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Outline

✦ Introduction to leading power soft approximation 
‣ Soft exponentiation 

✦ Next-to-leading power threshold logarithms 
‣ Regions, factorization at NNLO 

✦ Next-leading power at NLO 
‣ colour singlet, prompt photon 

✦ LL resummation at NLP  
‣ Drell-Yan, prompt photon
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A brief history of the eikonal approximation

✦ “Eikon” originally from Greek εικεναι [to resemble] 
‣ leading to εικον  [icon, image] 

✦ Predates quantum mechanics, and even Maxwell 
‣ also known in optics as “ray optics” 

✓ Rays are straight lines, perpendicular to wave fronts 
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Eikonal optics: rays
✦ Can describe formation of images/eikons 
‣ wavelength  <<  size of scatterer 

✦ Cannot describe diffraction, polarization etc 
‣ these are wave phenomena
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Eikonal  quantum mechanics

✦ Eikonal approximation in QM scattering 
‣ R.J. Glauber [1959 lecture notes (recommended!)] 
‣ Highly energetic particle scattering off potential 
‣ (regained use in scattering on nucleus) 

✦ 2D example 
‣ scattering on square potential of limited range
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QM eikonal scattering in 2D
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Factor high-momentum part

⇥(⇧r) = eikz�(⇧r)

Substitute in Schrodinger equation

eikz(�k2 + 2ik⇥z +⇥2 + k2)�( r) = eikz 2m

�2
V ( r)�( r)
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�(⌅r) = e�
i

�v

R z
�⇤ dz⇥V (x,z⇥)

Exponential form!

E � V k � 1/a
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QM eikonal scattering in 2D

✦ Approximation at amplitude level, some “wave” information is preserved. If potential 
is “black”: 
‣ Optical theorem  
‣  Scattering cross section 

✓ Factor 2 is due to diffraction, fill in shadow of target

⇥tot = 2 Im f(� = 0) = 2a

⇤scattered =
k

2⇥

�
d� |f(�)|2 = a
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Eikonal QFT: QED
✦ Charged particle emits soft photon 

‣ Propagator: expand numerator & denominator in soft momentum, keep lowest order 

‣ Vertex: expand in soft momentum, keep lowest order

p + k p

k

(p + k)µ + pµ

2p · k + k2
�⇥ 2pµ

2p · k

!8



Basics  of eikonal approximation in QED

p

k1, µ1 k2, µ2 kn, µn
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n�

m=i

km.

1
p · (k1 + k2) p · k2
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=

1
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1
2pK1

2pµ1 . . .
1

2pKn
2pµnApprox:

Eikonal 
identity:

Sum over 
all perm’s:

�

i

pµi

p · ki
. Independent, uncorrelated emissions, Poisson process
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Eikonal approximation: no dependence on emitter spin
✦ Emitter spin becomes irrelevant in eikonal approximation 

‣ Fermion 

‣ Approximate, and use Dirac equation 

‣ Result: 

‣ Notice 
✓ No sign of emitter spin anymore (= scalar emitter) 
✓ Coupling of photon proportional to emitter momentum pµ  !

p + k

k

p
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Another eikonal effect: coherence in emission
✦ Eikonal approximation in amplitude, coherence possible 

‣ First in QED 

‣ Square the amplitude, take the eikonal approximation, and combine with phase. Result 

‣ Only non-zero when θ’<θ : angular ordering after azimuthal integral 
✓ photon that is too soft only see the sum of the charges, which is zero here. 

‣ In QCD very similar result (after being a little bit more careful with color charges). Radiation function 

✓ clearly has eikonal form. Notice, it is an interference effect: 
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Eikonal exponentiation
✦ After eikonal approximation, we suddenly see interesting patterns.

A0

�
dnk

1
k2

p · p̄
(p · k)(p̄ · k)

p

p̄

k

p

p̄

k1 k2 A0
1
2

�⇤
dnk

1
k2

p · p̄
(p · k)(p̄ · k)

⇥2

One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series! A really beautiful result
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QCD exponentiation: webs
✦ Not immediately generalizable to QCD, seemingly 
‣ Vertices terms have color charges, which don’t commute 
‣ Still, an exponentiation theorem holds 

✦
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Eikonal approximation from QM path integrals

M(p1, p2, {k}) =
�
DAs Dx(t) H[x] f1[As, x(t)] f2[As, x(t)] eiS[As]
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Write scattering amplitude as path integral

Disconnected Connected

Eikonal vertices are sources for gauge bosons along line v

Another way to exponentiate: use textbook QFT result

Sum of all diagrams = exp
�
Connected diagrams

�
f = ei

R
dt(

1
2 ẋ2+p·A+..)

EL, Stavenga, White

x(t): path of charged 
particle

v ·A(x(t))



Path integral method, non-abelian

✦ Not immediately obvious how this could work (the path integral must be an actual 
exponential), since 
‣ Source terms have non-abelian SU(3)-valued charges, so don’t commute 
‣ External line factors are path-ordered exponentials 
‣ Nevertheless 

✦ To prove, use replica trick (from statistical physics)
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Replica trick
✦ Relates exponentiation of soft gauge fields to that of connected diagrams in QFT.   
✦ Consider a N copies of a scalar theory  

‣ If Z is exponential, find out what contributes to log Z 

‣ Amounts to diagrams that allow only one replica → connected!
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ZN = 1 + N log Z +O(N2)

Z[J ]N =
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Replica method and QCD
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S(p1, p2) = H(p1, p2)
�
DAsf(�)eiS[As]

Amplitude for two colored lines

Replicate, and introduce replica ordering operator R

f(�) = P exp
� �

dx · A(x)
� N�

i=1

P exp
��

dx ·Ai(x)
�

= RP exp

�
N�

i=1

�
dx ·Ai(x)

�

Look for diagrams of replica multiplicity N.  These will go into exponent

i, A

x2

x1

x2

x1

x2

x1
(a) (b) (c)

j, Bi, A
i, A j, B

(a) is order N

(b) for equal replica number (i=j): CF2.   For i≠j  also CF2.  Sum: NC2
F + N(N � 1)C2

F = N2C2
F

N

�
C2

F �
CF CA

2

�
+ (�N)C2

F = N

�
�CF CA

2

�(c) for equal replica number (i=j): CF2-CF CA /2.  
 For i≠j  CF2.  Term linear in N:

Web
Modified color factor



Multiple colored lines
✦ Structure  

‣ multi-parton webs are “closed sets” of diagrams, with modified color factors 

✦ Closed form solution for modified color factor 

‣ Interesting properties of projector matrix (reduces degree of divergence)
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Perturbative series for cross sections in QFT

✦ Typical perturbative behavior of observable 
‣ α is the coupling of the theory (QCD, QED, ..) 

‣ L is some numerically large logarithm 

‣ “1” =  π2, ln(2), anything not-logarithmic 

‣ Notice: effective expansion parameter is αL2 i.e. a problem when >1!! 

‣ Fix: reorganize/resum terms such that  

✦ Notice the definition of LL, NLL, etc
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Threshold logarithms
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Q2sS

S � s � Q2
Log of “energy excess above 

production threshold”

L2 = ln2
✓
1� Q2

s

◆
⌘ ln2(1� z)
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Threshold resummed Drell-Yan (or Higgs) cross section
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Sterman; Catani, Trentadue; 
Ahmed, Makahud, Rana, 
Ravindran 
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Perturba-ve$convergence$

15$

Concurrent$uncertain-es:$
$
Scales $ $ $~$3%$
pdf$(at$68%cl) $ $~$2V3%$
αS$(parametric) $~$1.5%$
mtop$(parametric) $~$3%$
$
Soa$gluon$resumma-on$makes$a$difference:$
$

$ $5% $ $V> $ $3%$

A similar case: top quark pair production, much smaller uncertainty

Threshold  logarithms can be resummed to all orders



NLP threshold behavior
✦ For Drell-Yan, DIS, Higgs, singular behavior in perturbation theory when z→ 1  

‣ plus distributions have been organized to all orders (=“resummation”), also possible for ln(1-z)? 

✦ “Zurich” method of threshold expansion allows computation (for NNNLO Higgs production) 

- done to p=37.. 

✦ Much development in SCET  
✦ Useful also for improving NNLO slicing (N-jettiness) methods 
✦ Alternative terminology to “NLP” 

‣ Next-to-soft 

‣ Next-to-eikonal
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Anasthasiou, Duhr, Dulat, Furlan, 
Gehrmann, Herzog, Mistlberger
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Larkoski, Neill, Stewart, Moult, Kolodrubetz, Rothen,
Zhu, Tackmann, Vita, Feige ;

Beneke, Campanario, Mannel, Peckja



Numerical effects of NLP logarithms
✦ General power expansion  

✦ NLP logs can be quite important
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LN(N)/N TERMS

Can be numerically important

We know that the leading series lni(N)/N exponentiates

by replacing  in resummation formula
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Kraemer, EL, Spira; Catani, De Florian, Grazzini; Kilgore, Harlander
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Next-to-eikonal Feynman rules
✦ Keep 1 term more in k expansion beyond eikonal approximation 

‣ Becomes emitter-spin dependent, recoil now included 
‣ Is there predictive power for the next-to-eikonal terms?
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Classic NLP result: Low’s theorem
✦ These rules are good for emissions from external lines. At NLP order, also 1 

“internal” emission contributes 

✦ Low’s theorem (scalars, generalization to spinors by Burnett-Kroll, to massless 
particles by Del Duca): LBKD theorem 

✓ Work to order k, and use Ward identity 

✦ Elastic amplitude still determines the emission to NLP accuracy, 
‣ note the derivative 
‣ detailed knowledge of “internal part” not needed
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NLP logarithms for Drell-Yan
✦ Goal: combine (N)LP matrix elements with (N)LP phase space to predict  lni(1-z) for 

NNLO Drell-Yan 

‣ We pursue two methods: 
✓ 1. Method of regions 
✓ 2. Factorization   

‣ NLO is “easy”, real test at NNLO
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transform back to z-space, for which we may ignore the running of the coupling at LL order 5.
Using the result

Z
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+
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l
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where the ellipsis involves terms at NLL order and beyond. The most divergent plus distri-
bution at a given perturbative order is given by

✓
2↵sCF

⇡

◆m 2

(m� 1)!

