Simulating the earliest stages of heavy-ion collisions

Teilchenphysikseminar Universität Wien
November 12, 2019

Andreas Ipp

based on

Institute for Theoretical Physics, TU Wien, Austria
Outline

- Simulation of early stages of heavy-ion collisions
 - color-glass-condensate (CGC) framework
 - colored particle-in-cell (CPIC)
 - beyond boost-invariance
- Numerical results
 - energy density at different rapidities
 - comparison to RHIC data

![Diagram showing initial state, CGC, "Glasma", QGP, hadronization, and hadronic gas]
QCD phase diagram

Illustration: Swagato Mukherjee, Brookhaven National Laboratory.
Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (USA)
Large Hadron Collider (LHC)

CERN
Heavy-ion collisions

- Heavy ion nuclei (gold, lead) ($d \sim 14$ fm)
- formation time of QGP: $t \sim 1$ fm/c ≈ 3 ys
- QGP phase: RHIC 15 ys, LHC 25 ys
- good agreement with hydrodynamic simulations
Stages of a heavy-ion collision

1 fm/c ≈ 3.3 \cdot 10^{-24} s ≈ 3.3 ys

Initial state: Lorentz-contracted nuclei (color glass condensate)

Collision event

Glasma (τ ≈ 0 - 1 fm/c): quasi-classical fields (classical field equations)

QGP (τ ≈ 1 - 10 fm/c): quarks and gluons (relativistic viscous hydrodynamics) (almost) isotropic and in thermal equilibrium

Hadronization (τ ≈ 10 fm/c): confinement transition → hadron formation

Hadronic gas (τ ≈ 10 - 15 fm/c): hadrons (kinetic transport theory)

Freeze-out (τ ≈ 15 fm/c): interactions stop

scope of this project
Pancake thickness

French crêpe

LHC (ALICE) @ CERN: Pb+Pb with ~5.5 TeV per nucleon pair ($\gamma \approx 2700$)

American pancake

RHIC @ BNL: Au+Au with ~200 GeV ($\gamma \approx 100$)

RHIC beam energy scan: ~7.7 – 62.4 GeV ($\gamma \approx 4 - 30$)
Nuclei at ultrarelativistic speeds can be described by **classical effective theory** in the color glass condensate (CGC) framework.

Large gluon occupation numbers \rightarrow coherent, classical gluon field

Split degrees of freedom into ...

- Hard partons = classical color charges
- Soft gluons = classical gauge field

- Static field configuration due to time dilation.
- **Collision of two such classical fields creates the **Glasma**.**

Figure from L. McLerran: Proceedings of ISMD08, p.3-18 (2008)
Boost-invariant CGC collision

- color glass condensate (CGC): hard and soft degrees of freedom, weak coupling
- infinitely thin color currents
- boost-invariant solution
- solve Yang-Mills equations numerically in 2+1 D

\[D_\mu F^{\mu\nu}(\tau, x_T) = 0 \]
Finite nucleus thickness

- extended color currents
- boost-invariance lost
- solve full 3+1 D Yang-Mills equation with currents

\[D_\mu F^{\mu \nu}(t, z, x_T) = J_1^\nu + J_2^\nu \]
\[D_\mu J^{\mu}(t, z, x_T) = 0 \]

\[D_\mu \equiv \partial_\mu + ig [A_\mu, \cdot] \]

→ use Colored particle-in-cell (CPIC) in laboratory frame
Colored particle-in-cell (CPIC)

Nucleus model: 2D McLerran-Venugopalan (MV) model
[McLerran, Venugopalan: PRDD49 (1994) 3352-3355]

\[
\langle \hat{\rho}^a(x_T) \hat{\rho}^b(x'_T) \rangle = g^2 \mu^2 \delta^{(2)}(x_T - x'_T) \delta^{ab}
\]

\[\mu \approx 0.5 \text{ GeV} \quad \text{(Au, RHIC)}\]

Infrared regulation
\[m \approx 200 \text{ MeV}\]

Gaussian profile with thickness \(\sigma\).
\[\sigma \approx R/\gamma\]

(no random longitudinal structure)
Implementation

Continuum equations of motion

\[D^a_{\mu} F^{b,\mu\nu} = j^{a,\nu} \]

