collinear partition – large/small rapidity difference.
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Sector Decomposition
● Step 5: Sector decomposition:

● Thus the limits are

● Define angular ordering to separate singularities.

● Sectors a,c and b,d same to 4 ↔ 5, but recall energy ordering. 

● Angular phase space parametrization [Czakon ‘10].

Large rapidity difference

Small rapidity difference
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Removing collinear singularities
Then we can write soft-regulated term as

● All singularities removed through nested subtractions – evaluated in 4-
dimensions.

● Only term involving fully-resolved real-real matrix element.

● Contain (soft-regulated) single and triple collinear singularities.
● Matrix elements of lower multiplicity.
● Partitioning factors and sectors: one collinear singularity in each term.
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Treating singular limits
We have four singular subtraction terms:

We know how to treat them:
● Gluon(s) decouple partially or completely.
● Decouple completely:

– Integrate over gluonic angles and energy.

● Decouple partially:
– Integrate over gluonic angles.

– Integral(s) over energy → integrals over splitting function in z.

● Analytic results for nontrivial integrals from double-soft and triple-collinear 
limits calculated in [Caola, Delto, Frellesvig, Melnikov ‘18; Delto, Melnikov ‘19].

● Significant analytic simplifications on recombining sectors after integration.
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Treating singular limits
After integration: subtraction terms written as lower multiplicity terms: 

● NLO-real-like (regulated by iterative subtraction):

● LO-like:

convoluted with splitting functions with explicit singularities.
● Pole cancellation within each structure.

     (no final state partons).

     (maximum one final state parton).
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Finite remainders
● Relatively compact expressions for finite remainders for each 

lower-multiplicity structure.
● Familiar structures appear, e.g.

● Same functions that appeared at NLO (as expected...)
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Finite remainders

● New functions are 
relatively simple...

● Extension of NLO 
calculation to NNLO:
– LO and NLO results  

convoluted with known 
functions.

– Nested subtraction for 
real-real contribution.
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Validation of Results
● Exhaustively tested against analytic results for

✔ Drell-Yan production

✔ Higgs production [Anastasiou, Melnikov ‘04]

[Hamberg, Matsuura, van Neerven ‘89]

[Caola, Melnikov, R.R. ‘17] [Caola, Melnikov, R.R. ‘19]

● < per mille agreement for all NNLO 
contributions, including numerically tiny ones.

● Good control in extreme 
kinematic regions.

This building block                          is reliable!
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Validation of Results

[Grazzini, Kallweit, Wiesemann, 2018]

Implies absolute control on physical results.
● Higgs production cross sections: per mille accuracy in ~ 1 CPU hr.

● Drell-Yan production with symmetric cuts on final state leptons: 2 per mille accuracy  in ~1 CPU hr.

● By comparison



  63

SCALAR-PSEUDOSCALAR HIGGS
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Renormalization of operator

NNLO only

● Two (bare) effective operators on integrating top loop out:

● Mix under renormalization:

● No higher corrections to axial anomaly:

● Massless light quarks, only have contribution from 

       absorbed into 
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More distributions
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Mixed QCD-EW corrections

● Large NNLO QCD corrections (~NLO on Z+jet)
● Prod. x Prod ~ per mille
● Prod. x Decay ~ percent

– Shape due to interplay of photon radiation from leptons, 
cuts and boost from QCD ISR

Prod. x Prod ~ Prod. x Decay here

● NNLO QCD ~ percent
● Prod. x Decay ~ per 

mille
● Prod. x Prod < per mille
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WH(→bb)



  

A Brief History of VH calculations
● NLO QCD + EW: [Han, Willenbrock ‘90]; [Baer, Bailey, Owens ‘93]; 

[Ohnemus, Stirling ‘93]; [Mrenna, Yuan ‘98]; [Spira ‘98]; [Djouadi, 
Spira ‘00]; [Ciccolini, Dittmaier, Kramer ‘03]; [Denner, Dittmaier, 
Kallweit, Muck ‘12].

● NLO QCD + EW + PS: [Frixione, Webber ‘05]; [Hamilton, 
Richardson, Tully ‘09]; [Granata, Lindert, Oleari, Pozzorini ‘17]; 
[Luisoni, Nason, Oleari, Tramontano ‘13].

● NNLO cross section: [Brein, Djouadi, Harlander ‘04] (after 
[Hamberg, v. Neerven, Vermaseren ‘91] ); [Harlander, Kilgore ‘02]); 
[Brien, Harlander, Wiesemann, Zirke ‘12];         [VH@NNLO ‘13.]

● NNLO differential: [Ferrera, Grazzini, Tramontano ‘11].
● NNLO + PS: [Astill, Bizon, Re, Zanderighi ‘16].



  

A Brief History of VH(→bb)  
calculations

● NNLO differential + H→bb (NLO, massless b-quarks): 
[Ferrera, Grazzini, Tramontano ‘14].

● NNLO differential + H→bb (NLO, massive b-quarks): 
[Campbell, Ellis, Williams ‘16].

● NNLO + PS: [Astill, Bizon, Re, Zanderighi ‘18].
● H → bb (NNLO, massless b-quarks): [Del Duca, Duhr, 

Somogyi, Tramontano, Trócsányi ‘15].
● NNLO differential + H→bb (NNLO, massless b-

quarks): [Ferrera, Somogyi, Tramontano ‘17]; [Caola, 
Luisoni, Melnikov, R.R. ‘17].
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Large QCD corrections observed!