✓
log2m�1(1� z)

1� z

◆

+

. (36)

This agrees with a result quoted e.g. in ref. [30]. Note in the above analysis that the
dimensional regularisation scale µ appears only via a factor µ

2✏, as must be the case on
dimensional grounds. Given that this ends up being identified with the renormalisation or
factorisation scales (µF , µR), it follows that logarithms of these scales (which may be chosen
to depend on z) are suppressed by a single power of ✏, and thus do not contribute to the
leading logarithmic behaviour in the threshold variable (1 � z). The same argument will
clearly hold at NLP level.

3 Resummation at next-to-leading power

In the previous section, we have reviewed the exponentiation of leading logarithmic threshold
contributions to the Drell-Yan cross-section. We now discuss how to extend this procedure
to next-to-leading power (NLP) level, and we will keep our remarks general enough to apply
to both quark and gluon-initiated processes. Recall that LP resummation at LL relied on
two facts: (i) exponentiation of the soft function before integration over the phase space (i.e.
at squared matrix element level); (ii) factorisation of the phase space for m gluon emissions
into m decoupled gluon phase space integrals. This motivates the following schematic de-
composition of the partonic cross-section up to NLP order, which was already shown to be
useful in ref. [28]:

1

�(0)

d�̂

dz
⇠

Z
d�LP|M|2

LP
+

Z
d�LP|M|2

NLP
+

Z
d�NLP|M|2

LP
+ . . . (37)

Here the first term on the right-hand side constitutes the leading power squared matrix
element, integrated with “leading power” phase space i.e. such that correlations between
gluons are ignored. It has already been considered in section 2. The second term consists of
the NLP contribution to the squared matrix element, integrated with LP phase space. The
third term consists of the LP matrix element, but where the phase space includes the e↵ect

5In the above calculation, the lack of running coupling e↵ects can be traced to the fact that there were
no ultraviolet divergences. Similarly, there is no dependence on the factorisation scale at LL order: the
e↵ect of choosing a di↵erent value of µ̄2 in eq. (32) generates NLL logs in the finite part upon expanding the
scale-dependent prefactor in ✏.
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NLP logs in Drell-Yan  at NNLO
✦ Check NLP Feynman rules for NNLO Drell-Yan double real emission 

‣ Result at NLP level, agrees with equivalent exact result. CF2 terms e.g. 

✦ Next, 1 Real- 1 Virtual 

✦
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2
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1

2

1
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2

1

2

1

(e)(d)

Figure 19: Diagrams for the double-real-emission contribution to the NNLO Drell-Yan K factor
discussed in the text. A cut is implied over the intermediate state in each case, and complex
conjugates of the above diagrams (excluding (e), which is real) must also be included.

are not fully uncorrelated, but their correlation is simple, depending only on the global

variables of the multi-gluon system and not on individual gluon momenta.

This discussion applies to the explicit example of Drell-Yan production. We expect

that such arguments will apply more generally in other scattering processes, pending a

suitable parametrisation of the partonic momenta.

C. The double-real-emission contribution to the Drell-Yan K factor

In this appendix we briefly describe how to compute the terms proportional to C2
F of the

Drell-Yan K-factor, for the qq̄ initial state, by using ordinary Feynman diagrams and ex-

panding them to NE order. The relevant diagrams are shown in fig. 19. The corresponding

squared matrix elements are easily computed, and must then be integrated with the phase

space measure in eq. (6.26). As an example, diagram (a) contributes a factor

|M|2(a) ∝ Tr [̸̄pγα( p̸− k̸1− k̸2)γν( p̸− k̸1)γµ p̸γα(− ̸̄p+ k̸1+ k̸2)γµ(− ̸̄p+ k̸2)γν ]

(p− k1 − k2)2 (p − k1)2 (−p̄+ k1 + k2)2 (−p̄+ k2)2
. (C.1)

Note that the contributions from diagrams (a) − (d) must be counted twice in order to

include Hermitian conjugate graphs, while diagram (e) is real.

To calculate the squared matrix element to NE order, one first relabels ki → ξki, so

that

p̄ · ki → ξ p̄ · ki, p · ki → ξ p · ki, ki · kj → ξ2 ki · kj . (C.2)
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One then expands each diagram to first subleading order in ξ, which corresponds to the

NE approximation. Through repeated use of the identities

p · k1
p · k2

=
1

p · k2
s− t̃

2
− 1 ,

p̄ · k1
p̄ · k2

=
1

p̄ · k2
s12 + t̃−Q2

2
− 1 , (C.3)

(with similar results for k1 ↔ k2), each diagram can be written as a sum of terms containing

no more than two factors of p · ki and p̄ · ki. Then each term becomes an integral of the

form of eq. (6.29). The remaining phase space integrals can be carried out after expanding

the integrand in powers of 1− z and ϵ, as described for the NE calculation in Sec. 6.2. The

final result for the full amplitude (keeping only logarithmic terms with rational coefficients

as done in the text) is given by

K(2)
NE(z) =

(αs

4π
CF

)2 [
−32

ϵ3
D0(z) +

128

ϵ2
D1(z) −

128

ϵ2
log(1− z)

− 256

ϵ
D2(z) +

256

ϵ
log2(1− z)− 320

ϵ
log(1− z)

+
1024

3
D3(z)−

1024

3
log3(1− z) + 640 log2(1− z)

]
, (C.4)

which is in complete agreement with the sum of eqs. (6.31) and (6.33).
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Figure 6: Diagrams contributing at NNLO with one real and one virtual gluon, the latter
exchanged between two external partons. For each diagram shown there are other three,
obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.
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Diagnosis: method of regions

✦ How does it work? 
‣ Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by 

appropiate scaling 

‣ expand integrand in λ, to leading and next-to-leading order 
‣ but then integrate over all k1 anyway! 
‣ Treat emitted momentum as soft and incoming momenta as hard

!28
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obtained interchanging t $ u and/or taking the complex conjugate diagram.

Result

Summing up the contributions from the collinear and anti-collinear region, the result matches
the full QCD contribution, as given in eq. 27 of RealVirtualFull.pdf.
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Method of region: result
✦ Results 
‣ Hard region (expansion in λ2):                     LP + some NLP 
‣ Soft region (expansion in λ2):                      ZERO 
‣ (anti-)collinear regions (expansion in λ):     NLP only 

✦ Result: 
‣ the full  K(1)1r,1v is reproduced, including constants 

✦ For predictive power, need factorization

!29

Bonocore, EL, Magnea,Vernazza, White



A factorization approach from Low’s theorem

✦ Can we predict the ln(1-z) logarithms from lower orders?  
‣ Factorize the cross section, 

✓ H: the hard and the soft function 
✓ J: incoming-jet functions 

✦ Next, add one extra soft emission. Let every blob radiate! 

‣ Compute each new “blob + radiation”, and put it together. New: radiative jet function

!30

(a) (b) (c)

J

J

J

J

J

J

H H H

Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ S̄ ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ S̄ , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ(k) = AJ

µ ✏
µ(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ

µ =
2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)
Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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Figure 1: Schematic depiction of the factorization of the amplitude into the non-collinear function
H of Eq. (2.11) and external jet functions: (a) portrays the non-radiative amplitude, while (b)
and (c) contribute to the radiation of an extra gluon.

in detail in [13, 19, 98], for light-like �i this invariance is broken for the soft function alone, as
well as for the eikonal jets, due to the presence of collinear divergences in either factor. When
the individual factors are combined into the reduced soft function, as in Eq. (2.9), collinear
poles cancel and the invariance is restored. If, on the other hand, we work with light-like ni, the
spurious collinear divergences associated with the Wilson lines in the ni directions do not cancel
in S, so the expected invariance under the rescalings ni ! ini is not restored, as seen from the
argument in Eq. (2.9).

Making use of Eq. (2.9), we may now rewrite schematically the amplitude in Eq. (2.1) as

A = H⇥ S̄ ⇥
2Y

i=1

Ji , (2.10)

where the functions {Ji} contain all relevant information associated with the collinear regions.
Furthermore, in the remainder of this section, we will follow Ref. [50] and define a ‘non-collinear’
factor

H ⌘ H⇥ S̄ , (2.11)

where the reduced soft function is absorbed into the hard function. The factorized structure of
the amplitude is then as shown in Fig. 1(a). Let us now describe how to generalise Eq. (2.1) to
NLP level, building on Ref. [50]. First of all we wish to isolate the contributions to the radiative
amplitude where the extra gluon is emitted by a collinearly enhanced configuration. With this in
mind, and denoting the amplitude with an additional gluon emission by Aµ, one may naturally
write

Aµ ✏
µ(k) = AJ

µ ✏
µ(k) +AH

µ ✏µ(k) , (2.12)

where we are suppressing color indices, ✏µ(k) is the polarization vector of the extra gluon, and AJ
µ

(AH
µ ) represent emissions from the jet (hard) functions, respectively. The amplitude for emission

from collinear configurations can be defined as

AJ

µ =
2X

i=1

H(pi � k; pj , nj) Jµ(pi, k, ni)
Y

j 6=i

J(pj , nj) ⌘
2X

i=1

AJi
µ . (2.13)

Here, for brevity, we have not displayed the dependence on the coupling and on ✏; we have
introduced in H the notation of separating with a semi-colon the ‘active’ momentum (here
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Factorization approach to NLP logarithms

✦ Upshot: a factorization formula for the emission amplitude 

‣ Jµ is needed at one-loop level

!31

Aµ,a(pj , k) =
2X

i=1

✓
1

2
eSµ,a(pj , k) + gTi,a G
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@
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+ Jµ,a (pi, ni, k)

◆
A(pj)�A eJ

µ,a(pj , k)

Soft function Orbital term Jet function Overlap



Predicted NLP threshold logs vs exact result
✦ Compute blobs, one-loop radiative jet function, contract with cc amplitude and 

integrate over phase space. Exact calculation gives 

✦ Result: perfect agreement for 4 powers of the next-to-eikonal/soft logarithms at 
NNLO

!32

ln3(1� z), ln2(1� z), ln1(1� z), ln0(1� z),

It is straightforward to assemble all the ingredients 3, to compute the full real-virtual contribution
NNLO K-factor. We find

K(2)
rv (z) =

⇣↵s

4⇡

⌘2
(
C2
F


32D0(z)� 32

✏3
+

�64D1(z) + 48D0(z) + 64L(z)� 96

✏2

+
64D2(z)� 96D1(z) + 128D0(z)� 64L2(z) + 208L(z)� 196

✏
� 128

3
D3(z)

+ 96D2(z)� 256D1(z) + 256D0(z) +
128

3
L3(z)� 232L2(z) + 412L(z)� 408

�

+CACF
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8D0(z)� 8

✏3
+

�32D1(z) + 32L(z)� 16

✏2
+

64D2(z)� 64L2(z) + 64L(z) + 20

✏

� 256

3
D3(z) +

256

3
L3(z)� 128L2(z)� 60L(z) + 8

��
, (4.6)

where

Di(z) =

✓
logi(1� z)

(1� z)

◆

+

, L(z) = log(1� z) . (4.7)

For comparison with the exact two-loop calculation, we note that the real-virtual contribution
to the NNLO K-factor is not separately available in the literature [55, 56]. We have performed
an independent calculation of this result, similar to the one carried out for the abelian-like
contributions in Ref. [39]. We find that Eq. (4.6) reproduces exactly the full NNLO result, when
the latter is truncated to NLP in (1� z), including non-logarithmic contributions.

