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1 Introduction

(No) signals beyond the Standard Model

• clear signals of new physics, i.e. not explained by
the Standard Model (SM):

• neutrino oscillations and masses
• baryon asymmetry
• dark matter

• we expect that there must be yet unknown particles

• direct searches at high-energy colliders

• indirect searches with (low-energy) precision
measurements
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1 Introduction

(No) signals beyond the SM

• so far no signal of new physics in direct searches
at the Large Hadron Collider (LHC) at CERN

• indirect searches: only a few discrepancies around
2 . . . 4�, e.g. muon anomalous magnetic moment

• could be a combination of statistical fluctuations and
systematic effects, or a hint of something new
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1 Introduction

Searching for new physics

• increasing precision in indirect searches, both at
colliders and low energies

• calls for theoretical progress:
• control hadronic uncertainties at low energies

) non-perturbative methods
• build generic model-independent framework to

combine all constraints
) effective field theories
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2 Hadronic contributions to muon g � 2

Magnetic moment

• relation of spin and magnetic moment of a lepton:

~µ` = g`
e

2m`

~s

g`: Landé factor, gyromagnetic ratio

• Dirac’s prediction: ge = 2

• anomalous magnetic moment: a` = (g` � 2)/2

• today: precision test of the SM
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2 Hadronic contributions to muon g � 2

(g � 2)µ: comparison of theory and experiment57. Muon anomalous magnetic moment 5
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Figure 57.2: Compilation of recent published results for aµ (in units of 10
�11

),

subtracted by the central value of the experimental average (57.3). The shaded band

indicates the size of the experimental uncertainty. The SM predictions are taken

from: JN 2009 [4], HLMNT 2011 [23], DHMZ 2011 [19], DHMZ 2017 [18], Note

that the quoted errors in the figure do not include the uncertainty on the subtracted

experimental value. To obtain for each theory calculation a result equivalent to

Eq. (57.14), the errors from theory and experiment must be added in quadrature.

where F (x) =
�

1

0
2z(1 � z)

2/[(1 � z)
2

+ x2z] dz. For values of � ⇠ 1–2 · 10
�3

and

mV ⇠ 10–100 MeV, the dark photon, which was originally motivated by cosmology, can

provide a viable solution to the muon g � 2 discrepancy. However, recent experimental

constraints disfavor such a scenario [41] under the assumption that the dark photon

decays primarily into charged lepton pairs. Direct searches for the dark photon continue

to be well motivated [42]; but with guidance coming from phenomena outside the muon

anomalous magnetic moment discrepancy.
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! PDG 2018

Fermilab g � 2 experiment aims at improvement by
factor 4 (0.14 ppm): first results expected soon
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2 Hadronic contributions to muon g � 2

(g � 2)µ: SM uncertainty

dominant uncertainty are hadronic effects, i.e.
quantum corrections due to the strong nuclear force

• hadronic vacuum polarization (HVP)

• hadronic light-by-light scattering (HLbL)
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Hadronic vacuum polarization (HVP)

Photon HVP function:

= i(q2
gµ⌫ � qµq⌫)⇧(q2)

Unitarity of the S-matrix implies the optical theorem:

Im⇧(s) =
s

e(s)2
�(e+

e
�

! hadrons)
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Dispersion relation

Causality implies analyticity:

s0 �

�R

�c

R

Re(s)

Im(s)

Cauchy integral formula:

⇧(s) =
1

2⇡i

I

�

⇧(s0)

s0 � s
ds

0

Deform integration path:

⇧(s) � ⇧(0) =
s

⇡

Z 1

4M2
⇡

Im⇧(s0)

(s0 � s � i✏)s0 ds
0
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

HVP contribution to (g � 2)µ

a
HVP

µ
=

m
2

µ

12⇡3

Z 1

sthr

ds
K̂(s)

s
�(e+

e
�

! hadrons)

• basic principles: unitarity and analyticity

• direct relation to data: total hadronic cross section
�(e+

e
�

! hadrons)

• dedicated e
+
e

� program (BaBar, Belle, BESIII,
CMD3, KLOE, SND)
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Two-pion contribution to HVP

