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A brief history of the eikonal approximation

+ “Eikon” originally from Greek eikeval [to resemble]
» leading to €ikov [icon, image]
+ Predates quantum mechanics, and even Maxwell

» also known in optics as “ray optics’

v Rays are straight lines, perpendicular to wave fronts



Kikonal optics: rays

Can describe formation of images/eikons
wavelength << size of scatterer
Cannot describe diffraction, polarization etc

these are wave phenomena




Kikonal quantum mechanics

+ Eikonal approximation in QM scattering
»  R.J. Glauber [1959 lecture notes (recommended!)]
»  Highly energetic particle scattering off potential
»  (regained use in scattering on nucleus)

+ 2D example

»  scattering on square potential of limited range



(OM eikonal scattering in 2D

Glauber, 1958 Boulder lectures Scattered

Incoming
wave

wave

k - VA el
0 e A I 0
A _.i ] Y(x) = e + \/%e f(9) iV

T

Scattering
amplitude
Factor high-momentum part
Y(7) = e ¢(7)
Substitute in Schrodinger equation E>V k> 1/ a
e'*%(—k? + 2ik0, +/é2 + E2)p(7) = ¥ ﬁ‘/(r)gb(r)

Exponential form!



(OM eikonal scattering in 2D

+ Approximation at amplitude level, some “wave” information is preserved. If potential
is “black”
»  Optical theorem Otot = 2Im f(0 = 0) = 2a

k
»  Scattering cross section Oscattered = 5 / do | f(0)]* = a

v Factor 2 is due to diffraction, fill in shadow of target



FEikonal QFT: QED

+ Charged particle emits soft photon
»  Propagator: expand numerator & denominator in soft momentum, keep lowest order

»  Vertex: expand in soft momentum, keep lowest order

k > H
p+k P

(p+ k) +p*  2p*

2p - k + k2 -k



Basics of eikonal approximation in QED

ki, p1 ke, po Ky tn
> p
Exact: 1 (2p + Kz + K1)"* ... 1 (2p+ Kp)*r, K; = En:km-
" (p+ Ky)? (p+ Kp)? : =
1 1
Approx: 2pH1 . 2pHn
Eikonal 1 1 1

: : + =
|dent|ty: D - (kl —|—]€2)p'k2 p - (kl —I—kg)p' ]431 D - klp-kg

K
Sum over H L
all perm’s: P k;

Independent, uncorrelated emissions, Poisson process



Kikonal approximation: no dependence on emitter spin

+  Emitter spin becomes irrelevant in eikonal approximation
prh ip+k),
O | %7 p M(pp+ e e ulp)
k

»  Approximate, and use Dirac equation  pu(p) =0

»  Fermion

»  Result:
pH
g (M u(p)) X R
»  Notice
v No sign of emitter spin anymore (= scalar emitter)

v Coupling of photon proportional to emitter momentum p+ !
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Another eikonal effect: coherence 1n emission

+ Eikonal approximation in amplitude, coherence possible
»  Firstin QED

»  Square the amplitude, take the eikonal approximation, and combine with phase. Result

S dE - D
dog = do=2 22 dcosbdp B2 — 22
27 FE

p-kp-k
»  Only non-zero when 6'<0 : angular ordering after azimuthal integral

v photon that is too soft only see the sum of the charges, which is zero here.

»  In QCD very similar result (after being a little bit more careful with color charges). Radiation function

W w?p; - pj va b R GO i e
/R Bl :
v clearly has eikonal form. Notice, it is an interference effect: NG
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Kikonal exponentiation

After eikonal approximation, we suddenly see interesting patterns.

