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Large (global) logarithms

® At collider experiments we compare theoretical predictions for
observables w to measurement

dw

| —

do _ / d@j—g)é(w —w({k:}))

¢ Examples:

» Event shapes, e.g. Thrust S 1P| — |pi - |

> prspectra
» Energy distributions

)

¢ These observable can suffer from Sudakov logarithms spoiling
perturbation theory
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Resummation

. Source: Soft and collinear divergences cancel (KLN) ...

ete” — qq: leading T~0 T>0

- ... but phase space constraints differ between real and virtual emissions

- Resummation: Systematically construct
healthy all-order expression, which

expands to the pathological perturbative
series

» Pure QCD methods rely on coherent

branching algorithms, effective theory
methods on RGE flow

Automation in QCD: CAESAR/ARES: gr [GeV]
[Banfi, Salam, Zanderighi, '04], [Banfi, McAslan, Monni, Zanderighi, "14] 1109.6027(Becher / Neubert/ Wilhelm)



Introducing SCET: ituition

Soft-Collinear Effective Theory is an effective theory whose degrees
of freedom are soft and collinear partons - the modes giving rise to

[Bauer, Fleming, Pirjol, Stewart, "00]

SudakOV log ar ltth [Beneke, Chapovsky, Diehl, Feldmann, 02]
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soft large-angle radiation Es < Ey do not deflect the

energetic quark
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= jet of collinear particles m5 < E?




More mtuition: Recall Fernm

- Used to simplify low energy description, yields low-energy-expanded SM result

- Weak bosons integrated out

. Top-down construction: Integrating out / Matching

v
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- Reproduce expanded result from High energy matching + low energy dynamics



Towards SCE'T: Method of regions

- Method to derive the leading behaviour of a loop integral in some limit:
- Identify regions (typical momentum scalings) that contribute to singularities

- Expand the integrand in these regions (will require regularisation)

» Add individual results to reproduce leading terms of the full result

»  Sketched example: Sudakov form factor

nt = (1,0,0,1)
n* = (1,0,0,—1)




More intuition: Method of regions 11

- Notation: n* = (1,0,0,1)

A = (1,0,0,—1) <k

w_ n”_ Lop + = oL k'\k /@
pl=—Smn-ptn-ptps = ,p ,p7)

ZNQ()‘2717)\) pNQ(la)‘27)‘)

- Contributing regions:

hard k~Q(1,1,1)
. k~Q(1, 2%\
collinear . Q()\Qj 1))
(A

(k—1)* = k* 4+ 1% — 2kl
— k% =2k

- Expansion, e.g. in hard region:

- Individual region integrals need regularisation, but the sum is finite



Soft-Collinear Etffective Theory

- Construct effective theory for QCD to reproduce method of regions

- Each region finds a place:
(a) high energy region (hard region) goes into matching
(b) low energy regions get a dynamical field each

- Full result from high energy matching and low energy dynamics
. Alternative view: Expanded QCD diagrams match onto diagrams in SCET

»  Crucial: Low energy fields can be decoupled in SCET Lagrangian for QCD:

L=Le+ Lo+ L,
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The current operator

- For applications, we also need the matched current

- Naively, we would expect

$(0)7"9(0) = Cv ¢a(0)7 ¢ (0)

We actually find

»(0)y*4)(0) — /dsdt Cyv(s,t) (gﬁW,,—IS%) (sn)vy!] (SanCn) (tn)

with Wilson lines for soft and collinear fields:

0

0
W. = Pexp (zg/ dsn - Ac(x + Sn)> Sn(s) = Pexp (zg/

— OO — 00

dsn - As(x + sn))

- Both non-locality and Wilson line appearance collect operators at same power

. 2
02

+ See e.g. derivative tower: there are large momentum components, so
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SCE'T: Factorisation

Use this operator in a matrix element and it decomposes (if the observable factorises as well):

Cv[* B{0]0na| X))

= cvl? o] [Cwe] [@wet] o) (of [w2cg) woce) 1oy (ol [stsa] [shs.] ' 10

2 4 p? (for dijet

1 do pL tD
— 27 /dQ/d2 27 27 S LC? R’ hu
oo dr H(Q, p) PL pr Jr,1) J(pR,p) S(TQ p) thrust)

J(p) H(Q?) J(PR)
&QQQy § Qoqo¥
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SCE'T: resummation

- H, Ji, and S contain logarithms involving their respective natural scales:

2 2 2
Mz’l weoo e

an_ 1 202 Q2

»  They must be evaluated at a common scale, but there is no common scale that
avoids large logs. Any choice can at best remove one source of large logarithms:

i ~Q g~ QN s~ QN

- So we solve the RGEs and evolve our functions from their natural scales instead:

dH 2 2
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Motivation for Automation

- We need to compute anomalous dimensions and finite terms to some
perturbative order required to achieve any given desired logarithmic accuracy,

like 2-loop for NNLL

- So far we proceed observable by observable individually:

o Thrust ¢ Threshold Drell-Yan
[Becher, Schwartz, '08] [Becher, Neubert, Xu, "07]
» C-Parameter * W/Z/H @ large pr
[Hoang, Kolodrubetz, Mateu, Stewart, '14] [Becher, Bell, Lorentzen, Marti, '13,'14]
* Angularities * Jet veto
[Bell, Hornig, Lee, Talbert, WIP] [Becher et al. "13, Stewart et al., "13]
° °

- Can this be made more systematic? It's possible in full QCD...

Automation in QCD: CAESAR/ARES: [Banfi, Salam, Zanderighi, '04], [Banfi, McAslan, Monni, Zanderighi, '14] 14



Universal dijet soft functions

The generic form of the dijet soft function we get from the factorisation:

0
S(rm) = 3 3 MO k) Tr [OIS{OSWO1X)P  Sa(a) = Peaplig, [ - Aula + sm)ds)

— o0

»  The matrix element is independent of the observable and is the source of divergences

- The measurement function (M) is observable dependent and harmless, e.g.

Minrust (7-7 {kz}) = €XP (_7- ZZ min(k;r, kz_)) (in Laplace space)

- Idea: isolate singularities at each order and calculate the associated coefficient numerically:

S(r) ~ 1+ a5 + 5 +a} +0(d)
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Universal soft functions: N1LO

The virtual corrections are scaleless in dim reg, so the NLO soft function is:

2
T 167, C
S (7, ) = 2n) i / 5(k?) O(K°) M_F M(T,k) d’k

- To disentangle the soft and collinear divergences we substitute:

R
k_ — ke — kT\/y
VAL

- We also must specify the measurement function M. We assume its form:

MWD (1,k) = exp (—Tkry? f(y,9))
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Measurement functions: NLLO examples

MW (1 k) = exp (—Tkry? f (y,9))

Observable n f(y,9)
Thrust 1 1
Angularities 1-—A 1
Recoil-free broadening 0 1/2
C-Parameter 1 1/(1+y)
Threshold Drell-Yan —1 14y
W Q large pr —1 1+y—2,/y cost
ete™ transverse thrust 1 8\1@ <\/(ccose+ (% — \/ﬁ) %)2 +1—cos26 — ‘ccos@+ (% — \/ﬁ)g )

For transverse thrust, s = sinfp, ¢ = cos0p, with 0 = /beam axis, thrust axis
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Universal soft functions: N1.O master formula

The kr integration can now be performed analytically

- The NLO Master soft function then reads:

s 1
SW (7, ) ~ F(—2e)/ dﬁ/ dy y= " f(y, 0)*
0 0

- To extract the singularity, subtract and leave a plus-distribution behind:

/0 dyy "t g(y) = /0 dyy= " [g(y) — g (0) + g (0)]

l

divergent

- finite/O(y) N i
- expand in e ne
. integrate - singularity

numerically isolated
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Assumptions and classification: NLLO

Assume: Exponential function, motivated by Laplace space

exp(—Tw({k,,;})) — /OOO dw exp(—7w) 6(w — w({k;}))

S — e —E———

Assume: w is linear in mass dimension

M = exp(—Tkr f(y,9))

Classify: How does f behave as y vanishes?

M = exp(—Thry? f(y,9))

Combined with Infrared and collinear safety (IRC) this is enough to ensure the
behaviour of the observable is under control in the critical limits:

Soft (kr = 0) =  vanishes, fixed by mass dimension

Collinear (y — 0) =  ffinite

Also Assume: f non-vanishing over almost all of phase space
19



Automation: NL.O vs. NN1L.O

NLO:

NNLO:

S

& <

<

> <

> <D

> & &<
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Automation: NL.O vs. NN1L.O

Consider the double real emission:

4e

S% (1) = (27:32d—2 /ddk 5(k?) G(ko)/ddl 5(1%) 6(1°) | Ak, D> M(7, k1)

The matrix elements are no longer nice and easy, see e.g., the CeTrns color structure:

2 Uk 41 ) (ks +13) — (hly —hyl )
(k- +1-)% (k4 + 14)(2k - 1)

|A(k,1)]* = 1287%a2CpTrn;

The singularities are partially overlapping, not as easy to extract, but it’s possible

We then again assume the form of the measurement function:

M(Q) (7', k, l) — €XPp (_TpT y% F (y7 a, b7 797 ﬁk? 191))

Why is this enough?