Lattice equations of motion

\[\dot{E}^a_i(x) = \frac{2}{g a^3} \sum_{j \neq i} \text{Im} \left[\text{tr} \left(U_{ij}(x) + U_{i-j}(x) \right) \right] - j^a_i(x) \]

\[U_{ij}(x) = U_i(x) U_j(x + i) U_{-i}(x + i + j) U_{-j}(x + j) \]

\[\dot{U}_i(x) = -iga E_i^a(x) t^a U_i(x) \]

Parallel transporters (gauge links):
\[U_i(x) = \exp (iga A_i^a(x)t^a) \]
Results

Austrian Kaiserschmarrn („Emperor's mess“)

© Image: Aleksi Pihkanen
3D energy density
Comparison to boost-invariant results

Energy density component $\text{tr } E_L^2(x_T)$ in the transverse plane at $t = 0$.

Au-Au collision in the McLerran-Venugopalan (MV) model for SU(2)

256×128² cells, $a_s = 0.028$ fm
Shown: 64×64 cells
Correlation analytic ↔ numerical

(too thin – numerically unstable)

256×128^2 cells, $a_s = 0.028$ fm, $a_t = a_s / 2$
Observables

Main observable: energy-momentum tensor $T^{\mu\nu}(x)$

- Build $T^{\mu\nu}(x)$ from electric and magnetic fields $E_i^a(x), B_i^a(x)$
- Average over configurations and integrate over transverse plane

$$
\langle T^{\mu\nu} \rangle = \begin{pmatrix}
 \langle \varepsilon \rangle & 0 & 0 & \langle S_L \rangle \\
 0 & \langle p_T \rangle & 0 & 0 \\
 0 & 0 & \langle p_T \rangle & 0 \\
 \langle S_L \rangle & 0 & 0 & \langle p_L \rangle \\
\end{pmatrix}
$$

$$
\langle \varepsilon \rangle = \frac{1}{2} \langle E_T^2 + B_T^2 + E_L^2 + B_L^2 \rangle \\
\langle p_T \rangle = \frac{1}{2} \langle E_L^2 + B_L^2 \rangle \\
\langle p_L \rangle = \frac{1}{2} \langle E_T^2 + B_T^2 - E_L^2 - B_L^2 \rangle \\
\langle S_L \rangle = \left\langle \left(\vec{E}^a \times \vec{B}^a \right)_L \right\rangle
$$

- Diagonalize, obtain local rest-frame energy density

$$
\langle \varepsilon_{\text{loc}} \rangle = \frac{1}{2} \left(\langle \varepsilon \rangle - \langle p_L \rangle + \sqrt{\left(\langle \varepsilon \rangle + \langle p_L \rangle \right)^2 - 4 \langle S_L \rangle^2} \right)
$$
Pressure anisotropy

Longitudinal pressure $p_L(z)$ and transverse pressure $p_T(z)$

\rightarrow Pronounced pressure anisotropy

\[
\begin{align*}
\langle p_T \rangle &= \frac{1}{2} \langle E_L^2 + B_L^2 \rangle \\
\langle p_L \rangle &= \frac{1}{2} \langle E_T^2 + B_T^2 - E_L^2 - B_L^2 \rangle
\end{align*}
\]

$t_0 = -1$ fm/c (before collision)

$t_1 = +2$ fm/c (after collision)

$t_2 = +5$ fm/c (late times)
Pressure anisotropy at midrapidity

observe very slow isotropization

longitudinal pressure $p_L(z)$
transverse pressure $p_T(z)$
Rapidity profiles

Plot (space-time) rapidity profile of local rest-frame energy density

Compare to measured **rapidity profile of particle multiplicity (RHIC)** and **Landau model** prediction

- Simulation data in interval $\eta_s \in (-1,1)$ at $\tau = 1 \text{ fm/c}$
- Fit to Gaussian profile (dashed)
- Dependency on thickness (or rather \sqrt{s})
- Strong dependency on IR regulator, but $m=0.2 \text{ GeV}$ gives realistic shape
- However: no hydrodynamic expansion included
- Limited rapidity interval

\[\sqrt{s_{NN}} = 200 \text{ GeV} \]

\[\eta_s \in (-1,1) \text{ at } \tau = 1 \text{ fm/c} \]

\[m = 0.2 \text{ GeV} \]

\[m = 0.4 \text{ GeV} \]

\[m = 0.8 \text{ GeV} \]