• ⇡⇡ contribution amounts to more than 70% of HVP
contribution

• responsible for a similar fraction of HVP uncertainty
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Unitarity and analyticity

Implications of unitarity (two-pion intermediate states):

1 ⇡⇡ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—⇡⇡ scattering

3 ⇡⇡ scattering—⇡⇡ scattering

: �(e+
e

�
! ⇡

+
⇡

�) / |F
V

⇡
(s)|2

analyticity ) dispersion relation for HVP contribution
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Implications of unitarity (two-pion intermediate states):

1 ⇡⇡ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—⇡⇡ scattering

3 ⇡⇡ scattering—⇡⇡ scattering

= + . . . : F
V

⇡
(s) = |F

V

⇡
(s)|ei�

1
1(s)+...

analyticity ) dispersion relation for pion VFF
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Unitarity and analyticity

Implications of unitarity (two-pion intermediate states):

1 ⇡⇡ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—⇡⇡ scattering

3 ⇡⇡ scattering—⇡⇡ scattering

= + . . .

analyticity, crossing, PW expansion ) Roy equations
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Dispersive representation of pion VFF

= + + . . .

F
V

⇡
(s) = ⌦1

1
(s) ⇥ G!(s) ⇥ G

N

in
(s)

• Omnès function with elastic ⇡⇡-scattering P -wave
phase shift �1

1
(s) as input:

⌦1

1
(s) = exp

⇢
s

⇡

Z 1

4M2
⇡

ds
0 �

1

1
(s0)

s0(s0 � s)

�
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Dispersive representation of pion VFF

= + + . . .

F
V

⇡
(s) = ⌦1

1
(s) ⇥ G!(s) ⇥ G

N

in
(s)

• isospin-breaking 3⇡ intermediate state: negligible
apart from ! resonance (⇢–! interference effect)

G!(s) = 1 +
s

⇡

Z 1

9M2
⇡

ds
0 Img!(s0)

s0(s0 � s)

 
1 �

9M
2
⇡

s0

1 �
9M2

⇡
M2

!

!4

,

g!(s) = 1 + ✏!
s

(M! �
i

2
�!)2 � s
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Dispersive representation of pion VFF

= + + . . .

F
V

⇡
(s) = ⌦1

1
(s) ⇥ G!(s) ⇥ G

N

in
(s)

• heavier intermediate states: 4⇡ (mainly ⇡0
!), K̄K, . . .

• described in terms of a conformal polynomial with cut
starting at ⇡0

! threshold

G
N

in
(s) = 1 +

NX

k=1

ck(z
k(s) � z

k(0))

• correct P -wave threshold behavior imposed
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

VFF fit to the following data
• time-like cross section data from high-statistics e

+
e

�

experiments SND, CMD-2, BaBar, KLOE

• space-like VFF data from NA7

• Eidelman–Łukaszuk bound on inelastic phase:
! Eidelman, Łukaszuk, 2004

• iterative fit routine including full experimental
covariance matrices and avoiding D’Agostini bias
! D’Agostini, 1994; Ball et al. (NNPDF) 2010
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Result for a
HVP,⇡⇡
µ below 1 GeV

485 490 495 500 505

1010
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Contribution to (g � 2)µ

! Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

• low-energy ⇡⇡ contribution:

a
HVP,⇡⇡

µ
|0.63 GeV = 132.8(0.4)(1.0) ⇥ 10�10

• ⇡⇡ contribution up to 1 GeV:

a
HVP,⇡⇡

µ
|1 GeV = 495.0(1.5)(2.1) ⇥ 10�10
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2 Hadronic contributions to muon g � 2 Hadronic vacuum polarization

Determination of the pion charge radius

F
V

⇡
(s) = 1 +

1

6
hr

2

⇡
is + O(s2)

DR for F
V

⇡
implies sum rule for charge radius:

hr
2

⇡
i =

6

⇡

Z 1

4M2
⇡

ds
ImF

V

⇡
(s)

s2
= 0.429(4) fm2

together with hr2⇡i = 0.432(4) ! Ananthanarayan et al., 2017

triggered a revision of the PDG value:
PDG 2018: hr

2

⇡
i = 0.452(11) fm2

PDG 2019: hr
2

⇡
i = 0.434(5) fm2

(model-dependent eN ! e⇡N now excluded)
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2 Hadronic contributions to muon g � 2 Hadronic light-by-light scattering