21



2-loop - Correlated emissions: CrCa, CpTyng

- Matrix element divergent in four critical limits: Behaviour
(Global soft) fixed by mass dimension

@éﬁ@ (Individual soft) fixed by IR safety

ﬁg (emissions collinear) fixed by collinear safety

4@5@ (“jet-collinear”) unconstrained =» Classify!

- Only one unconstrained variable

- Variable definition ensures commuting limits

M(2> (’7', k, l) — €XP (_TpT y% F (y7 a, b7 197 ﬁk? Q91))

22



2-loop - Uncorrelated emissions: C5

4 critical limits: Behaviour
(Global soft) fixed by mass dimension
(individual soft) fixed by IR safety
2
(one emission “jet-collinear”) unconstrained

Two “unconstrained” limits

Worse: Overlapping zeroes:

wik,1) = kry? flye) + 1y fl)

Solution: adapt parametrisation for kr, I

= a2 () = g ('

14+b6 \1+y
23



2-loop - Uncorrelated emissions: C5

4 critical limits: Behaviour
(Global soft) fixed by mass dimension
(individual soft) fixed by IR safety
2
(one emission “jet-collinear”) unconstrained

Two “unconstrained” limits

Worse: Overlapping zeroes:

wik,1) = kry? flye) + 1y f)

Solution: adapt parametrisation for kr, I

b= a2 () = g L (Y’

14+b6 \1+y
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2-loop - Uncorrelated emissions: C5

» 4 critical limits: Behaviour
(Global soft) fixed by mass dimension
(individual soft) fixed by IR safety
2
(one emission “jet-collinear”) unconstrained

Suitable parametrisation solves overlapping limit problem

n
2

M (7: k1) = exp (_T qr Yy, ?Jz% G (Yr, Y1, b, 0, Uk, ﬁl))

25



The completed framework

- Semi-Analytic expressions are available for anomalous dimensions
[1805.12414]

- For finite parts and anomalous dimensions implementations exist
using pySecDec and a dedicated C++ based program:

[Borowka, Heinrich, Jahn, Jones,

Kerner, Schlenk, Zirke, 1703.09692] ;\(S 9
/ka, ERVE
L

(Soft function Simulation and Evaluation
for Real and Virtual Emissions)

- SoftSERVE uses the Cuba library’s Divonne integrator, implements

numerical improvements, and has multiprecision variable support
[Hahn, hep-ph/0404043]

» Correlated emission variant online on HEPForge: [1812.08690]



SoftSERVE

- First release (0.9) has correlated emissions only

- User required input (C++ syntax):
(a) correlated: two functions F (roughly: one for each hemisphere)
(b) uncorrelated: three functions G
(c) two parameters

(d) optional: parameter values, integrator settings

- Two integrator settings pre-defined

- Scripts available for renormalisation in Laplace (and later
momentum) space, and for dealing with Fourier space observables

»  For now: limited to collinear anomaly framework (more later)

27



Results: SCE'T;

Soft function ~Ea v, 54 Cy’
[Keu;ryh;?: - 15.7945 3.90981 _56.4992 43.3902
Monni et al, 11 (15.7945) (3.90981) (—56.4990) (43.3905)

C-Parameter 15.7947 3.90980 —57.9754 43.8179
[Hoang et al, '14] (15.7945) (3.90981) [—58.16 £ 0.26] 143.74 + 0.06]

Threshold Drell-Yan 15.7946 3.90982 6.81281 —10.6857

[Belitsky, 98] (15.7945) (3.90981) (6.81287) (—10.6857)

W Q@ large pr 15.7947 3.90981 —2.65034 —25.3073
[Becher et al, ’12] (15.7945) (3.90981) (—2.65010) (—25.3073)

Transverse Thrust —158.278 19.3955
[Becher, Garcia, Piclum, "15] [—148+20) [1843]
= vaCFCA + vifopTan Co = chCFC'A + céVfCFTan + %(01)2

Derived in few minutes to hours on an 8 core desktop machine

Deviations from analytic results compatible with 1o error estimate

28




Results: Angularities

. Generalisation of thrust
- Obeys non-abelian observation

- New result, used in the NNLL' resummation in [1808.07867,
Bell, Hornig, Lee, Talbert]

257 L B
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Interesting physies 1: SCET-1

- Formulae for anomalous dimensions can be derived
» Simpler than full bare calculation (fewer integrations)
» Only forward limit contributes

» Many observables share anomalous dimensions (e.g. Threshold Drell-Yan,
Thrust, C-Parameter, W at large pr,...)