5 Double real emission contributions

In Section 4, we have focused on a single additional gluon emission dressing the non-radiative
amplitude. Although a full factorisation formula for multiple emissions is beyond the scope of this
paper, we can nevertheless obtain the double-real emission contributions to Drell-Yan production
at NNLO by noting that all purely real-emission near-threshold contributions are (next-to-)soft
in nature, with no hard collinear terms. This fact was already exploited in Ref. [20], where
next-to-soft Feynman rules were employed to compute the abelian part of the NNLO K-factor
for double real emission. That calculation can easily be reproduced and generalised to the full
non-abelian theory in the present framework. In essence, all relevant terms can be obtained by
dressing the Born amplitude with (next-to-)soft webs. Formally, by analogy with Eq. (2.15), we
may define a double radiative next-to-soft function according to

✏⇤µ,�1
(k1) ✏

⇤

⌫,�2
(k2) eSµ⌫(p1, p2, k1, k2) = hk1,�1; k2,�2 |Fp2(1, 0)Fp1(0,�1)| 0i

��
NLP

. (5.1)

A sampling of soft and next-to-soft diagrams resulting from this definition are shown in Fig. 4.
We have evaluated all diagrams using the next-to-soft Feynman rules arising from Eq. (2.8), and
we have integrated over the three-body phase space as in Refs. [20, 55]. The result for the double
real emission contribution to the NNLO K factor is

K(2)
rr (z) =

⇣↵s

4⇡

⌘2
(
C2
F

"
� 32D0(z)� 32

✏3
+

128D1(z)� 128L(z) + 80

✏2

3Results for the non-radiative amplitude up to one-loop, as well as parametrisations of phase space integrals
in the present notation, may be found in Ref. [39]. In the result we present, as was done in Ref. [39], we neglect
terms involving transcendental constants for brevity, and we do not include �-function terms, which mix with the
fully virtual two-loop contribution.
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Colour-singlet final states
✦ Generalize NLP factorization (the LBKD theorem) beyond Drell-Yan, to arbitrary 

colour-singlet final states 
‣ look at NLO only, i.e. predict 

✓ where “1-z” can take different forms for 2 -> 2,3 etc scattering 

‣ apply to Drell-Yan, (multi-)Higgs, (vector boson pairs) 
‣ for inclusive and fully differential cross sections

!33

D1 =


ln(1� z)

1� z

�

+

D0 =


1

1� z

�

+

L1 = ln(1� z) L0 = ln0(1� z)



NLP terms in colorless final states @NLO

✦ Previous factorization at NLO  

✓ G is a projector, T a color matrix 

‣ initial quarks:  
‣ initial gluons:  

‣ notice the spin-dependent Lorentz generator (“next-to-soft theorem”) 
‣ notice derivative term (Low’s theorem)

!34
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In addition to the functions already appearing in Eq. (2.1), Eq. (2.2) contains two more universal
functions. First, the radiative next-to-soft function S̃

a
µ is a matrix element of next-to-eikonal

Wilson lines directed along the directions of the incoming partons, like the virtual next-to-soft
function S̃, but with a single gluon present in the final state. Furthermore, Eq. (2.2) includes
a radiative jet function J a

µ collecting all contributions associated with the emission of a gluon
from the ith parton, and enhanced by virtual collinear poles. This function was first introduced
in the context of abelian gauge theory in Ref. [42], and its definition was recently generalised
to non-abelian theories in Ref. [24]. The radiative functions can be defined in terms of operator
matrix elements, but for our present NLO analysis, where radiative functions enter only at tree
level, a diagrammatic definition is sufficient.

The final term on the right-hand side of Eq. (2.2) is a subtraction term that removes any
double counting of contributions occuring in both the radiative next-to-soft emission function,
and in the radiative jet emission functions: it can be obtained simply by taking the next-to-
soft limit of the radiative jet function. As was done in Ref. [24], Eq. (2.2) can be considerably
simplified by using renormalisation group arguments and computing the right-hand side in the
bare theory and with light-like reference vectors n2

i = 0 for the jets. With these choices, one can
use the bare quantities

S̃ (p1, p2) = J(pi, ni) = J̃ (pi, ni) = 1 , n2

i = 0 , (2.4)

and the amplitude can be written as

A
a
µ ({pi}, k) =

2X

l=1

("
1

2
S̃

a
µ ({pi}, k) + gsT

a
l G⌫

l,µ
@

@p⌫l
+ J a

µ (pl, nl, k)

#
A ({pi})

�A
a, J̃l
µ ({pi}, k)

)
. (2.5)

If we now focus on the NLO contributions to the cross section, there is a further significant
simplification: indeed, the leading-order term in the next-to-soft emission function, S̃(1)

µ, a consists
of single gluon emissions from the hard incoming partons, and these contributions are completely
cancelled [24] by the leading-order subtraction term A

(1),J̃l
µ, a , leaving

A
(1)

µ,a ({pi}, k) =
2X

l=1

"
gsTl, aG

⌫
l,µ

@

@p⌫l
+ J (1)

µ, a (pl, nl, k)

#
A

(0) ({pi}) , (2.6)

which expresses the complete one-gluon radiative amplitude at NLO and NLP in terms of the
Born amplitude. Note that in Eq. (2.6) the non-radiative amplitude and jet emission functions
are understood as carrying implicit spin indices, depending on the identity of the particle species
in each jet.

The quark radiative jet function at leading order is simply given by the emission of a single
gluon from the incoming (anti)quark [24, 42], as shown in Fig. 1(a). Evaluating the diagram
gives2

J a
µ (p, n, k) = gsT

a


(2p� k)µ
2p · k

+
ik�

p · k
S�µ

�
, S�µ =

i

4
[�� , �µ] , (2.7)

where we have decomposed the result into spin-dependent and spin-independent parts, intro-
ducing the generator S�µ of Lorentz transformations on spinors. Note that at leading order the

2Note that, by definition, the radiative jet function does not include the spinor wave function for the external
quark line.
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which expresses the complete one-gluon radiative amplitude at NLO and NLP in terms of the
Born amplitude. Note that in Eq. (2.6) the non-radiative amplitude and jet emission functions
are understood as carrying implicit spin indices, depending on the identity of the particle species
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The quark radiative jet function at leading order is simply given by the emission of a single
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where we have decomposed the result into spin-dependent and spin-independent parts, intro-
ducing the generator S�µ of Lorentz transformations on spinors. Note that at leading order the

2Note that, by definition, the radiative jet function does not include the spinor wave function for the external
quark line.
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Figure 1: Tree-level contribution to the radiative jet function for (a) an external quark; (b) an
external gluon.

quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
at leading order, we can simply use a diagrammatic definition, analogous to the radiative quark
jet, and shown in Fig. 1(b). Restoring explicit spin indices for the external gluon, we can write
the result of this diagram as
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where we have introduced the generator of Lorentz transformation acting on vector fields,
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. (2.9)

Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to Eq. (2.6), one may note that the action of the
projector Gµ⌫

l defined in Eq. (2.3), up to NLP order, can be recast in terms of the orbital
angular momentum of parton l. Indeed, to this accuracy
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where L(l)
⌫µ is the orbital angular momentum operator associated with the lth parton. Using

Eqs. (2.8, 2.9), we can now rewrite Eq. (2.6) in a unified notation for quarks and gluons, as
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where in the first line ⌃(l)
⌫µ is the spin angular momentum operator for parton l, in the relevant

representation of the Lorentz group, acting as �S(l)
⌫µ for spin one half, and as M (l)

⌫µ for spin one,
while J(l)⌫µ is the total angular momentum operator. Furthermore, in the second line, we have
omitted the term proportional to kµ, which gives a vanishing contribution when contracted with
a physical polarisation vector for the emitted gluon.
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quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
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Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to Eq. (2.6), one may note that the action of the
projector Gµ⌫

l defined in Eq. (2.3), up to NLP order, can be recast in terms of the orbital
angular momentum of parton l. Indeed, to this accuracy
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⌫µ is the orbital angular momentum operator associated with the lth parton. Using

Eqs. (2.8, 2.9), we can now rewrite Eq. (2.6) in a unified notation for quarks and gluons, as
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⌫µ is the spin angular momentum operator for parton l, in the relevant

representation of the Lorentz group, acting as �S(l)
⌫µ for spin one half, and as M (l)

⌫µ for spin one,
while J(l)⌫µ is the total angular momentum operator. Furthermore, in the second line, we have
omitted the term proportional to kµ, which gives a vanishing contribution when contracted with
a physical polarisation vector for the emitted gluon.
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quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
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jet, and shown in Fig. 1(b). Restoring explicit spin indices for the external gluon, we can write
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Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to Eq. (2.6), one may note that the action of the
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quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
at leading order, we can simply use a diagrammatic definition, analogous to the radiative quark
jet, and shown in Fig. 1(b). Restoring explicit spin indices for the external gluon, we can write
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Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to Eq. (2.6), one may note that the action of the
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quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
at leading order, we can simply use a diagrammatic definition, analogous to the radiative quark
jet, and shown in Fig. 1(b). Restoring explicit spin indices for the external gluon, we can write
the result of this diagram as

J a
µ, ⇢�(p, n, k) = gsT

a


(2p� k)µ
2p · k

⌘⇢� �
ik�

p · k
M�µ, ⇢�

�
, (2.8)

where we have introduced the generator of Lorentz transformation acting on vector fields,
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Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as

[T a]bc = ifabc . (2.10)

