Simulating the earliest stages of heavy-ion collisions

Teilchenphysikseminar Universität Wien November 12, 2019

Andreas Ipp

based on D. Gelfand, AI, D. Müller, Phys. Rev. D94 (2016) no.1, 014020 AI, D. Müller, Phys. Lett. B (2017) 771 AI, D. Müller, Eur.Phys.J. C78 (2018) no.11, 884

Institute for Theoretical Physics, TU Wien, Austria

dk

Der Wissenschaftsfonds.

Outline

- Simulation of early stages of heavy-ion collisions
 - color-glass-condensate (CGC) framework
 - colored particle-in-cell (CPIC)
 - beyond boost-invariance
- Numerical results
 - energy density at different rapidities
 - comparison to RHIC data

QCD phase diagram

Illustration: Swagato Mukherjee, Brookhaven National Laboratory.

Andreas Ipp

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (USA)

Universität Wien, Nov 12, 2019

Large Hadron Collider (LHC)

CERN

Heavy-ion collisions

(Simulation by UrQMD group, Frankfurt)

- Heavy ion nuclei (gold, lead) (d~14 fm)
- formation time of QGP: t~1 fm/c ≈ 3 ys
- QGP phase: RHIC 15 ys, LHC 25 ys
- good agreement with hydrodynamic simulations

Stages of a heavy-ion collision

Pancake thickness

French crêpe

© Image: David Monniaux

LHC (ALICE) @ CERN: Pb+Pb with ~5.5 TeV per nucleon pair ($\gamma \approx 2700$)

American pancake

RHIC @ BNL: Au+Au with ~200 GeV (γ ≈ 100)

RHIC beam energy scan: **~7.7 – 62.4 GeV** ($\gamma \approx 4 - 30$)

Color glass condensate

Nuclei at ultrarelativistic speeds can be described by **classical effective theory** in the color glass condensate (CGC) framework.

[Gelis, Iancu, Jalilian-Marian, Venugopalan, Ann.Rev.Nucl.Part.Sci.60:463-489,2010]

Large gluon occupation numbers \rightarrow coherent, classical gluon field

Split degrees of freedom into ...

- Hard partons = classical color charges
- Soft gluons = classical gauge field
- Static field configuration due to time dilation.
- Collision of two such classical fields creates the Glasma. [Gelis, Int.J.Mod.Phys. A28 (2013) 1330001]

Boost-invariant CGC collision

- color glass condensate (CGC):
 hard and soft degrees of freedom,
 weak coupling
- infinitely thin color currents
- boost-invariant solution

 $D_{\mu}F^{\mu\nu}(\tau,x_{T})=0$

Finite nucleus thickness

- extended color currents
- boost-invariance lost
- solve full 3+1 D Yang-Mills equation with currents

$$D_{\mu}F^{\mu\nu}(t, z, x_{T}) = J_{1}^{\nu} + J_{2}^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_{T}) = 0$$

$$D_{\mu} \equiv \partial_{\mu} + ig[A_{\mu}, \cdot]$$

→ use Colored particle-in-cell (CPIC) in laboratory frame

Colored particle-in-cell (CPIC)

(no random longitudinal structure)

CPIC: non-Abelian generalization of the particle-in-cell method from plasma physics.

[A. Dumitru, Y. Nara, M. Strickland: PRD75:025016 (2007)]

Nucleus model: 2D McLerran-Venugopalan (MV) model

[McLerran, Venugopalan: PRDD49 (1994) 3352-3355]

$$\langle \hat{\rho}^{a}(\boldsymbol{x}_{T})\hat{\rho}^{b}(\boldsymbol{x}'_{T})\rangle = g^{2}\mu^{2}\delta^{(2)}(\boldsymbol{x}_{T}-\boldsymbol{x}'_{T})\delta^{ab}$$

 $\mu \approx 0.5 \, GeV$ (Au, RHIC)

Infrared regulation

 $m \approx 200 \,\mathrm{MeV}$

Implementation

 $\begin{array}{ll} \text{Continuum equations of motion} & \text{Lattice equations of motion} \\ \\ D^{ab}_{\mu}F^{b,\mu\nu} = j^{a,\nu} & & & \\ D^{ab}_{\mu}F^{b,\mu\nu} = j^{a,\nu} & & & \\ D^{ab}_{\mu}F^{b,\mu\nu} = j^{a,\nu} & & & \\ D^{ab}_{i}(x) = U_{i}(x)U_{j}(x+i)U_{-i}(x+i+j)U_{-j}(x)] - j^{a}_{i}(x) \\ & & \\ U_{ij}(x) = U_{i}(x)U_{j}(x+i)U_{-i}(x+i+j)U_{-j}(x+j) \\ & & \\ \dot{U}_{i}(x) = -igaE^{a}_{i}(x)t^{a}U_{i}(x) \end{array}$

Parallel transporters (gauge links): $U_i(x) = \exp(igaA_i^a(x)t^a)$

Universität Wien, Nov 12, 2019

Andreas Ipp

Results

Austrian Kaiserschmarrn ("Emperor's mess")

© Image: Aleksi Pihkanen

3D energy density

3D energy density

3D energy density

Comparison to boost-invariant results

Energy density component tr $E_{L}^{2}(x_{\tau})$ in the transverse plane at t = 0.