Hadronic light-by-light scattering

• previously based only on hadronic models

• first lattice-QCD results with ⇠ 60% uncertainty

• our work: dispersive framework, replacing hadronic
models step by step
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2 Hadronic contributions to muon g � 2 Hadronic light-by-light scattering

Hadronic light-by-light scattering

= + + + . . .

• gauge-invariant Lorentz decomposition of HLbL
tensor, solution of kinematic constraints

• precise evaluation of pion box and two-pion
rescattering contributions
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2 Hadronic contributions to muon g � 2 Hadronic light-by-light scattering

Hadronic light-by-light scattering

= + + + . . .

a
HLbL,⇡-box
µ

= �15.9(2) ⇥ 10�11

a
HLbL,⇡⇡

µ

��⇡-pole LHC
J=0

= �8(1) ⇥ 10�11

! Colangelo, Hoferichter, Procura, Stoffer
JHEP 09 (2014) 091, JHEP 09 (2015) 074, PRL 118 (2017) 232001, JHEP 04 (2017) 161
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2 Hadronic contributions to muon g � 2 Hadronic light-by-light scattering

Hadronic light-by-light scattering

= + + + . . .

recent work and in progress:

• extension to D-waves

• asymptotic constraints

• beyond two-pion contributions
! Hoferichter, Stoffer, JHEP 07 (2019) 073
! Colangelo, Hagelstein, Hoferichter, Laub, Stoffer

arXiv:1910.13432 [hep-ph], arXiv:1910.11881 [hep-ph]
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Overview

1 Introduction

2 Hadronic contributions to muon g � 2

3 Low-energy effective field theory
• Low-energy EFT

• Lepton-flavor violation: µ ! e�

4 Summary and outlook
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3 Low-energy effective field theory

Beyond the SM

• baryon asymmetry requires sources of CP -violation
beyond the SM

• neutrino masses and oscillations imply lepton-flavor
(LF) violation at a very high scale

• additional new physics violating LF and CP may
appear at energies above the electroweak scale

• its low-energy quantum effects can be described by
effective field theory, containing only SM particles
(SMEFT)

• experimental constraints from precision observables
27



3 Low-energy effective field theory

Effective field theories (EFTs)

• based on a small set of assumptions

• generic and systematic quantum field theories, can
be used “stand-alone” for fits to experiments or in
connection with a broad range of specific models

• work only with the relevant particles at a particular
energy ) simplify calculations

• EFT parameters depend on energy scale
) running & mixing

• connect different energy regimes (renormalization
group, avoid large logarithms)

28



3 Low-energy effective field theory

EFTs for new physics

???

SMEFT

LEFT

E

⇤

v

0

• SMEFT Lagrangian at
dimension six known
explicitly
! Buchmüller, Wyler (1986)
! Grzadkowski et al. (2010)

• one-loop running for
SMEFT known
! Jenkins et al. (2013, 2014)
! Alonso et al. (2014)
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3 Low-energy effective field theory

EFTs for new physics

???

SMEFT

LEFT

E

⇤

v

0

• partial LEFT operator
basis and running
previously studied in
detail

• first complete treatment
up to dimension six:
! Jenkins, Manohar, Stoffer (2018)
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3 Low-energy effective field theory

EFT for new physics above the weak scale

“Standard Model EFT” (SMEFT) assumptions:
! Buchmüller, Wyler (1986)

• new physics at high energies ⇤ � v ⇡ 246 GeV

• underlying theory respects the same symmetry
principles as the SM

• Higgs particle part of electroweak doublet (as in SM)
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3 Low-energy effective field theory

EFT for new physics above the weak scale

SMEFT Lagrangian:

LSMEFT = LSM +
X

i

C
(5)

i
O

(5)

i
+
X

i

C
(6)

i
O

(6)

i
+ . . .