Turning now to the derivative contribution to Eq. (2.6), one may note that the action of the
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quark jet function is independent of the auxiliary vector nµ, consistently with Eq. (2.6), which
represents a physical amplitude and cannot depend on n. For the gluon radiative jet function,
at leading order, we can simply use a diagrammatic definition, analogous to the radiative quark
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Once again, we have decomposed the kinematic part into its spin-dependent and spin-independent
parts (see for example [63]). The colour operator for the gluon case can be explicitly interpreted
as
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respectively. The colour indices of the incoming gluons are displayed in Fig. 2, and we note
that by colour conservation the leading order amplitude must be proportional to �bc. Following
Eqs. (2.10, 2.12), one may write the scalar-like contribution to the amplitude as

A
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scal. = igsfabc
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(2p1 � k)�

2p1 · k
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2p2 · k

�
A

µ⌫ (3.4)

where, as above, we omitted the superscript denoting the perturbative order for the Born am-
plitude A

µ⌫ . Using Eqs. (2.9, 2.12), the spin-dependent contribution to the amplitude is given
by
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Finally, the orbital angular momentum contribution is

A
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After including polarisation vectors for the two incoming gluons, the squared matrix element,
accurate to NLP level and summed over polarisations and colours, is

|ANLP|
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where we defined the polarisation sum

P↵�(p, l) ⌘
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�

✏ (�)↵ (p) ✏ (�)⇤� (p) = �⌘↵� +
p↵l� + p�l↵

p · l
, (3.8)

with l is an arbitrary light-like reference vector used to define physical polarisation states, whose
dependence must cancel in the final result. Alternatively, one could sum over all polarisations,
using P↵� = �⌘↵� , and correct for this by including external ghost contributions. Following this
second approach, it is fairly easy to conclude that ghost contributions vanish at NLP: indeed,
final state ghost emission is suppressed by a power of the energy at amplitude level, and thus
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in the initial state do not couple directly to fermions or to the Higgs boson, and are strongly
suppressed. These expectations are borne out by a direct calculation, showing that all terms
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respectively. The colour indices of the incoming gluons are displayed in Fig. 2, and we note
that by colour conservation the leading order amplitude must be proportional to �bc. Following
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Figure 2: The amplitude for the production of N colour-singlet particles from a pair of gluons,
without final state QCD radiation.

Equation (2.12) is recognisable as the recently derived next-to-soft theorem [43], which mirrors
a similar result derived in gravity [44, 45]. As noted, this formula encompasses both the quark and
gluon cases, provided the spin operator is interpreted appropriately, validating our diagrammatic
definition for the leading order gluon radiative jet function. For the NLO analysis performed in
this paper, we could in fact have simply adopted Eq. (2.12) as the starting point for our following
analysis; note, however, that Eq. (2.2) and Eq. (2.5) are much more general results, applicable
in principle to any order in perturbation theory.

3 Colour-singlet particle production in the gluon channel

In this section, we apply the result of Eq. (2.12) to obtain a general expression for the NLO cross-
section for the production of N colour-singlet particles near threshold. We begin by considering
the gluon-induced process shown in Fig. 2, while we will turn to the quark-induced process in
Section 4. At Born level, the momenta introduced in Fig. 2 satisfy the leading-order momentum
conservation condition

2X

i=1

pµi =
N+2X

i=3

pµi ⌘ Pµ , (3.1)

with the Born-level centre-of-mass energy squared given by s = P 2. Beyond Born level, we may
define the dimensionless variable

z =
P 2

s
, (3.2)

which represents the fraction of the partonic centre-of-mass energy carried into the final state by
all colour singlet particles. At leading order obviously z = 1; beyond leading order, additional
real radiation may be emitted, in which case 0  z  1, and ⇠ ⌘ 1 � z is a dimensionless
threshold variable of the kind introduced in Eq. (1.1). In particular, at NLO only a single gluon
can be emitted, and all contributions up to NLP in the emitted momentum k are captured by
Eq. (2.12). We can then use this to obtain a cross-section formula that is correct up to the first
sub-leading order in ⇠. To this end, it is useful to write the complete radiative amplitude (before
contraction with external gluon polarisation vectors) as

A
�, µ⌫
NLP

= A
�, µ⌫
scal. + A

�, µ⌫
spin

+ A
�, µ⌫
orb. , (3.3)

where � is the Lorentz index of the emitted gluon, while µ and ⌫ are the Lorentz indices of the
incoming gluons, and, for simplicity, we have suppressed momentum dependence, colour indices
and the superscript denoting the perturbative order. The three terms on the right-hand side
correspond to the scalar, spin-dependent and orbital angular momentum terms in Eq. (2.12)
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The prefactor in the second line is antisymmetric under the interchange of ↵ and µ, and thus
vanishes when contracted with the squared Born amplitude, which is symmetric; the same argu-
ment applies to the second incoming gluon. Note that the argument applies also when the Born
amplitude is loop induced, and thus may acquire an imaginary part (as is the case here). The
orbital angular momentum contributions give
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Note that these shifts are proportional to the soft momentum k and transverse to their respective
momenta, pi · �pi = 0. This second property follows from the fact that the ith momentum
shift is derived from the orbital angular momentum operator of Eq. (2.11), which generates an
infinitesimal Lorentz transformation transverse to the momentum pi. Combining Eq. (3.12) with
Eq. (3.10), we can write

|ANLP|
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2g2sNc
�
N2

c � 1
�
p1 · p2

p1 · k p2 · k
|Aµ⌫ (p1 + �p1, p2 + �p2)|

2 . (3.14)

Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
simple rescaling. Indeed,

s ! (p1 + p2 + �p1 + �p2)
2 = s+ 2 (�p1 + �p2) · (p1 + p2) . (3.15)

Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition

p1 + p2 = k + P , (3.16)

it is easy to show that Eq. (3.15) can be written simply as

s ! zs . (3.17)
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momenta, pi · �pi = 0. This second property follows from the fact that the ith momentum
shift is derived from the orbital angular momentum operator of Eq. (2.11), which generates an
infinitesimal Lorentz transformation transverse to the momentum pi. Combining Eq. (3.12) with
Eq. (3.10), we can write

|ANLP|
2 =

2g2sNc
�
N2

c � 1
�
p1 · p2

p1 · k p2 · k
|Aµ⌫ (p1 + �p1, p2 + �p2)|

2 . (3.14)

Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
simple rescaling. Indeed,

s ! (p1 + p2 + �p1 + �p2)
2 = s+ 2 (�p1 + �p2) · (p1 + p2) . (3.15)

Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition

p1 + p2 = k + P , (3.16)

it is easy to show that Eq. (3.15) can be written simply as

s ! zs . (3.17)

8

⇥

⇣
kµ⌘�↵ � k↵⌘µ�

⌘
Re

⇥
A

⌫
↵A

⇤
µ⌫

⇤
. (3.11)

The prefactor in the second line is antisymmetric under the interchange of ↵ and µ, and thus
vanishes when contracted with the squared Born amplitude, which is symmetric; the same argu-
ment applies to the second incoming gluon. Note that the argument applies also when the Born
amplitude is loop induced, and thus may acquire an imaginary part (as is the case here). The
orbital angular momentum contributions give

X

colours

2Re
⇥
A

�, µ⌫
orb. A scal.�, µ⌫

⇤
= � 2g2sNc

�
N2

c � 1
�
Aµ⌫


G↵�

1

@Aµ⌫

@p↵
1

�G↵�
2

@Aµ⌫

@p↵
2

�

⇥

✓
p1,�
p1 · k

�
p2,�
p2 · k

◆
(3.12)

=
2g2sNc

�
N2

c � 1
�
p1 · p2

p1 · k p2 · k

"
�p↵1

@

@p↵
1

+ �p↵2
@

@p↵
2

#
|Aµ⌫ |

2 ,

where we defined

�p↵1 = �
1

2

✓
p2 · k

p1 · p2
p↵1 �

p1 · k

p1 · p2
p↵2 + k↵

◆
, �p↵2 = �

1

2

✓
p1 · k

p1 · p2
p↵2 �

p2 · k

p1 · p2
p↵1 + k↵

◆
. (3.13)

Note that these shifts are proportional to the soft momentum k and transverse to their respective
momenta, pi · �pi = 0. This second property follows from the fact that the ith momentum
shift is derived from the orbital angular momentum operator of Eq. (2.11), which generates an
infinitesimal Lorentz transformation transverse to the momentum pi. Combining Eq. (3.12) with
Eq. (3.10), we can write
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Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
simple rescaling. Indeed,

s ! (p1 + p2 + �p1 + �p2)
2 = s+ 2 (�p1 + �p2) · (p1 + p2) . (3.15)

Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition

p1 + p2 = k + P , (3.16)

it is easy to show that Eq. (3.15) can be written simply as

s ! zs . (3.17)
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The prefactor in the second line is antisymmetric under the interchange of ↵ and µ, and thus
vanishes when contracted with the squared Born amplitude, which is symmetric; the same argu-
ment applies to the second incoming gluon. Note that the argument applies also when the Born
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Figure 3: The amplitude for the production of N colour-singlet particles from a quark-antiquark
pair, without final state QCD radiation.
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In the second line of Eq. (3.27) we expanded the result to NLP in (1� z) and to finite order in
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Eqs. (3.26, 3.27) show explicitly that the NLO K-factor for the production of N colour-singlet
particles in the gluon channel is simple and universal, up to next-to-leading power in the threshold
variable. This is a powerful constraint, and we will discuss some specific examples in the following
sections. First, however, we consider an analogous formula in the quark channel.