One loop vertex correction, in eikonal approximation
p

o feslo

Two loop vertex correction, in eikonal approximation

ko 1 (e 1 DoE 2
W@é W{ A“z(/”k2<p-k><p-k>>

Exponential series! A really beautiful result

Yennie, Frautschi, Suura ‘61
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(QCD exponentiation: webs

+ Not immediately generalizable to QCD, seemingly

>

<

Vertices terms have color charges, which don’t commute

Still, an exponentiation theorem holds

ZFDCD — €XP
D

13

Webs

Yo Sl

]

Gatheral; Frenkel, Taylor; Stermar

EL, Stavenga, White



Kikonal approximation from QM path integrals

EL, Stavenga, White
Another way to exponentiate: use textbook QFT result

Sum of all diagrams = exp <Connected diagrams> f = i) dt(%ib2—|—p-A+..)

Write scattering amplitude as path integral

M (p1,p2,{k}) = / DA, Dxz(t) H[z] f1[As, z(t)] fo[As, z(t)] e514s]
x(t): path of charged

Eikonal vertices are sources for gauge bosons along line v ,
particle

v- A(x(t))

-~~~

Disconnected Connected
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Path integral method, non-abelian

R o I

+ Not immediately obvious how this could work (the path integral must be an actual
exponential), since

»  Source terms have non-abelian SU(3)-valued charges, so don't commute
»  External line factors are path-ordered exponentials

» Nevertheless ¥ ] Gatheral; Frenkel, Taylor; Sterman

ZFDCD — exXP Zézwz
D ) i

+ To prove, use replica trick (from statistical physics)
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Repllca t[.ICk EL, Stavenga, White

+ Relates exponentiation of soft gauge fields to that of connected diagrams in QFT.

+ Consider a N copies of a scalar theory
» It Zis exponential, find out what contributes to log Z

Z[J]N = /D¢1 2ol 'D¢Neis[¢1]+--+is[¢N]+J¢1—I—..J¢>N

»  Amounts to diagrams that allow only one replica — connected!

Z¥ — 14 Nlog Z + O(N?) ><[ X
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Replica method and QCD

Amplitude for two colored lines Wwég W“”é W@
S(p1,p2) = H(p1,p2) /DA f(00)e 4]

Replicate, and introduce replica ordering operator R

N

Z/d:c-Ai(:c)

=1

f(oo)zPeXp[/dx-A(a:)] HPeXp de Az )] RP exp

Look for diagrams of replica multiplicity N. These will go inta.exponent

| | | z > Web
' Modified color factor

(@)

(2) is order N

(b) for equal replica number (i=j): Cf2. For i#j also Cf2. Sum: NCy+ N Ga=nee
(c) for equal replica number (i=j): Cr2-Cr Ca /2. o ;
For i#j Cg2 Term linear in N: 2 (CF— > )+(—N)CF
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Muluple colored lines

+ Structure Projector matrix zd/: )
Z F(D)C(D) = eXp[Z f(d)Rld, C(d’)] Eigenvalues 0 or 1
d,d’

»  multi-parton webs are “closed sets” of diag’rams, with modified color factors

L2 D X

(3b) (3c) (3d)

+ (Closed form solution for modified color factor

~[c(3a) - C(3t) — C(36) + O3] x [M(30) 20 (30) ~ 201 (30) + M (3d)|

» Interesting properties of projector matrix (reduces degree of divergence)
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Perturbative series for cross sections in QF T

+ Typical perturbative behavior of observable 02 = 1+ af e e 1) +
a is the coupling of the theory (QCD, QED, ..) GOl e Ny R [y

v

A 4

L is some numerically large logarithm

A\ 4

“1" = 12, In(2), anything not-logarithmic

v

Notice: effective expansion parameter is alL2 i.e. a problem when >1!!

v

Fix: reorganize/resum terms such that

O = (5 ST S S s T A A D
= exp | Lgi(asL)+ga(asl) +asgs(asL) + ... | C(as)
LL constants

K NLL )

+ suppressed terms

+ Notice the definition of LL, NLL, etc
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Threshold logarithms

Log of “energy excess above
production threshold”

L? = In* (1 — Q—z) =8 A

S

20



Threshold resummed Drell-Yan (or Higgs) cross section

Sterman; Catani, Trentadue;