• dimension 5: one operator + h.c.

• dimension 6: 3045 operators
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3 Low-energy effective field theory Low-energy EFT

EFT below the electroweak scale

“Low-energy EFT” (LEFT):

• only light SM particles (no Higgs, weak bosons, or
top quark)

• basically the old Fermi theory of weak interaction

• complete and systematic treatment up to dimension 6
recently worked out
! Jenkins, Manohar, Stoffer, JHEP 01 (2018) 084, JHEP 03 (2018) 016

32



3 Low-energy effective field theory Low-energy EFT

EFT below the electroweak scale

LEFT Lagrangian:

LLEFT = LQED+QCD +
X

i

LiOi + . . .

Additional effective operators:

• dimension 3: Majorana-neutrino masses (�L = ±2)

• dimension 5: �B = �L = 0 dipole operators for
 = u, d, e and �L = ±2 neutrino-dipole operators

• dimension 6: CP -even and CP -odd three-gluon
operators, as well as four-fermion operators
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3 Low-energy effective field theory Low-energy EFT

LEFT operators
! Jenkins, Manohar, Stoffer, JHEP 03 (2018) 016

• in total 5963 operators at dimensions three, five, and
six: 3099 CP -even and 2864 CP -odd

• basis free of redundancies (EOM, Fierz, etc.)

• cross-checked with Hilbert series
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3 Low-energy effective field theory Low-energy EFT

Full set of one-loop diagrams for LEFT running
! Jenkins, Manohar, Stoffer, JHEP 01 (2018) 084
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3 Low-energy effective field theory Low-energy EFT

Matching between the EFTs

???

SMEFT

LEFT

E

⇤

v

0

• tree-level matching from
SMEFT to LEFT
! Jenkins, Manohar, Stoffer

JHEP 03 (2018) 016

• complete one-loop
matching
! Dekens, Stoffer

JHEP 10 (2019) 197

• leads to relations
between LEFT operator
coefficients
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3 Low-energy effective field theory Low-energy EFT

SMEFT in the broken phase

• Higgs in unitary gauge:

H =
1

p
2

 
0

[1 + cH,kin] h + vT

!
,

where

cH,kin :=

✓
CH⇤ �

1

4
CHD

◆
v

2
, vT :=

✓
1 +

3CHv
2

8�

◆
v

• modifications from SM due to dimension-six Higgs
operators in SMEFT
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3 Low-energy effective field theory Low-energy EFT

SMEFT in the broken phase

• dimension-six modifications of fermion masses and
Yukawa couplings ) no longer proportional

• modifications of gauge-boson mass terms

• weak charged and neutral currents modified as well,
e.g. coupling of W

+ to right-handed current ūR�
µ
dR

• after rotation to mass eigenstates, modified weak
currents lead to non-unitary effective CKM
quark-mixing matrix
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3 Low-energy effective field theory Low-energy EFT

Integrating out weak-scale SM particles

consider Higgs-exchange diagram:

Y Y

[Y ]
rs

=
1

vT

[M ]
rs

[1 + cH,kin] �
v

2

p
2
C

⇤
 H
sr

Y
2 has terms of order (m/v)2, mv/⇤2, v

4
/⇤4

) diagram Y
2
/m

2

h
is of same order as dimension-7 or

8 contributions in LEFT or dimension-8 in SMEFT
39



3 Low-energy effective field theory Low-energy EFT

Integrating out weak-scale SM particles

• for SMEFT ) LEFT matching: rewrite terms

. . .
1

⇤n
= . . .

1

vn

| {z }
LEFT counting

⇥
v

n

⇤n

|{z}
SMEFT counting

• tree-level matching simple: fix Higgs field to vev
and compute W/Z-exchange diagrams

• one-loop matching: 754 diagrams including finite
parts ! Dekens, Stoffer, JHEP 10 (2019) 197

• using background-field gauge ! Helset, Paraskevas, Trott (2018)
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3 Low-energy effective field theory Low-energy EFT

Matching to Chiral Perturbation Theory (ChPT)
! Dekens, Jenkins, Manohar, Stoffer, JHEP 01 (2019) 088

???