4 Colour-singlet particle production in the quark channel

In the previous section, we have derived an explicit universal K-factor for multiple colour-singlet
particle production in the gluon-gluon channel. In this section, we consider the cross section for
quark-induced production of colour-singlet particles, and show that an identical result holds, up
to a trivial replacement of colour factors. The universality of the result is not obvious from the
outset, and it comes about through an interesting reshuffling of the contributions of spin and
angular momentum operators, as compared to the gluon-induced process. We take the leading
order process shown in Fig. 3, and consider the radiation of an additional gluon from the incoming
quark and antiquark lines. One may write the LO amplitude as

A ({pi}) = �ij v̄(p2)A ({pi})u(p1) , (4.1)

where i, j are the colour indices of the incoming quark and antiquark, and the factor A({pi}),
matrix-valued in spinor space, is the quantity entering Eq. (2.6), namely the leading-order ampli-
tude with external wave functions removed. Following the procedure adopted in the gluon case,
we may decompose the NLO amplitude, before contraction with external spinors, according to

A
�
NLP = A
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orb. , (4.2)

where the three terms on the right-hand side denote the scalar-like, spin, and orbital angular
momentum contributions, and we have suppressed spinor indices (as well as color labels) for
brevity. For the scalar and orbital angular momentum contributions, which do not depend ex-
plicitly on the spin (apart from replacing the vector indices on the leading-order amplitude with
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Note that these shifts are proportional to the soft momentum k and transverse to their respective
momenta, pi · �pi = 0. This second property follows from the fact that the ith momentum
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Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
simple rescaling. Indeed,
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2 = s+ 2 (�p1 + �p2) · (p1 + p2) . (3.15)

Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition
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it is easy to show that Eq. (3.15) can be written simply as
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Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
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Figure 4: Diagrams contributing to the spin-dependent part of the NLO cross-section, where •

denotes the magnetic moment coupling of the gluon to the spin of the quark.

To simplify this further, we may expand the emitted gluon momentum in the Sudakov decom-
position

k� =
p2 · k

p1 · p2
p�1 +

p1 · k

p1 · p2
p�2 + k�T , kT · p1 = kT · p2 = 0 . (4.10)

We then observe that, to linear order in kµ, the Dirac trace in Eq. (4.10) cannot depend on kT .
Indeed, one easily finds
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By comparing with the squared scalar part of the amplitude
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we see that the spin-dependent contribution to the squared amplitude can be obtained from the
part which is leading power in the gluon momentum, simply through rescaling by the factor

�
k · (p1 + p2)

p1 · p2
= � (1� z) , (4.13)

where we have used the momentum parametrisation of Eq. (3.21).
Combining Eq. (4.7) with Eq. (4.12), we see that the rescaling factors cancel at NLP in

(1� z). Indeed one may write
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Expanding now in powers of (1� z), one gets to first order
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and one observes that the second line is effectively O(1� z)2. We find then

|ANLP|
2 = g2s CF

s

p1 · k p2 · k
|A(p1 + �p1, p2 + �p2)|

2 , (4.16)

which is precisely analogous to Eq. (3.14), except for the replacement of the colour factor, which
here is associated with the fundamental rather than adjoint representation of the gauge group.
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Figure 4: Diagrams contributing to the spin-dependent part of the NLO cross-section, where •

denotes the magnetic moment coupling of the gluon to the spin of the quark.
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To construct the partonic cross-section, we must now introduce the appropriate factors to average
over initial state colours and spins, integrate over the (N + 1)-body final state phase space, and
include the flux factor. We find

�̂(gg)
NLP

=
1

(d� 2)2 (N2
c � 1)2

1

2s

Z
d�N+1 (P + k; p3, . . . , pN+2, k) |ANLP|

2 , (3.18)

where

d�n (Q; {qi}) = (2⇡)d �(d)
⇣
Q�

nX

i=1

qi
⌘ nY

i=1

dd�1qi
(2⇡)d�1 2Ei

(3.19)

denotes the n-body Lorentz-invariant phase space for a process with total final state momentum
Q =

P
i qi, and qµi = (Ei, qi) in a suitable frame. For the phase space, we may use the well-known

result
Z

d�N+1 (P + k; p3, . . . pN+1, k) =
1

2⇡

Z
dP 2 d�2 (P + k;P, k) d�N (P ; p3, . . . pN+2) , (3.20)

factorising the phase space of the N colour-singlet particles from a two-body phase space involving
the total momentum of the colourless system, and the additional gluon momentum k. The latter
can be written more explicitly by parametrising

p1 =

p
s

2
(1, 0, . . . , 0, 1) , p2 =

p
s

2
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p
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(3.21)
Introducing the variable
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1 + cos�

2
, (3.22)

one then finds (see for example Ref. [21] for a recent derivation)
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Using Eq. (3.23) together with Eqs. (3.2, 3.14) in Eq. (3.18), one then finds
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where we reinstated the explicit dependence on the dimensional regularisation scale µ, and we
denoted by d�(z)

N the phase space for N (colour-singlet) particles with a partonic centre-of-mass
energy shifted according to Eq. (3.17). We may easily rewrite this result in terms of the leading-
order cross section with shifted kinematics, which is given by

�(gg)
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. (3.25)

This leads us to our second central result: a simple factorised expression for the inclusive cross
section, valid at NLO and NLP for the production of a generic colour-singlet system, which can
be written as

d�̂(gg)
NLP

dz
= CAKNLP (z, ✏) �̂(gg)
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(zs) , (3.26)

where the next-to-leading power K factor is easily computed, with the result

KNLP (z, ✏) =
↵s

⇡

✓
4⇡µ2

s

◆✏

z (1� z)�1�2✏ �2(�✏)

�(�2✏)�(1� ✏)

9

To construct the partonic cross-section, we must now introduce the appropriate factors to average
over initial state colours and spins, integrate over the (N + 1)-body final state phase space, and
include the flux factor. We find

�̂(gg)
NLP

=
1

(d� 2)2 (N2
c � 1)2

1

2s

Z
d�N+1 (P + k; p3, . . . , pN+2, k) |ANLP|

2 , (3.18)

where

d�n (Q; {qi}) = (2⇡)d �(d)
⇣
Q�

nX

i=1

qi
⌘ nY

i=1

dd�1qi
(2⇡)d�1 2Ei

(3.19)

denotes the n-body Lorentz-invariant phase space for a process with total final state momentum
Q =

P
i qi, and qµi = (Ei, qi) in a suitable frame. For the phase space, we may use the well-known

result
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factorising the phase space of the N colour-singlet particles from a two-body phase space involving
the total momentum of the colourless system, and the additional gluon momentum k. The latter
can be written more explicitly by parametrising
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(3.21)
Introducing the variable

y =
1 + cos�

2
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one then finds (see for example Ref. [21] for a recent derivation)
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Using Eq. (3.23) together with Eqs. (3.2, 3.14) in Eq. (3.18), one then finds
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where we reinstated the explicit dependence on the dimensional regularisation scale µ, and we
denoted by d�(z)

N the phase space for N (colour-singlet) particles with a partonic centre-of-mass
energy shifted according to Eq. (3.17). We may easily rewrite this result in terms of the leading-
order cross section with shifted kinematics, which is given by
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This leads us to our second central result: a simple factorised expression for the inclusive cross
section, valid at NLO and NLP for the production of a generic colour-singlet system, which can
be written as
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where the next-to-leading power K factor is easily computed, with the result
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The prefactor in the second line is antisymmetric under the interchange of ↵ and µ, and thus
vanishes when contracted with the squared Born amplitude, which is symmetric; the same argu-
ment applies to the second incoming gluon. Note that the argument applies also when the Born
amplitude is loop induced, and thus may acquire an imaginary part (as is the case here). The
orbital angular momentum contributions give
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Note that these shifts are proportional to the soft momentum k and transverse to their respective
momenta, pi · �pi = 0. This second property follows from the fact that the ith momentum
shift is derived from the orbital angular momentum operator of Eq. (2.11), which generates an
infinitesimal Lorentz transformation transverse to the momentum pi. Combining Eq. (3.12) with
Eq. (3.10), we can write
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Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
simple rescaling. Indeed,

s ! (p1 + p2 + �p1 + �p2)
2 = s+ 2 (�p1 + �p2) · (p1 + p2) . (3.15)

Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition

p1 + p2 = k + P , (3.16)

it is easy to show that Eq. (3.15) can be written simply as

s ! zs . (3.17)
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Eq. (3.14) is a focal point of this paper: it shows that all NLP contributions to the NLO squared
matrix element for the production of an arbitrary colour-singlet final state can be absorbed into
a shift in the kinematics of the Born contribution. Corrections to this shifting procedure involve
terms at least quadratic in �pi, and thus beyond the NLP approximation. In Section 4, we will
show that the same property is shared by quark-initiated processes. Note that Eq. (3.14) is fully
differential in final state momenta, and can be applied to generate distributions valid at NLO
and to NLP accuracy. On the other hand, using simple properties of phase space, one can also
derive a similarly simple expression for the inclusive cross section. In order to do so, note that
the effect of the required momentum shifts on the partonic centre-of-mass energy is given by a
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s ! (p1 + p2 + �p1 + �p2)
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Substituting the definitions of Eq. (3.13) in Eq. (3.15), and using Eq. (3.2), together with the
NLO momentum conservation condition
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Single Higgs production

✦ Single Higgs production  

‣ with F the well-known Born function. D’s and L’s agree with exact calculation, but also 
with full top mass dependence!

!40

(a) (b) (c)

Figure 5: (a) Leading order diagram for the production of a Higgs boson via gluon fusion; (b)
Contact interaction in the large top mass limit; (c) Contact interaction for radiation of an extra
gluon.

At leading order, the incoming gluons couple to the Higgs boson via a top-quark loop, as
shown in Fig. 5(a). The leading order cross-section for this process (see for example [65]) can be
written as

�h
Born(s) =

↵2
s

⇡

m2

h

576v2
(1 + ✏)F (⌧, ✏) �(s�m2

h) , (5.1)

where mh and v are the Higgs mass and vacuum expectation value respectively4. The form factor
F (⌧, ✏) depends on the dimensionless variable

⌧ =
s

4m2
t

, (5.2)

and it is given by [65]

F (⌧, ✏) =
9

4

1

⌧2

����1 +
✓
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1

⌧

◆
arcsin2

�p
⌧
�����

2

+ O(✏) , (5.3)

with a normalisation chosen so that F (⌧, ✏) ! 1 as ⌧ ! 0. The cross section with kinematics
shifted according to Eq. (3.15) can then be written as

�h
Born(zs) =

↵2
s

⇡

z

576v2
(1 + ✏)F (z⌧, ✏) �

✓
z �

m2

h

s

◆
. (5.4)

Substituting this result into Eq. (3.26) and expanding in powers of (1� z) and ✏ one finds

d�h
NLP

dz
=

↵3
sCA

288⇡2v2
F (z⌧, ✏)

✓
2�D0(z)

✏
+ 2D1(z)�D0(z)� 4 log(1� z) + 2

◆
. (5.5)

It is easy to check that Eq. (5.5) agrees with the known analytic NLO result of Ref. [65] in
the mt ! 1 limit. We note, however, that the result of Eq. (5.5) is much more informative: it
includes the full dependence on the top quark mass up to NLP order, and can thus be applied
for arbitrary mt. This is a remarkable simplification of the intricate result of Ref. [69] for the full
mt dependence: after shifting the kinematics of the leading order result, the resulting K-factor is
entirely independent of the top quark mass, which makes the formula especially simple to apply
in practical applications 5.