[RHIC data: Bearden et al., PRL 94 (2005) 162301]
Rapidity profiles

Plot (space-time) rapidity profile of local rest-frame energy density

Compare to measured rapidity profile of particle multiplicity (RHIC) and Landau model prediction

- Simulation data in interval $\eta_s \in (-1,1)$ at $\tau = 1 \text{ fm}/c$
- Fit to Gaussian profile (dashed)
- Dependency on thickness (or rather \sqrt{s})
- Strong dependency on IR regulator, but $m = 0.2 \text{ GeV}$ gives realistic shape
- However: no hydrodynamic expansion included
- Limited rapidity interval

$\sqrt{s_{NN}} = 130 \text{ GeV}$

$\sqrt{s_{NN}} = 130 \text{ GeV}$

\[\eta, \tau \]

\[y \]

\[\varepsilon_{\text{loc}}(\eta, \eta_s) / \varepsilon_{\text{loc}}(0, 0) \]

\[(0) \cdot \frac{\varepsilon_{\text{loc}}(\eta, \eta_s)}{N \cdot \varepsilon_{\text{loc}}(0, 0)} \]

\((a) \) $m = 0.2 \text{ GeV}$
\((b) \) $m = 0.4 \text{ GeV}$
\((c) \) $m = 0.8 \text{ GeV}$
Rapidity profiles

Limited rapidity interval due to ..

- longitudinal simulation box length / simulation time
- “interference” from fields of the nuclei

Blue: $p_L(x)$
Red: $p_T(x)$
Rapidity profiles

Combining rapidity profiles for increasingly boosted collisions

preliminary
Compare local velocity of glasma to free streaming condition $v = z/t$

Lines (almost) on top of each other.

Black solid: measured v_z
Red dashed: free streaming $v_{fs} = z/t$
Transverse pressure distribution

- Transverse pressure \(p_T(x) \) generated by longitudinal fields

\[
\langle p_T \rangle = \frac{1}{2} \langle E_L^2 + B_L^2 \rangle
\]

- **Boost-invariant case**: initial conditions at \(\tau = 0 \) for longitudinal \(E \) and \(B \) fields, i.e. constant \(p_T \) along the boundary of the forward light cone

[3+1 Yang-Mills](Casalderrey-Solana et al., PRL (2013) 181601)

Holographic model

\[
P_T/\rho^4
\]
Non-Abelian version of Poynting theorem

\[\frac{d\varepsilon}{dt} + \frac{1}{V} \int \partial_i S_i \, d^3x + \frac{1}{V} \int E_i^a J_i^a \, d^3x = 0 \]

Energy production caused by longitudinal chromoelectric fields
Chromo-magnetic suppression?

Ratio of longitudinal magnetic over longitudinal electric contributions

“Thin” nuclei ($\gamma \sim 200 \sim 1000$)

“Thick” nuclei ($\gamma \sim 20 \sim 40$)

$tr(B_L^2) / tr(E_L^2)$

t [fm/c]

$\sigma = 0.008$ fm

$\sigma = 0.016$ fm

$\sigma = 0.032$ fm

$\sigma = 0.16$ fm

$\sigma = 0.24$ fm

$\sigma = 0.32$ fm

Small ratio for thick nuclei
Chromo-magnetic suppression?

Ratio of longitudinal magnetic over longitudinal electric contributions

\[\frac{\text{tr}(B_L^2)}{\text{tr}(E_L^2)} \text{ vs. } t \text{ [fm/c]} \]

256³ cells, \(a_s = 0.02 \text{ fm} \)

\[\sigma = 0.08 \iff \gamma \approx 45 \]

Strong dependence on IR regulator \(m \)

\(\rightarrow \) spurious effect of our choice of initial conditions?
Longitudinal structure

Current implementation

Longitudinal randomness

boosted

“at rest”

“at rest”

boosted

Longitudinal randomness…

• leads to higher energy density in the glasma
 [Fukushima, PRD 77 (2008) 074005]

• could provide boost-invariance breaking perturbations, which can drive system towards isotropization
 [Epelbaum, Gelis, PRL 111 (2013) 232301]
Wilson line expectation value $\langle \text{tr}(V) \rangle$ of a single nucleus is sensitive to longitudinal structure.