Threshold logarithms can be resummed to all orders A= L e

do.resum

Ravindran

dN

S Eo Tl
lea et S Q% (1—2)?
o(N) = exp[/Od:c 1_961{/2 L Ao (w)

+D(as((1 - az)@)}] (14 an@) )

Note: functions in exponent only depend on as

A similar case: top quark pair production, much smaller uncertainty

G0t [PD]

280
260
240
220
200
180
160
140
120

Scale variation Concurrent uncertainties:
NLO e ~ 20
Lo e Scales 3%
[ ] pdf (at 68%cl) ~2-3%
LL g NNLL '
NLLNNEL O (parametric)  ~1.5%

m,,, (Parametric) ~ 3%

Fixed Order —e—
NLO+res —e—

NNLO+res =—— || Soft gluon resummation makes a difference

LHC 8 TeV; m,,,=173.3 GeV: A=0
MSTW2008 LO; NLO; NNLO

5% -> 3%
21



NLP threshold behavior

+ For Drell-Yan, DIS, Higgs, singular behavior in perturbation theory when z— 1

_lni(l — z)_

1l — 2z
L d 4+

»  plus distributions have been organized to all orders (=“resummation”), I possible for In(1-z)?

6(1 — 2)

+ “Zurich” method of threshold expansion allows computation (for NNNLO Higgs production)

( 1 — 2 ) p lnq ( 1 = Z) Anasthasiou, Duhr, Dulat, Furlan,

Gehrmann, Herzog, Mistlberger

- done to p=37..

Larkoski, Neill, Stewart, Moult, Kolodrubetz, Rothen,
Zhu, Tackmann, Vita, Feige ;

4 MUCh development In SCET Beneke, Campanario, Mannel, Peckja
+ Useful also for improving NNLO slicing (N-jettiness) methods

+ Alternative terminology to "NLP”
»  Next-to-soft

»  Next-to-eikonal
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Numerical effects of NLP logarithms

+ (eneral power expansion

log™ (1 —
{67(1;11) og’ ( z)

o0 2n—1
Z-> ()Y
dz T
n=0 m=0
i K
. Iy
17 | dL .
: ——— ®w(qq—7) [pb] /
16 F ]
15 | b
14 ; ]
13 F ]
12 | ]
1.1 f ]
1 ]
09 | ]
08 L[l : = ]
10° 10° 10
Q[GeV]

Kramer, EL, Spira, 1998

+ NLP logs can be quite important

L — 7

E T ‘ T T T T T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ LL{C\@\‘]S\-re\‘/ T T
3.0

| | |

. h+X subchannel

- — - - = = F*«.(Ig 7.Jgg$2ﬁ>i)f17+77774%_:77477
g | MSTWO08 680’

| M=HR=HF=Mp

Truncation order

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 2015
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Next-to-eikonal Feynman rules

+ Keep 1 term more in k expansion beyond eikonal approximation

1 2p'u —|— k.'u kQ 2p,u
sCalar .

2p - k + k2 2p - k (2p - k)?

: p + ¥ fyt 1.2 2p*
fermion PR 27 20 k . ky}u(p)

»  Becomes emitter-spin dependgnt, rg€oil now included

» Is there predictive power for Ext-to-eikonal terms?

Eikonal term

24



Classic NLP result: L.ow’s theorem

“Internal” emission contributes

Hoffoted

particles by DeI Duca): LBKD theorem

+ Elastic amplitude still determines the emission to NLP accuracy,

>

b

v Work to order k, and use Ward identity

pg(k " P1

—k-pg)

These rules are good for emissions from external lines. At NLP order, also 1

Low’s theorem (scalars, generalization to spinors by Burnett-Kroll, to massless

or

[ @pr—k)*  (2p2 + k)M pi(k-p2—Fk-p1)
[ = + I+

= DR 2pg - k p1 -k

note the derivative

detailed knowledge of “internal part” not needed

25
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P2

k

op1 - p2




NLP logarithms for Drell-Yan

+ Goal: combine (N)LP matrix elements with (N)LP phase space to predict Ini(1-z) for
NNLO Drell-Yan