It is interesting to examine the anatomy of the result in Eq. (5.5) in slightly more detail. If
one were to calculate the NLO cross section by starting manifestly in the large top mass limit (i.e.

4In Eq. (5.1) we have omitted scale factors relating to the d-dimensional coupling ↵s, which amounts to the
choice µ = mh.

5Indeed, we have checked that eq. (5.5) reproduces the K-factor reported in ref. [70], which features a double
expansion in threshold parameter and top mass.
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Contact interaction in the large top mass limit; (c) Contact interaction for radiation of an extra
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includes the full dependence on the top quark mass up to NLP order, and can thus be applied
for arbitrary mt. This is a remarkable simplification of the intricate result of Ref. [69] for the full
mt dependence: after shifting the kinematics of the leading order result, the resulting K-factor is
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Di-Higgs production

✦ Double Higgs production at NLO-NLP 

‣ where  

✓ with triangle and box graphs, again for full top mass dependence 

‣ Should be useful for numerical evaluations, and seeing new patterns 
✦ Similar result for triple-Higgs production
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mass energy s and the other Mandelstam invariants
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The basis tensors Ts, µ⌫ , with s = 0, 2, in Eq. (6.1) are associated with the exchange of spin 0 and
spin 2 in the s channel, respectively. Denoting the gluon momenta by p1 and p2 and the Higgs
boson momenta by p3 and p4, their explicit forms are
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= p1 · p2 ⌘
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With these notations, the leading-order distribution in the Mandelstam invariant t can be written
as [46]

d�̂hh
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This expression simplifies considerably in the large top mass limit, where

F4 !
2

3
, F2 ! �
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3
, G2 ! 0 , (6.7)

so that Eq. (6.6) becomes
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We observe that, in the large top mass limit, the leading-order cross section vanishes at threshold,
as s ! 4m2

h, due to the cancellation between the box and triangle contributions. This property is
one of the reasons that make the large top mass limit a poor approximation in Higgs boson pair
production, necessitating the calculation of higher order corrections with full mt dependence. It
also causes problems when trying to define a K-factor as a function of the variable z. Ordinarily,
one would divide the NLO cross section by the LO one, however this becomes ill-defined in the
threshold region z ! 1. In Ref. [46] this problem is circumvented by dividing by the LO cross
section with kinematics shifted according to Eq. (3.17). The resulting K-factor thus matches
precisely the quantity defined in Eq. (3.26).

With this convention, the NLO cross section for Higgs boson pair production, up to NLP
accuracy, can be written as

z
d�hh

NLP

dz
=

↵s

3⇡
CA

✓
µ2

s
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12� 6D0(z)

✏
+ 12D1(z)� 24 log(1� z)

�
�hh
Born (zs) , (6.9)

where we have extracted an explicit factor of z on the left-hand side, to match the conventions
adopted in Ref. [46]. In the large top mass limit, Eq. (6.9) reproduces the results of Ref. [46].
As in the case of single Higgs production, however, the result is much more powerful, in that it
applies to the full top mass dependence. Eq. (6.9) thus provides an explicit analytic form of the
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With these notations, the leading-order distribution in the Mandelstam invariant t can be written
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We observe that, in the large top mass limit, the leading-order cross section vanishes at threshold,
as s ! 4m2

h, due to the cancellation between the box and triangle contributions. This property is
one of the reasons that make the large top mass limit a poor approximation in Higgs boson pair
production, necessitating the calculation of higher order corrections with full mt dependence. It
also causes problems when trying to define a K-factor as a function of the variable z. Ordinarily,
one would divide the NLO cross section by the LO one, however this becomes ill-defined in the
threshold region z ! 1. In Ref. [46] this problem is circumvented by dividing by the LO cross
section with kinematics shifted according to Eq. (3.17). The resulting K-factor thus matches
precisely the quantity defined in Eq. (3.26).

With this convention, the NLO cross section for Higgs boson pair production, up to NLP
accuracy, can be written as
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where we have extracted an explicit factor of z on the left-hand side, to match the conventions
adopted in Ref. [46]. In the large top mass limit, Eq. (6.9) reproduces the results of Ref. [46].
As in the case of single Higgs production, however, the result is much more powerful, in that it
applies to the full top mass dependence. Eq. (6.9) thus provides an explicit analytic form of the
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Figure 6: Leading-order diagrams contributing to Higgs boson pair production.

by using an effective field theory), the leading order graph would contain an effective point-like
interaction coupling the two incoming gluons to a Higgs, as shown in Fig. 5(b). At NLO, one
can radiate the extra gluon from either of the incoming gluons, and one must also include the
additional effective coupling shown in Fig. 5(c), namely a point-like interaction between three
gluons and a Higgs boson. If one resolves the top quark loop as in Fig. 5(a), this extra interaction
corresponds to emissions from inside the top quark loop. In the NLP calculation, there is no need
to include any additional diagrams to capture these contributions: they are generated precisely
by the orbital angular momentum contributions in Eq. (3.6): therefore, as the above analysis
reveals, we can choose to associate these terms with a shift in the kinematics of the leading order
result, up to corrections subleading in soft momentum. Seen from the point of view of the effective
field theory at large mt, it is highly non-trivial that such a shift captures the contribution of
higher-order operators in the effective Lagrangian.

6 Multiple Higgs boson production

In the previous section we have tested our main result, given by Eq. (3.26) for gluon scattering,
by reproducing known results in the cross section for single Higgs boson production via gluon
fusion. We now consider the case of Higgs boson pair production, a process of ongoing interest at
the LHC, due to its potential role in extracting the Higgs boson self-coupling. Analytic results for
this process are known up to NNLO in the large top mass limit [46–48], but only at leading order
with full top mass dependence [50, 51]. Further studies have looked at systematically improving
the effective field theory results by including leading-power threshold effects [54], or contributions
suppressed by powers of the top mass [55]. Recently, numerical results at NLO accuracy with full
top mass dependence have become available [52] (see also [53]). This, however, does not preclude
the desire for analytic results, which can serve to improve the efficiency of numerical computa-
tions, whilst also providing clues regarding higher-order structures in perturbation theory. This
is especially true in Higgs boson pair production, given that the large top mass limit is not a
good approximation, unlike the case of single Higgs production. The leading order diagrams for
Higgs pair production are shown in Fig. 6, and the leading order amplitude may be written as

Aµ⌫ =
↵s

2⇡v2

h
(C4F4 + C2F2) T0, µ⌫ + C2G2 T2, µ⌫

i
, (6.1)

where (in the Standard Model)

C4 =
3m2

h

s�m2

h

, C2 = 1 , (6.2)

and F4, F2, G2 are form factors arising from the triangle and box graphs, as indicated by the
subscripts. They depend on the Higgs boson and top masses, as well as the partonic centre of
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Final state partons: 
Prompt photon production

Beenakker, van Beekveld, EL, White
to appear



With final state partons: prompt photon
✦ Two LO channels: qq̄ and qg 

✦ With extra radiation, different ways to define threshold. We shall use “w”→1 

✦ Two issues to deal with 
‣ shifting kinematics in 2 → 2 kinematics 
‣ soft fermion emission

!43

dipoles that need to be constructed are:

1. Connect p1 with pR : pµ
1

! xkR,1p
µ

1

pµ
R

! pµ
R
+ kµ � (1� xkR,1)p

µ

1

xkR,1 =
p1 · pR + p1 · k � pR · k

p1 · k + p1 · pR
2. Connect p2 with pR : pµ

2
! xkR,2p

µ

2

pµ
R

! pµ
R
+ kµ � (1� xkR,2)p

µ

2

xkR,2 =
p2 · pR + p2 · k � pR · k

p2 · k + p2 · pR
.

If one uses this configuration for the momenta in the 2 ! 2 matrix element, one ensures that
also away from threshold the exact 2 ! 3 momentum conservation is fullfilled.
We are now in a position to integrate over the final state momenta pR and k and compute the
differential cross section. To compare our results with the NLO calculation presented in ref. [7],
we will make a change of variables:

u1 = (p1 � p�)
2
⌘ �svw (13)

t1 = (p2 � p�)
2
⌘ s(v � 1) (14)

s4 = s+ t1 + u1 = sv(1� w) (15)

The LP and NLP logs will be a function of (1� w).

The resulting NLP differential cross section, before performing mass factorization and up to
O(1) accuracy, is:

vw(1� v)s
d�NLPqq̄!�gg

dvdw
= ↵EM↵2

s(µ
2)
CF

CA

"
�

1

✏

4CFTqq̄

(1� w)+
�

1

✏

⇢
2CF

4v(v � 1)2 � 1

1� v

�

+

✓
ln(1� w)

1� w

◆

+

2(4CF � CA)Tqq̄

+
1

(1� w)+

(
Tqq̄

✓
2CA ln(1� v) + 8CF ln(v)� 2CA � 4CF ln

µ2

s

◆

+8CF ((v � 1)v + 1)

)

+ ln(1� w)

⇢
(4CF � CA)

4v(v � 1)2 � 1

1� v

�
+O (�(1� w)) +O(1)

#
,

where Tqq̄ = 2v(v � 1) + 1. The counter term that has to be added to this cross section is:

vw(1� v)s
d�F

dvdw
= ↵EM↵2

s(µ
2)
CF

CA

"
4CF

1

✏

Tqq̄

(1� w)+
+ 2CF

1

✏

4v(v � 1)2 � 1

1� v

�4CF

1

(1� w)+

⇢
2(v(v � 1) + 1) + Tqq̄

✓
ln v + ln(1� v)� ln

µ2

µ2

F

◆�

+O(�(1� w)) +O(1)

#
.
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Gluon emission
✦ For qq̄ channel 

✦ Can in fact write down general formula 

‣ color charge and spin generator depends on emitting IS or FS particle 
‣ orbitral part on IS or FS particle

!44

We are now in a position to write down a general formula for the NLP amplitude belonging
to the emission of a soft gluon:

ANLP = Ascal +Aspin +Aorb

=
n+2X

j=1

gsTj

2pj · k

�
O

�

scal,j
+O

�

spin,j +O
�

orb,j

�
⌦ iMH(p1, . . . , pi, . . . , pn+2)✏

⇤
�(k), (2)

where MH is the hard scattering matrix element and:

Tj ⌘ T c

cjci
for an incoming quark or outgoing anti-quark with color label ci,

Tj ⌘ �T c

cicj
for an outgoing quark or incoming anti-quark with color label ci,

Tj ⌘ if cab for an external gluon with color label a.
O

�

scal,j
⌘ (2p�j ± k�), where:

2p�j ± k� ⌘ 2p�j � k� for an initial state emitter,
2p�j ± k� ⌘ 2p�j + k� for a final state emitter.