Embedded 2D MV-model:

$$\langle \hat{\rho}^a(x_T)\hat{\rho}^b(x'_T) \rangle = g^2 \mu^2 \delta^{(2)}(x_T - x'_T) \delta^{ab}$$

$$\rho(t, z, x_T) = f(z - t) \hat{\rho}(x_T)$$

3D MV-model:

(with random longitudinal structure)

$$\langle \rho^a(x^-, x) \rho^b(x^-, x') \rangle = g^2 \mu^2 f(x^-) \delta(x^- - x'^-) \delta^{(2)}(x_T - x'_T) \delta^{ab}$$

$$f(z) \ldots \text{longitudinal profile function} \quad x^- = \frac{t - z}{\sqrt{2}}$$

Introducing independent “sheets” in longitudinal direction

[Fukushima, PRD 77 (2008) 074005]
Lattice dispersion

Temporal to spatial lattice spacing: \(\xi = \frac{a_t}{a_s} \)

Courant-Friedrichs-Lewy (CFL) condition: \(\xi \leq \frac{1}{\sqrt{d}} \) in \(d \) dimensions
(for explicit solvers like the Leapfrog algorithm)
Explicit vs. implicit solvers

Continuum action: \[S[\phi] = \frac{1}{2} \int_x \partial_\mu \phi \partial^\mu \phi \]

Equations of motion: \[\delta S = 0 \Rightarrow \partial_\mu \partial^\mu \phi = \partial_t^2 \phi - \partial_x^2 \phi = 0 \]

Discretized: \[
\frac{\phi(x,t+1) - 2\phi(x,t) + \phi(x,t-1)}{a_t} = \frac{\phi(x+1,t) - 2\phi(x,t) + \phi(x-1,t)}{a_s}
\]

Explicit solver: \[\phi(x,t+1) = F(\phi(...,t),\phi(...,t-1)) \]

Implicit solver: \[\phi(x,t+1) = F(\phi(...,t+1),\phi(...,t),\phi(...,t-1)) \]

Discretized action for explicit solver:
\[S[\phi] = \frac{1}{2} V \sum_x \left(\left(\frac{\phi(x,t+1) - \phi(x,t)}{a_t} \right)^2 + \left(\frac{\phi(x+1,t) - \phi(x,t)}{a_s} \right)^2 \right) \]

1D scalar field example
Variational integrators

Usual approach

Variation

\[\delta S = 0 \]

Equations of motion + preserved constraints

\[\partial_\mu \partial^\mu \phi(x) + \ldots = 0 \]

\[C(\phi(x)) = 0 \]

Discretization

(finite differences, sums, ...)

Discretized action

\[S[\phi] = V \sum_x \mathcal{L}(\phi_x, \bar{\partial}_\mu \phi_x, \ldots) \]

If possible: keep symmetries!

Variational integrators

Continuum

\[S[\phi] = \int d^4x \mathcal{L}(\phi(x), \partial_\mu \phi(x), \ldots) \]

Discretized equations of motion + constraints (?)

\[\bar{\partial}_\mu \bar{\partial}^\mu \phi(x) + \ldots = 0 \]

\[\bar{C}(\phi_x) = 0 \]

Discrete Variation

\[\delta S = 0 \]

“Inherited” symmetries
Lattice gauge theory

Link variable: \(U_{x,\mu} \cong \exp(ig a^{\mu} A_{x,\mu}) \)

Plaquette: \(U_{x,\mu,\nu} = U_{x,\mu} U_{x+\mu,\nu} U_{x+\mu+\nu,-\mu} U_{x+\nu,-\mu} \)

Relation to field strength tensor:
\[
\text{tr}(2 - U_{x,\mu,\nu} - U_{x,\mu,\nu}^\dagger) \approx \frac{1}{2} \sum_a \left(g a^\mu a^\nu F^{a}_{\mu \nu}(x) \right)^2
\]