● Semi-boosted:

● ~ 7% effect from corrections to 
H→bb decay on cross 
section.

● b-jets identified using flavor-kT 
algorithm 

    [Banfi, Salam, Zanderighi ‘06]
● Very large (~60%) corrections 

in some regions.
● Strongly phase-space 

dependent.

QUESTIONS:
● Corrections due to NLO(prod) x NLO(dec) or LO(prod) x NNLO(dec)?
● Simulated using parton shower?

[Ferrera, Somogyi, 
Tramontano 1705.10304]:
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Bottom mass effects in H→bb 

Heavy top Wilson coefficient 
Bottom Yukawa

Interference contribution has identical parametric scaling to other NNLO 
corrections.

Requires helicity flip 

QCD correction

Bottom Yukawa

QCD correction

Top-loop interference contribution “Regular” contribution squared 

● In H→bb decay, want massless b-quarks but non-zero

● Works at LO & NLO, but not at NNLO – interference terms.

2
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Bottom mass interference

BUT:

● Reduced matrix elements have unusual IR behaviour: subleading power singularities, 
e.g. soft singularities from quarks!

●                       don’t cancel between real and virtual interference terms – cannot take 
massless limit!

● Cannot be regulated using flavor-kT algorithm (doesn’t regulate soft quark singularity).

● Cannot define an inclusive cross section for H →bb at NNLO with massless b-quarks.

● Calculation in double-log approx: ~ 30% of NNLO corrections to H → bb decay. 
➢ Effect on kinematic distributions?

● Different dependence on bottom Yukawa – different behavior in BSM models.

Obvious strategy:  factor out 
one power of       and then take  
            .

      NNLO calculation of H→bb to massive bottom quarks required.
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Corrections to production and decay
      corrections to pp → WH(→bb):

Expand in 
Keep fixed

NNLO prod. x LO 
decay

= NNLO approx.

NLO prod. x 
NLO decay

LO prod. x NNLO decay
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Corrections to production and decay

Expansion of denominator → separation into production and decay 
effects at different orders in pQCD not straightforward!

Define                        so that over full decay phase space

Physical cross sections at LO, NLO, NNLO are:
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Parameters for calculation

●                                              at 13 TeV LHC.
● Reconstruct b-jets using flavor-kT algorithm with 

➢ b-quarks from H → bb as well as NNLO corrections in 
production and decay.

➢ Require at least one b-jet and one antib-jet with

 

● Leptonic cuts:
● NNPDF3.0 at LO, NLO, NNLO.
● Production scale                                     ; decay 
● Results with and without boosting cut 
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Fiducial cross sections (I)
● Without cut on 

● With cut on 

● Scale uncertainty: vary production scale by {½,2}.
➢ ~1% uncertainty – underestimate of theory uncertainty.

● 7-8 times fewer events with          cut. 
➢ Still ~ 7500 events for HL-LHC.
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Fiducial cross sections (II)
● Without cut on 

● With cut on 

● NLO corrections ~4% without cut, ~ 17% with cut.
➢ W recoils against additional radiation at NLO.

● NNLO corrections to production are similar: ~ 3% higher than NLO without cut, 
~6%  higher with cut.

● “NLO x NLO” and “NNLO decay” corrections decreases the cross section by ~ 
9% without the cut, ~ 7% with the cut.
➢ Cancellations between NNLO corrections in production and decay – strongly 

dependent on cut.
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Invariant mass distribution (I)

● LO: Delta function at Higgs mass.
● Corrections to decay decrease inv. mass.
● Corrections to production increase inv. mass.

Corrections to decay

Corrections to production

Confirm results of [Ferrera, 
Somogyi, Tramantano]: 

● Large (~60%) at low 
invariant mass.

● Sharp decrease at Higgs 
mass.

● ~ 15% depletion at high 
inv. mass.

● Expected as full NNLO 
includes corrections to 
decay – reduce inv. 
mass.

Invariant mass of b-jets reconstructing the Higgs:

With cut on 
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Invariant mass distribution (II)
Comparing results without (L) and with (R) cut on 

Minor differences:
● Full NNLO corrections shift peak without cut.
● Ratio shows sharper decrease with cut than without.
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Contributions of different corrections

● Below mH: 
➢ ~ 20% NLO x NLO
➢ ~ 40% NNLO decay

● Above mH: NLO x NLO only:
➢ Expected as NNLO decay 

reduces invariant mass.

Split into “NLO x NLO” and 
“NNLO decay”:

Note:
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Transverse momentum distribution
Transverse momentum of b-jets reconstructing the Higgs:

Without cut on      With cut on 

● Cut substantially reshapes distribution.
➢ At LO, 

● Cut induces Sudakov shoulder below cut 150 GeV.
➢ Less prominent when NNLO corrections to decays included.

● Results similar to [Ferrera, Somogyi, Tramontano].
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Breakdown into NLO x NLO and NNLO decays:

● Low pT: cancellation between NNLO decay and NLO x NLO.

● Sudakov shoulder smeared by NLO x NLO but not NNLO decay.

Contributions of different corrections
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Parton showers?

Large corrections in regions not 
populated at LO, only by real emissions.

Can parton showers model these effects?
–                              so semi-boosted regime → expect radiation to be 

soft/collinear and PS to do (reasonably) well.

– Sudakov shoulder at                             → expect PS to do well.

– Low invariant mass requires hard gluon → PS not ideal.

Small effects elsewhere.
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