Au-Au collision in the McLerran-Venugopalan (MV) model for SU(2)

 256×128^2 cells, $a_s = 0.028$ fm Shown: 64×64 cells

Andreas Ipp

Correlation analytic ↔ numerical

Main observable: energy-momentum tensor $T^{\mu\nu}(x)$

- Build $T^{\mu\nu}(x)$ from electric and magnetic fields $E^a_i(x)$, $B^a_i(x)$
- Average over configurations and integrate over transverse plane

$$\langle \varepsilon \rangle = \frac{1}{2} \left\langle E_T^2 + B_T^2 + E_L^2 + B_L^2 \right\rangle$$
$$\langle T^{\mu\nu} \rangle = \begin{pmatrix} \langle \varepsilon \rangle & 0 & 0 & \langle S_L \rangle \\ 0 & \langle p_T \rangle & 0 & 0 \\ 0 & 0 & \langle p_T \rangle & 0 \\ \langle S_L \rangle & 0 & 0 & \langle p_L \rangle \end{pmatrix} \qquad \qquad \langle p_T \rangle = \frac{1}{2} \left\langle E_L^2 + B_L^2 \right\rangle$$
$$\langle p_L \rangle = \frac{1}{2} \left\langle E_T^2 + B_T^2 - E_L^2 - B_L^2 \right\rangle$$
$$\langle S_L \rangle = \left\langle \left(\vec{E}^a \times \vec{B}^a \right)_L \right\rangle$$

• Diagonalize, obtain local rest-frame energy density

$$\langle \varepsilon_{\rm loc} \rangle = \frac{1}{2} \left(\langle \varepsilon \rangle - \langle p_L \rangle + \sqrt{\left(\langle \varepsilon \rangle + \langle p_L \rangle \right)^2 - 4 \left\langle S_L \right\rangle^2} \right)$$

Universität Wien, Nov 12, 2019

Pressure anisotropy

Longitudinal pressure $p_L(z)$ and transverse pressure $p_T(z)$

Andreas Ipp

Pressure anisotropy at midrapidity

observe very slow isotropization

longitudinal pressure $p_L(z)$ transverse pressure $p_T(z)$

Plot (space-time) rapidity profile of local rest-frame energy density

Compare to measured **rapidity profile of particle multiplicity (RHIC)** and **Landau model** prediction

- Simulation data in interval $\eta_s \in (-1,1)$ at $\tau = 1 \text{ fm}/c$
- Fit to Gaussian profile (dashed)
- Dependency on thickness (or rather \sqrt{s})
- Strong dependency on IR regulator, but *m*=0.2 GeV gives realistic shape
- However: no hydrodynamic expansion included
- Limited rapidity interval

Plot (space-time) rapidity profile of local rest-frame energy density

Compare to measured **rapidity profile of particle multiplicity (RHIC)** and **Landau model** prediction

- Simulation data in interval $\eta_s \in (-1,1)$ at $\tau = 1 \, \text{fm}/c$
- Fit to Gaussian profile (dashed)
- Dependency on thickness (or rather \sqrt{s})
- Strong dependency on IR regulator, but *m*=0.2 GeV gives realistic shape
- However: no hydrodynamic expansion included
- Limited rapidity interval

Limited rapidity interval due to ..

- Iongitudinal simulation box length / simulation time
- "interference" from fields of the nuclei

 $\eta_s = 1$

Universität Wien, Nov 12, 2019

Andreas Ipp

Free streaming glasma

Transverse pressure distribution

• Transverse pressure $p_T(x)$ generated by longitudinal fields

$$\left\langle p_T \right\rangle = \frac{1}{2} \left\langle E_L^2 + B_L^2 \right\rangle$$

• **Boost-invariant case**: initial conditions at $\tau = 0$ for longitudinal **E** and **B** fields, i.e. constant p_T along the boundary of the forward light cone

[Casalderrey-Solana et al., PRL (2013) 181601]

Energy production

Chromo-magnetic suppression?

Ratio of longitudinal magnetic over longitudinal electric contributions

Small ratio for thick nuclei

Chromo-magnetic suppression?

Ratio of longitudinal magnetic over longitudinal electric contributions $t \, [\text{fm/c}]$

 256^3 cells, $a_s = 0.02$ fm

Strong dependence on IR regulator *m*

→ spurious effect of our choice of initial conditions?

Longitudinal structure

Current implementation

Longitudinal randomness

Longitudinal randomness...

- leads to higher energy density in the glasma [Fukushima, PRD 77 (2008) 074005]
- could provide boost-invariance breaking perturbations, which can drive system towards isotropization [Epelbaum, Gelis, PRL 111 (2013) 232301]

Longitudinal structure

Wilson line expectation value $\langle \operatorname{tr}(V) \rangle$ of a single nucleus is sensitive to longitudinal structure.