SMEFT

LEFT

ChPT

E

⇤

v

⇤�

0

• at the hadronic scale, QCD
is non-perturbative

• ChPT can be formulated
including LEFT effects

• non-perturbative matching
required, e.g. using lattice
QCD simulations
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3 Low-energy effective field theory Lepton-flavor violation: µ ! e�

Constraining operator coefficients

• huge number of free parameters, but for particular
processes often only a few contribute

• powerful constraints most easily derived for
operators mediating processes forbidden or
suppressed in the SM

• example: lepton-flavor violation
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3 Low-energy effective field theory Lepton-flavor violation: µ ! e�

Lepton-flavor violation: µ ! e�

! Dekens, Jenkins, Manohar, Stoffer, JHEP 01 (2019) 088

• hadronic effects can show up in purely leptonic
process

• perform matching to ChPT

• LF violation due to many operators, e.g.

O
S,RR

eq
= (ēLpeRr)(q̄LsqRt)

O
V,LL

eq
= (ēLp�

µ
eLr)(q̄Ls�µqLt)

O
T,RR

eq
= (ēLp�

µ⌫
eRr)(q̄Ls�µ⌫qRt)
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3 Low-energy effective field theory Lepton-flavor violation: µ ! e�

Lepton-flavor violation: µ ! e�

• semileptonic tensor operators contribute to µ ! e�:

µ

e

�

• non-perturbative effects not suppressed by light
quark masses
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3 Low-energy effective field theory Lepton-flavor violation: µ ! e�

Lepton-flavor violation: µ ! e�

• matching to ChPT at O(p4):

q̄L�µ⌫tµ⌫qR ! ⇤1htµ⌫(UFµ⌫
L + Fµ⌫

R U)i + i⇤2ht
µ⌫DµUU†D⌫Ui

• no external Goldstone bosons:

(ēLp�
µ⌫eRr)(q̄L�µ⌫qR) ! �2Qqe ⇤1 (ēLp�

µ⌫eRr)F
µ⌫ , q = u, d, s

• ⇤1,2: low-energy constants for ChPT with tensor
sources. NDA: ⇤1 = cT

F⇡
4⇡

with cT = O(1)

• or use lattice results for ⇤2 and relate ⇤1 to ⇤2 with
vector-meson dominance: cT ⇡ �1.0(2)

45



3 Low-energy effective field theory Lepton-flavor violation: µ ! e�

Lepton-flavor violation: µ ! e�

! Dekens, Jenkins, Manohar, Stoffer, JHEP 01 (2019) 088

• limit by MEG collaboration BR(µ ! e�) < 4.2 ⇥ 10�13

gives the constraint

|cT |

⇣��LT

eµ

��2 +
��LT

µe

��2
⌘1/2

. 1.65 ⇥ 10�5 TeV�2
,

at the hadronic scale ⇡ 2 GeV, with cT ⇡ �1.0(2)

• constraints on SMEFT operators at the weak scale
through running and matching SMEFT ) LEFT
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4 Summary and outlook

Indirect search for new physics

• high precision at experimental frontier must be
matched by high-precision theory calculations

• power of low-energy observables with SM
contributions often limited by hadronic effects,
which require non-perturbative methods: e.g. g � 2

• strong constraints from observables with vanishing
or suppressed SM contributions: e.g. LF violation
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4 Summary and outlook

Indirect search for new physics

• still need to evaluate and control non-perturbative
effects

• they can also lead to interesting enhancements and
new constraints: µ ! e�, µ ! 3e
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4 Summary and outlook

Dispersion relations

• used to describe non-perturbative hadronic effects by
providing model-independent relations between
observables

• example: hadronic contributions (HVP, HLbL) to
muon g � 2
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4 Summary and outlook

EFTs
• used to describe effects of new physics by providing

model-independent relations between observables

• one-loop SMEFT-LEFT matching: first step towards a
framework at next-to-leading-logarithm accuracy

• many interesting applications: LF violation,
CP -violation (EDMs), connection with collider physics

• apply non-perturbative methods (ChPT, dispersion
relations) to evaluate hadronic effects
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