O
�

spin,j ⌘ k↵⌃
�↵

j , where:
⌃�↵

j ⌘ 2iS↵� for an incoming quark or outgoing antiquark,
⌃�↵

j ⌘ 2iS�↵ for an incoming anti-quark or outgoing quark,
⌃�↵

j ⌘ 2iM�↵,µ⇢

L for an incoming gluon,
⌃�↵

j ⌘ 2iM�↵,⇢µ

L for an outgoing gluon.
O

�

orb,j
⌘ k↵L�↵

j , where:

L�↵

j ⌘

 
p↵j

@

@p�
j

� p�j
@

@p↵
j

!
for an initial state emission,

L�↵

j ⌘

 
p�j

@

@p↵
j

� p↵j
@

@p�
j

!
for a final state emission.

Note that the ⌦ notation indicates that the color generators and the Dirac matrices in case for
a quark/anti-quark emitter should be inserted at the right place in the hard scattering matrix
element MH. For a gluon emitter MH carries additional Minkowski indices µ and ⇢, which are
in the orbital and scalar case contracted with gµ⇢. The orbital operator only acts on the internal
lines of the hard scattering matrix element, not on the asymptotic states.

2.2 NLP amplitude for soft quarks

We will now continue with the derivation of a general form for the NLP amplitude for the emission
one additional soft quark. First consider an initial state gluon with momentum p1 splitting into
a quark-antiquark pair, where the antiquark will participate in the hard interaction (figure 2a).
The resulting expression is:

iMNLP,1,g =
gsT a

cmcj

(p1 � k)2 + i"
✏µ(p1)ū(k)�µ( /p1 � /k)Mcj (p1 � k, p2, . . . , pn+2).

The spinor has a dimension of
p
k, therefore the leading power of divergence for k� ! 0 in

this expression is of order O

⇣
1p
k

⌘
(as opposed to 1

k
for the soft gluon case). It will therefore

not give rise to a leading power threshold contribution, but at NLP accuracy it is expected to
contribute. Furthermore, as the leading power is already of order 1p

k
, there will be no additional
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Squared amplitude at NLP
✦ Result: again dipoles plus momentum shift 
✦ Important to implement  2 → 3 momentum conservation in 2 → 2 matrix element 
‣ used Catani-Seymour dipoles (FKS is also possible) 

✦ Integrate over NLO phase, agrees with NLO calculation including ln(1-w) terms

!45

The expression for AscalA
⇤
orb

looks similar, but the derivatives act on M
⇤
qq̄!g� .

The derivative acting on Mqq̄!g� can be transformed into a total derivative of the complete
trace using partial integration:

�p↵1;2
@

@p↵
1

⇣
Tr

h
/p
2
Mqq̄!g�/p

1
M

⇤
qq̄!g�

i⌘
= Tr


/p
2

✓
�p↵1;2

@

@p↵
1

◆
Mqq̄!g�/p

1
M

⇤
qq̄!g�

�

+ Tr


/p
2
Mqq̄!g�/p

1

✓
�p↵1;2

@

@p↵
1

◆
M

⇤
qq̄!g�

�

+ Tr
h
/p
2
Mqq̄!g��/p

1;2
M

⇤
qq̄!g�

i
.

The first two terms in this equation is are exactly the spin-orbital terms of equation 4 plus its
complex conjugate. When one combines the orbital terms with the colour factor CA, one sees
that this leftover piece will drop out and all that remains is a shift of the momenta in the total
matrix element [MB: ellaborate on this]. For the CF piece this is not true, but upon combining
this term with the spin contribution, also here one computes that it results in a total momentum
shift on the matrix element. The complete NLP squared amplitude is given by:

|ANLP,qq̄!�gg|
2 =

CF

CA

"
CF

2p1 · p2
(p1 · k)(p2 · k)

|Mqq̄!�g(p1 + �p1;2, p2 + �p2;1)|
2 (8)

+
1

2
CA

2p1 · pR
(p1 · k)(pR · k)

|Mqq̄!�g(p1 + �p1;R, pR � �pR;1)|
2 (9)

+
1

2
CA

2p2 · pR
(p2 · k)(pR · k)

|Mqq̄!�g(p2 + �p2;R, pR � �pR;2)|
2 (10)

�
1

2
CA

2p1 · p2
(p1 · k)(p2 · k)

|Mqq̄!�g(p1 + �p1;2, p2 + �p2;1)|
2

#
. (11)

Upon inspection of this formula, one sees the appearance of dipoles, just as in the case for the
leading power soft gluon amplitude squared. The difference here is that the momentum in the
Born matrix element is shifted accordingly, which allows the momentum configuration to move
away from exact threshold.
To get all of the NLP contributions, one needs to implement the next-to-soft kinematics in the
Born matrix element. It was shown in ref. [5] that it does not matter how one parameterizes the
momentum configuration away from threshold, as long as it behaves correctly in the threshold
limit. For this particular process one needs to implement the 2 ! 3 momentum conservation in
the 2 ! 2 Born matrix element. To this end, we use a method based on the dipole method of
ref. [6]. Assuming that k is emitted, the ‘observed’ momentum (the emitting parton) will get
rescaled with a momentum fraction x, while the unobserved final state particle (pR) takes care
of the recoil.
In this process, there are 3 external coloured states, hence also 3 possible dipoles. However, we
found it convenient to split up the case where two initial state lines form a dipole (as in the first
and last line of equation 8) into two dipoles via:

2p1 · p2
(p1 · k)(p2 · k)

=
2p1 · p2
p1 · k

1

(p1 + p2) · k
+

2p1 · p2
p2 · k

1

(p1 + p2) · k
, (12)

where in the first (second) term only the p1 · k (p2 · k) collinear divergence will emerge. The two
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Soft fermions
✦ At NLP (not LP) one can have soft fermion emission 

‣ Effective feynman rule for left diagram (note that “u(k)” is of order √k ) 

‣ Right diagram 

✦ Squaring amplitude and integration over phase space gives agreement with exact 
NLO 
‣ Must keep careful track of singular regions

!46
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Figure 2: (a) Feynman diagram for the emission of one additional quark carrying momentum k
and color m from an initial state gluon carrying momentum p1 and color a. The hard scattering
matrix element Mj(p01) is defined to contain all external states, except for the polarization
vector ✏µ(p1) and the spinor ū(k). By the emission of a quark, the identity and the color of the
external gluon changes. (b) Feynman diagram for the emission of one additional quark carrying
momentum k and color m from an initial state quark carrying momentum p1 and color i. The
hard scattering matrix element Mj(p01) is defined to contain all external states, except for the
spinors ū(p1) and ū(k).

contribution from the O(k) terms in the hard scattering matrix element or the Dirac propagator.
The soft-quark Feynman rule therefore becomes:

iMNLP,1,g =
gsT a

cmcj

(p1 � k)2 + i"
✏µ(p1)ū(k)�µ/p

1
Mcj (p1, p2, . . . , pn+2).

The same exercise can be performed if the initial state is a quark with momentum p1 splitting
into a quark-gluon pair, where the gluon with momentum p1 � k will take part in the hard
interaction (figure 2b). Here the soft-quark Feynman rule reads:

iMNLP,1,g =
gsT b

cmci

(p1 � k)2 + i"
ū(k)�⇢u(p1)M⇢,b(p1, p2, . . . , pn+2).

A similar exercise can be performed if the emitter is an initial state quark or a final state
particle. The case where the additional quark is emitted from the internal matrix element does
not lead to a NLP contribution. This can be seen easily. The propagator of the internal line
is far off shell. The additional soft quark is not able to change the momentum of the internal
propagator and therefore will never lead to an infrared divergence.
We can write down a general formula accurate at NLP for the process where one extra soft quark
is radiated. We denote matrix element for the hard scattering process without the additional
quark by MH(p1, . . . , pn+2). We define an operator Sj that acts on the asymptotic state carrying
momentum pj and thereby changes the spin of the asymptotic state and adds a soft quark with
momentum k.
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LL resummation of NLP logarithms

Bahjat-Abbas, Bonocore,  EL, Magnea, Sinninghe Damsté, Vernazza, White
to appear



LL resummation of NLP logarithms
✦ We have organized NLP threshold logs at NLO and NNLO for 

Drell-Yan. Can one resum them? 
✦ First resummation conjecture: just change kernel in regular 

resummation formula 

‣ reproduced NNLO NLP logs of van Neerven et al 
✦ Physical kernel approach for inclusive quantities 
‣ using single log behaviour of kernel 

✦ Recent LL resummation using SCET

!48

Kraemer, EL,  Spira; 1998
EL, Magnea, Stavenga

Soar, Moch, Vemaseren, Vogt;
Moch, Vogt; Mattizelli, de Florian
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NLP amplitude exponentiation via path integral
✦ Fluctuations around classical path are NE corrections 

‣ All NLP corrections from external lines exponentiate 

‣ Keep track via scaling variable λ  

✦ Exponentiation then in terms of NLP webs  
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LL resummation for cross section at NLP
✦ Can show that phase space NLP effects behave as 

‣ i.e. softness suppression comes with singularity suppression 
‣ => phase space does not give leading logs 

✦ Can show that there are no LL enhancements from purely collinear regions (single 
log) 
‣ => LL effects come then only from NLP soft function = NLP webs
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Exponentiating NLP soft function
✦ Moments of cross section 

✦ with NLP soft function  (f’s are NLP Wilson lines) 

✦ Exponentiation then gives 

‣ agrees with 1998 conjecture
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LL resummation of NLP logarithms in 
prompt photon production

Basu, Beenakker, van Beekveld, EL, Misra, Motylinski
to appear



NLP resummation in prompt photon production at fixed pT

✦ Threshold resummation of powers of 

✦ Threshold resummation long known, to NNLL and even beyond 
✦ Joint threshold+recoil resummation 

‣ gives about 20% correction w.r.tthreshold 
✦ Two ways of including NLP logarithms 
‣ 1) Extend kernel to NLP in Sudakov exponent => modified resummation exponent 
‣ 2) Extend PDF evolution to soft scale, automatically includes NLP terms
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Figure 1: Diagrams for the direct production of a photon (left) and for the production of a
photon via fragmentation (right).