1 do
o) dz

N/dq)LP|M|%P+/dq)LP|M|12\ILP+/d(I)NLP|M|%P+"'

»  We pursue two methods:
v 1. Method of regions

v 2. Factorization
»  NLO is “easy’, real test at NNLO

26



NLP logs in Drell-Yan at NNLO

+ Check NLP Feynman rules for NNLO Drell-Yan double real emission

» Result at NLP level, agrees with equivalent exact result. Ce? terms e.g.

2 Qg 21 32 128 128
Ko = (520r) [-5 20 + T D16 - 3 log(1 - )
256 256 320 :
_TD2(2)+TIOg (1—2)—71@%(1—2) o llog (1—2)]
i Il ==
+ % Ds(z) — 10324 log?(1 — z) + 6401og?(1 — 2)| , +

+ Next, 1 Real- 1 Virtual

27



Diagnosis: method of regions

+ How does it work?

4

)

4

>

Beneke, Smirnov

Divide up k1 (=loop-momentum) integral into hard, 2 collinear and a soft region, by

appropiate scaling

Hard : ki ~V5(1,1,1) ; Soft : k1 ~ v5 (A%, A2, )\?) ;
Collinear : k; ~ V'3 (1, A, )\2) . Anticollinear : ki ~ V'3 ()\2, A, 1) :

expand integrand in A, to leading and next-to-leading order

but then integrate over all k1 anyway!

p
k

=)

2

X |

Treat emitted momentum as soft and incoming momenta as hard

R A )

28




Method of region: result

by RGSUltS Bonocore, EL, Magnea, Vernazza, White
»  Hard region (expansion in A2): LP + some NLP
»  Soft region (expansion in A2): ZERO

»  (anti-)collinear regions (expansion in A):  NLP only
+ Result:
» the full K(4.1vis reproduced, including constants

+ For predictive power, need factorization

20



A factorization approach from Low’s theorem

Bonocore, EL, Magnea, Melville, Vernazza, White

+ Can we predict the In(1-z) logarithms from lower orders?
»  Factorize the cross section, @‘

v H: the hard and the soft function

v J:incoming-jet functions

+ Next, add one extra soft emission. Let every blob radiate! @
cﬂ;ﬁ“

D O

< <

S S Del Duca

»  Compute each new “blob + radiation”, and put it together. New: radiative jet function

Iy (p, 1, ky s (1), €) ulp) = /ddy e” =RV (0] &, (y, 00) Y(y) 5. (0) | p)

30



Factorization approach to NLP logarithms

+ Upshot: a factorization formula for the emission amplitude

2
1 = 9 <
A,u,a(pja k) — Z (5 S,u,a(pja k) Ny gTi,a G@',M a_py N J,u,a (pia e k)) A(pj) = A/{a(pja k)
= )
Soft function Orbital term Jet function Overlap

» JuIs needed at one-loop level

31



Predicted NLP threshold logs vs exact result

+ Compute blobs, one-loop radiative jet function, contract with cc amplitude and
integrate over phase space. Exact calculation gives

g\ 2 32Dg(z) — 32 —64D1(z) +48Dy(z) + 64L(z) — 96
KO - (2) {C% [ G280, SOD1(2) 45D () BAL(D)
64D (2) — 96D (z) + 128Dy (z) — 64L%*(2) + 208L(2) — 196 128
s € L Ds(2)

128
+96D4(2) — 256D (2) + 256D (2) + TL3(,z) — 232L%(2) + 412L(z) — 408]

oo | e = e G Gl L e R e
€ € 2
2 2
- ?173(2) + ?L‘g(z) — 128L%(2) — 60L(z) + 8] } , (4.6)

L(z) =In(1 — 2)