Embedded 2D MV-model:

$$\langle \hat{\rho}^{a}(\boldsymbol{x}_{T}) \hat{\rho}^{b}(\boldsymbol{x}'_{T}) \rangle = g^{2} \mu^{2} \delta^{(2)}(\boldsymbol{x}_{T} - \boldsymbol{x}'_{T}) \delta^{ab}$$

$$\rho(t, \boldsymbol{z}, \boldsymbol{x}_{T}) = f(\boldsymbol{z} - t) \hat{\rho}(\boldsymbol{x}_{T})$$

3D MV-model: (with random longitudinal structure)

$$\langle \rho^{a}(x^{-}, \boldsymbol{x}) \rho^{b}(x^{-}, \boldsymbol{x}') \rangle$$

= $g^{2} \mu^{2} f(x^{-}) \delta(x^{-} - \boldsymbol{x}'^{-}) \delta^{(2)}(\boldsymbol{x}_{T} - \boldsymbol{x}'_{T}) \delta^{ab}$

f(z) ... longitudinal profile function

$$x^{-} = \frac{t-z}{\sqrt{2}}$$

Introducing independent "sheets" in longitudinal direction [Fukushima, PRD 77 (2008) 074005]

Dots: numerical result

Red: 3D MV-model Gray: intermediate

preliminary

Universität Wien, Nov 12, 2019

Lattice dispersion

Explicit vs. implicit solvers

1D scalar field example

Continuum action:
$$S[\phi] = \frac{1}{2} \int_{x} \partial_{\mu} \phi \partial^{\mu} \phi$$

Equations of motion : $\delta S = 0 \Rightarrow \partial_{\mu} \partial^{\mu} \phi = \partial_{t}^{2} \phi - \partial_{x}^{2} \phi = 0$

Discretized:
$$\frac{\phi(x,t+1) - 2\phi(x,t) + \phi(x,t-1)}{a_t} = \frac{\phi(x+1,t) - 2\phi(x,t) + \phi(x-1,t)}{a_s}$$

Explicit solver:
$$\phi(x,t+1) = F(\phi(\dots,t),\phi(\dots,t-1))$$

Implicit solver: $\phi(x,t+1) = F(\phi(\dots,t+1),\phi(\dots,t),\phi(\dots,t-1))$

Discretized action for explicit solver:

$$S[\phi] = \frac{1}{2}V\sum_{x} \left\{ \left(\frac{\phi(x,t+1) - \phi(x,t)}{a_t} \right)^2 + \left(\frac{\phi(x+1,t) - \phi(x,t)}{a_s} \right)^2 \right\}$$

Variational integrators

Lattice gauge theory

Universität Wien, Nov 12, 2019

Andreas Ipp

Dispersion-free propagation

Lattice dispersion

Lattice dispersion for leapfrog (LF), implicit (IM) and semi-implicit (SI) schemes.

Computational challenges

Simulating small part of nuclei at RHIC energies:

 γ -factor: 100 Lattice: 2048 × 192² cells Gauge group: SU(2) Color sheets: 1 Simulation box: (6 fm)³

- → 25 GB simulation data
- → 192 core hours on Vienna Scientific Cluster (VSC-3)

Simulating realistic off-central full size nuclei at LHC energies:

 γ -factor: 2500 Lattice: (25×20480) × 1920² cells Gauge group: SU(3) Color sheets: 100 Simulation box: (60 fm)³

- \rightarrow **25 PB** simulation data
- → **5 million core years** ON VSC-3 (150 years on VSC3; but only 130 TB available)

Machine learning in fluid dynamics

Accelerating Eulerian Fluid Simulation With Convolutional Networks Tompson et al, arxiv:1607.03597

- Compress computation time
 and memory usage
- Use convolutional autoencoders to compress state size
- Learn dynamics on compressed form
- Can generalize to larger grid sizes

Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep Neural Networks Hennigh, arxiv:1705.09036

Beyond speeding up simulations...

- Why do neural networks work surprisingly well in some cases, and why and how can they fail in others?
 - \rightarrow we can compare to ground-truth physical result
- Learn about physical system from new viewpoint involving machine learning tools
 - \rightarrow latent space representation can capture relevant degrees of freedom
 - \rightarrow irrelevant degrees of freedom are integrated out into weight parameters
- Renormalization group picture of deep neural networks:

An exact mapping between the Variational Renormalization Group and Deep Learning Mehta, Schwab, arxiv:1410.3831

Jet momentum broadening

Work in preparation, together with Daniel Schuh and David Müller

Andreas Ipp

Conclusions & Outlook

- Simulate CGC collisions in 3D+1 using Colored Particle-In-Cell
- Finite thickness breaks boost invariance \rightarrow Gaussian rapidity profiles
- Outlook:
 - Study effect of random longitudinal structure
 - Observables at early times: gluon production, momentum broadening, ...
 - Explore machine learning

open source:

www.openpixi.org