The fragmentation component contributes at O(↵↵s). Although it is sub-dominant (i.e. the
fragmentation function behaves as 1/N [5]), threshold resummation can substantially enhance
this component [8]. The differential cross section for prompt photon production is therefore a
sum of two parts
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, (5)

where the two terms correspond to the subprocesses (3) and (4). Note that we have rescaled
both terms with powers of pT to make them dimensionless.
In what follows we assume that any additional radiation modifies the final state only slightly,

either because it is soft and/or collinear to initial/final state partons. In higher order corrections,
powers of the threshold logarithm ln(1�x̂

2

T
) will appear, which can be resummed in the framework

of threshold resummation or of joint resummation. We will now review these two kinds of
resummation.

2.1 Threshold resummation

The hardronic pT distribution for the direct production of a photon is given by:
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where the parton distribution functions (PDFs) are indicated by fi/I(xi, µF ) and µF (µR) denotes
the factorization (renormalization) scale. The labels a, b, d denote the parton indices (q, q̄ or g).
The partonic differential cross section d�̂

dpT
has a perturbative expansion in ↵s. Near threshold

(x2
T

! 1), this expansion effectively can be written as a 2 ! 2 hard scattering subprocess,
dressed with additional soft and collinear radiation, where the pT distribution for the 2 ! 2
hard scattering subprocess is given by:
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Joint-resummation
✦ Joint-resummed  formula 

‣ with resummation 
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2.2 Joint resummation

Joint resummation takes into account the recoil of the photon against the produced partons,
where the additional radiated partons have a collective transverse momentum of QT . This implies
that for fixed pT of the photon, the transverse momentum in the CM frame to be produced by
the hard scattering is only p0

T
= pT �QT /2. This therefore lowers the partonic threshold. The

new scaling variable is x̃2
T
= 4p

0
2

T
/Q

2, where Q
2 is the new invariant mass of the hard scattering.

The variables xT and x̃T are related by

x̃
2

T = x
2

T

 
S

Q2

p
2
0

T

p2
T

!
.

For sufficiently small values of |QT | ⌘ QT , both threshold and recoil effects can be jointly
resummed [17,19]. This is done by modifying the initial state exponents and linking the threshold
and recoil effects via the kinematic factor:
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. The expression

for the jointly resummed pT distribution of the direct component reads then [17,61, 62]:
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Singular QT behavior is most easily organized in impact parameter space, therefore we perform
a Fourier transform over the impact parameter b in the second line of this equation. The profile
function has gained a b = |b| dependence via:

Pabd(N, b, µF , µR, Q) = exp
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PT

a (N, b, µF , µR, Q) + E
PT

b
(N, b, µF , µR, Q) + Fd(N,µR, Q) + gabd(N)

⇤
.

Azimuthal symmetry of the process ensures that the initial state exponents are a function of b
only. The parameter µ̄ acts as a cut-off on the soft gluon transverse momentum to avoid the
kinematic singularity in the kinematic factor at pT = QT /2. This singularity is not present
in the NLO calculation, but signals the moment where the full transverse momentum of the
photon in the CM frame is given by the recoil of the gluon that is emitted. At this moment, the
assumption that QT is small compared to pT breaks down, which shows up as a singularity in
the resummed expression. The last line contains the resummed expressions in combined (N, b)
space. If one wishes to resum only threshold-enhanced logarithms, one simply neglects the recoil
term QT in the kinematic factor in the second line of eqn. (13), upon which the QT integral sets
b to zero and eqn. (8) is recovered.

The joint-resummed expression for the fragmentation component is derived in an analogous
way to the expression for the direct component [9,17]. Its expression is similar to eqn. (9), where
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For sufficiently small values of |QT | ⌘ QT , both threshold and recoil effects can be jointly
resummed [17,19]. This is done by modifying the initial state exponents and linking the threshold
and recoil effects via the kinematic factor:
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Singular QT behavior is most easily organized in impact parameter space, therefore we perform
a Fourier transform over the impact parameter b in the second line of this equation. The profile
function has gained a b = |b| dependence via:
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Azimuthal symmetry of the process ensures that the initial state exponents are a function of b
only. The parameter µ̄ acts as a cut-off on the soft gluon transverse momentum to avoid the
kinematic singularity in the kinematic factor at pT = QT /2. This singularity is not present
in the NLO calculation, but signals the moment where the full transverse momentum of the
photon in the CM frame is given by the recoil of the gluon that is emitted. At this moment, the
assumption that QT is small compared to pT breaks down, which shows up as a singularity in
the resummed expression. The last line contains the resummed expressions in combined (N, b)
space. If one wishes to resum only threshold-enhanced logarithms, one simply neglects the recoil
term QT in the kinematic factor in the second line of eqn. (13), upon which the QT integral sets
b to zero and eqn. (8) is recovered.

The joint-resummed expression for the fragmentation component is derived in an analogous
way to the expression for the direct component [9,17]. Its expression is similar to eqn. (9), where
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now the initial state exponents will be b dependent, as in eqn. (13). The resulting expression is
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2.2.1 Treatment of the kinematic singularity

By inspection of eqn. (13) and (14), we observe a singularity for pT = QT /2 that was not
present in the original formula of the cross section. There are two ways of dealing with this
‘fake’ singularity. One is to impose a cutoff on QT like in eqn. (13) and (14). For this study, we
instead choose to remove the kinematic singularity by approximating the kinematic factor, like
in ref. [7]:
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This expression is accurate to corrections that are suppressed by factors of O(QT /pT ). Since this
is the order at which the resummed expression is accurate, the approach is justified. We checked
that for pT ' QT , the function d

2
�

dQT dpT
is indeed small, therefore the error that one makes by

approximating the kinematic factor is negligible.
We now turn our attention to the effect of this approximation on the resummation formula. The
initial state exponent for joint resummation reads [19]:

E
PT

a (N, b, µF , µR, Q) =

Z
Q

2

0

dk2
T

k2
T

Aa(↵s(k
2

T ))


J0(bkT )K0

✓
2NkT

Q

◆
+ ln

✓
N̄kT

Q

◆�

� ln N̄

Z
Q

2

µ
2
F

dk2
T

k2
T

Aa(↵s(k
2

T ))

⌘ E
running

a (N, b, µR, Q) + E
DGLAP

a (N,µF , µR, Q), (16)

where N̄ = Ne�E and J0 and K0 are Bessel functions. The function Aa is written as a pertur-
bative expansion in the strong coupling:

Aa(↵s) =
1X

n=1

⇣
↵s

⇡

⌘
n

A
(n)

a .

Expressions for the first two coefficients A
(0),(1)

a are given in the appendix. Note that the loga-
rithm and the K0 Bessel function in E

running
a cancel each other in the limit kT ! 0, since

K0(x)
x!0
= � ln

✓
xe�E

2

◆⇥
1 +O(x2)

⇤
+O(x2).
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Numerical results
✦ Effect of NLP logs, LL accuracy = about 10-20% positive  
✦ Scale uncertainty reduces as well

!55

Figure 5: Jointly resummed differential cross section of the direct and fragmentation components
combined. The color indicates the result for LP resummation only (black) or with the inclusion
of NLP effects for the initial state only (green). The bottom pannel shows the ratio with respect
to the LP NLL resummed result. Different green lines indicate different ways to include the
NLP effects. The solid line refers to item 1 in section 2.3, the dashed one indicates item 2,
the dash-dotted line indicates item 3 and the dotted line indicates item 4. Three different scale
choices are shown: µR = µF = 1/2Q (left), µR = µF = Q (middle) and µR = µF = 2Q (right).

3.1 Effect of initial state NLP terms

In figure 5 we show the results for the jointly resummed total differential cross section for various
ways of including the initial state NLP terms. The final state NLP terms are not included in
these figures. One observes that the ME approach and the diagonal extended evolution of the
PDFs give a similar correction to the total differential cross section at µF = µR = Q. The
diagonal extended evolution of the PDFs show a slight dependence on the scale relative to the
ME approach, which is caused by the evolution of the strong coupling. The NLP LL correction
of the total differential cross section is ⇠ 20% at lower pT values, while for larger pT values this
drops down to ⇠ 10%.
The off-diagonal extended evolution of the PDFs to NLP LL accuracy diminishes the NLP
contribution for a central scale of µF = µR = Q. [MB: we should say why, but I don’t know
why. Maybe it is an artifact of plotting everything as ratio to LP NLL, since this is actually
very scale dependent (see fig. 8-10)]. This relative contribution is however heavily dependent on
the scale, as for a scale of µF = µR = 1/2Q, there is a positive contribution from the extended
evolution, while for a scale of µF = µR = 2Q we find a negative contribution. When we allow for
the full form of the splitting functions, we see a large correction of ⇠ �40% for small pT values
and ⇠ �10% for larger pT values at for µF = µR = Q. Also here, we see a large dependence on
the scale.

3.2 Effect of final state NLP terms

The effect of the inclusion of the final state NLP terms to the jointly resummed differential
distribution is given in figure 6. Note that here the initial state NLP terms are not included to
observe solely the effect of the final state NLP term. The left (right) figure shows the contribution
to the direct (fragmentation) component. We observe a clear difference between effect of final
state NLP terms on the direct and fragmentation component. The direct component is affected
by final state NLP terms by the modified final state exponent for the unobserved parton. This
gives a modest ⇠ �5% to ⇠ �2% difference with respect to the NLL result. Just as for LP
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Summary

✦ Soft approximation reveals patterns enabling all-order resummation 
✦ Next-to-soft/NLP is also promising 
✦ Factorization + LBDK theorem leads to strong predictive power for NLP threshold logs 
‣ Drell-Yan at NNLO 

✦ Simply NLP formulae at NLO for colour singlet final states 
‣ and now also prompt photon 

✦ LL resummation at NLP for Drell-Yan done 
‣ NLL seems much harder 

✦ NLP corrections are becoming an interesting object of study  
‣ Dedicated recent workshops in Edinburgh and Amsterdam
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