» Remaining observable dependence via mode choice, parameter n

- For simple cases, formulae for finite parts are possible

»  C-Parameter matching corrections now available analytically

81+ 27 9

2212 6772  137x*  7T70(s 224 1072 280(s wd
B B - 2
Co = ( 31 54 + 15 9 )CFCA—I—( + )CFCZFTLJC—I——Q CF
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Interesting physies 11: SCET-2

Recall: For SCET-2 observables, soft and collinear scale match
- second regulator required

= resummation via collinear anomaly or rapidity renormalisation group
RRG assumes regularisation of connected webs

We’re using phase space regularisation, not c-webs
= A priori (and unexpectedly) incompatible with RRG

Collinear anomaly exponent (rapidity anomalous dimension)
formulae can be derived and is very similar to SCET-1 anom. dim.
= Can be extrapolated from family of SCET-1 observables (e.g. angularities)

= Only difference related to running coupling (1-loop term)

No such connection obvious for matching corrections

31



Fixtension to N jet directions

There are now more jet/beam directions -> more Wilson lines:

S(7, 1) = M(7, k) (0] (Sny Sy Sng )T |X)(X[Sn; Sy Sy -.-|0)
X

» Tripole and Quadrupole diagrams

v/ Assume non-abelian exponentiation:
only one tripole (RV)

» Dipole directions are no longer back-to-back
v Use boost-invariant parametrisation k=(k-nk-7,ki)
v Consequence: transverse temporal direction

v
»  more complicated angular integrations k= (k- nqk-np ki)

/5 angles instead of 3 at NNLO
v Higher poles appear, multiprecision needed

»  external geometry must be sampled

32



N - Jettine SS [Stewart, Tackmann, Waalewijn, "10]

- Recall Thrust: “How much does the event look like 2 jets?”

»  N-jettiness: “How much does the event look like (N+2) jets /beams?”

« 1-Jettiness soft function known to NNLO [Boughezal, Liu, Petriello, "15;
Campbell, Ellis, Mondini, Williams, “17]

« (N>1)-Jettiness soft function known to NLO

[Jouttenus, Stewart, Tackmann, Waalewijn, "11]

33



2-Jettiness

Kinematics and Sampling

Jet 2 ' ﬁz
Ng *Np = N1 "Ny = 2
Ng "N, =MNp-No =1 —cosl =ng,
- Ng Mo =MNp-N1 =1+ cosB
Ng,
0

N1 Y seta
!
/

Some preliminary results - dipoles

i ' 300
| 1 | A
- 20 ab - 250; , ab
- 40 o ° ° ° ° ° ° N iy 200 °
. 150
-60f °
. 100
_ 80
. 50
- 100} ! ol _
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Na1/ 2 Na1/ 2
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Conclusion

SCET provides an efficient, analytic approach to high-order
resummations necessary for precision collider physics.

- We have developed a framework to systematically compute generic
NNLO dijet soft functions for wide ranges of observables at lepton
and hadron colliders

- The program(s) based on this framework are being released into the
wild

An extension to N-jet observables seems possible, and we have
already re-derived a few known results and are working on new ones

- Work remains to be done there (error bars, performance,...)

35



That’s all folks!

Thank you!



Parametrisation uncorrelated

The parametrisation for the uncorrelated emissions

kv =qr

l+ =qr

b VU \ b 1 NS
140 1+ y; 1+b./yr \1+y
1 Ve I 1 VUE )
vV Yl ( - ) [ =qr ( )
1+ b 1+yk 1“bw/yl 1_|‘yk

Yk =

Yy =

leads to divergences in b, yx, yi, gr (analytic)

14+n
ke, Rk Lo+ \"
k_ —\ ky + k_

z e +k_\ o +1_\
- w-ﬂ(* ) + k+k(+ )

NI
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Parametrisation correlated

The parametrisation for the correlated emissions

b ab 1
k. = k_ =
+ Z?Ta_|_b\/§ pT1_|_ab\/§
a 1 1
[ = [_ =
+ pTaer\/@ pT1+ab\/§

leads to divergences in y, b, pr (analytic), and an

overlapping divergence in a —1 (with transverse angle)

[kl o [kike
Ik, e

ki + 1
y = ]: — l+ pr = /(b + 1) (k- +1-)

B ——
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