Identity: \(C_{x,\mu,\nu} \equiv U_{x,\mu} U_{x+\mu,\nu} - U_{x,\nu} U_{x+\nu,\mu} \)

\[
M_{x,ij} \quad \text{and} \quad W_{x,1i}
\]
Dispersion-free propagation

Standard *Wilson action:*

$$S[U] = \frac{V}{g^2} \sum_x \left(\sum_i \frac{1}{(a^0 a^i)^2} \text{tr} \left(2 - U_{x,0i} - U_{x,0i}^\dagger \right) - \frac{1}{2} \sum_{i,j} \frac{1}{(a^i a^j)^2} \text{tr} \left(2 - U_{x,ij} - U_{x,ij}^\dagger \right) \right)$$

Discretized action for the *semi-implicit scheme:*

$$S[U] = \frac{V}{g^2} \sum_x \left(\sum_{i,j} \frac{1}{(a^0 a^i)^2} \text{tr} \left(C_{x,0i} C_{x,0i}^\dagger \right) + \sum_i \frac{1}{(a^0 a^i)^2} \text{tr} \left(C_{x,0i} C_{x,0i}^\dagger \right) \right) - \frac{1}{4} \sum_{i,j} \frac{1}{(a^i a^j)^2} \text{tr} \left(C_{x,ij} M_{x,ij}^\dagger \right) - \frac{1}{4} \sum_{i,j} \frac{1}{(a^i a^j)^2} \text{tr} \left(C_{x,1j} W_{x,1j}^\dagger + \text{h.c.} \right)$$

Implicit part

Semi-implicit part

with $C_{x,\mu\nu} \equiv U_{x,\mu} U_{x+\mu,\nu} - U_{x,\nu} U_{x+\nu,\mu}$ etc.

For details see:
Lattice dispersion for leapfrog (LF), implicit (IM) and semi-implicit (SI) schemes.
Computational challenges

Simulating small part of nuclei at RHIC energies:

\[\gamma \text{-factor: } 100 \]
\[\text{Lattice: } 2048 \times 192^2 \text{ cells} \]
\[\text{Gauge group: SU(2)} \]
\[\text{Color sheets: } 1 \]
\[\text{Simulation box: } (6 \text{ fm})^3 \]

\[\rightarrow 25 \text{ GB simulation data} \]
\[\rightarrow 192 \text{ core hours on Vienna Scientific Cluster (VSC-3)} \]

Simulating realistic off-central full size nuclei at LHC energies:

\[\gamma \text{-factor: } 2500 \]
\[\text{Lattice: } (25 \times 20480) \times 1920^2 \text{ cells} \]
\[\text{Gauge group: SU(3)} \]
\[\text{Color sheets: } 100 \]
\[\text{Simulation box: } (60 \text{ fm})^3 \]

\[\rightarrow 25 \text{ PB simulation data} \]
\[\rightarrow 5 \text{ million core years on VSC-3} \]
\[(150 \text{ years on VSC3; but only 130 TB available}) \]
Machine learning in fluid dynamics

Accelerating Eulerian Fluid Simulation With Convolutional Networks
Tompson et al, arxiv:1607.03597

- Compress computation time and memory usage
- Use convolutional autoencoders to compress state size
- Learn dynamics on compressed form
- Can generalize to larger grid sizes

Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep Neural Networks
Hennigh, arxiv:1705.09036
Beyond speeding up simulations...

- Why do neural networks work surprisingly well in some cases, and why and how can they fail in others?
 → we can compare to ground-truth physical result
 - Learn about physical system from new viewpoint involving machine learning tools
 → latent space representation can capture relevant degrees of freedom
 → irrelevant degrees of freedom are integrated out into weight parameters

- Renormalization group picture of deep neural networks:

An exact mapping between the Variational Renormalization Group and Deep Learning
Mehta, Schwab, arxiv:1410.3831
Jet momentum broadening

Work in preparation, together with Daniel Schuh and David Müller
Conclusions & Outlook

• Simulate CGC collisions in 3D+1 using Colored Particle-In-Cell
• Finite thickness breaks boost invariance \rightarrow Gaussian rapidity profiles

• **Outlook:**
 - Study effect of random longitudinal structure
 - Observables at early times: gluon production, momentum broadening, ...
 - Explore machine learning

D. Gelfand, AI, D. Müller, Phys. Rev. D94 (2016) no.1, 014020

open source:
www.openpixi.org