+ Result: perfect agreement for 4 powers of the next-to-eikonal/soft logarithms at
NNLO

T L i My e 8 A O 4 N
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Colour-singlet final states

+ (Generalize NLP factorization (the LBKD theorem) beyond Drell-Yan, to arbitrary
colour-singlet final states

» look at NLO only, i.e. predict

ol [mil—_zZ)L Do = [1 i ZL Li=In(l-2) Lo=W’1-2)

v where “1-z" can take different forms for 2 -> 2,3 etc scattering
» apply to Drell-Yan, (multi-)Higgs, (vector boson pairs)

»  for inclusive and fully differential cross sections
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NLP terms in colorless final states (@N1.O

Bonocore, Del Duca, EL, Magnea, Vernazza, White
1706.04018

+ Previous factorization at NLO

2

A,Eal,ZL ({pz}ak) = Z

[=1

0
Opy/

9s T1,a Gl 7 + Ik (01,70, k) } A9 ({p:})

v Qs a projector, T a color matrix

2p — k i 1
= S| Sou = gl

» Initial quarks: T2 (p,n,k) = gSTa[

2p - k p-k
Nt : i . [(2p— k) kP _-( i )
|n|t|a| g|UOnS Ju,pa(pana k) = ¢, T [ 2% - H Npo — n M,B,u,po' MBM;PU — W\ NBp"Muc NBoNup

»  notice the spin-dependent Lorentz generator (“next-to-soft theorem®)

» notice derivative term (Low’s theorem)
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Lorentz generator

+ The derivative term can be written as the orbital part of Lorentz generator

S [ goiis a]__ikVLSfZL
TR L B pi -k
+ 50 that
2
ks 2o —K)u K @) | 40 (g0
AL, (pid k) = 200 Tia| gy g (W 4 ) |4 )
(1)
b

» leads to Scalar + Orbital + Spin  part of the NLP amplitude
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Colour singlet production in gg channel

P >
+ Square amplitude b
A Da et AL AL 11 AL Y 73 D 5P ko 2

[ AnLp|® = Z ol A S 1 pa (P15 1) Poyun (D2, 12) Poy oy (K, I3)
colours
< (At AT AT (37)
* Palp + ppla
v where Pas (D, 1) Z M (p)esV* () = —ag + e

»  Can be done using -Neg onIy (external ghosts are beyond NLP)

»  Truncate to NLP, leads to

Aipl? = 3 {]A%8 P+ 2Re [(AZS + A%8) " Ascat o]

colours

»  Easy part: scalar (eikonal) part

o, WV P1-P
Z "Ascgl = 298 (ch Y 1) D1 -1kp22- k ’A,LW|2

colours

36
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(S production in gg channel

+ Spin * scalar vanishes (anti-symmetriy in pv)

+ Orbital part leads to shifts in momentum dependence

> 2Re [ATL" Accal o,

colours

v/ Where

2

e 1 -k o -k o o o 1 pi-k o) p2 -k
= = (p2 p1 s p2+k)75p2:__(1 p -

P1 - P2

292N, (NZ — 1) p1 - p2

_p1'p2

p1-kp2-k opf

2\p1-p2’ 2  p1L-po

+ Result is simple: dipole times shifted squared LO amplitude

0 0
[5]9(11 w000 (9]?“] |~A/w,2
2

p{ + ko‘)

Anwp|? =

292N (N2 — 1) p1 - p2

p1-kpa-k

A (p1 + 6p1, 2 + 0p2)|°

57



. Ps3

CS production in qq channel p1 E

P2

+ Scalar plus orbital part very similar to gg case

g?C’F S
2 p1-kpa-k

|AKILP|§ca1.—|—orb. — |A(p1 R 5]?1,]92 o 5p2)|2

»  except for the 1/z , which is due to the kinematic shift
s = (p1+p2+6p1+0p2)° = s+2(dp1 + Ip2) - (p1 + p2)

» which Is the same as
S — ZS8

+ But the spin part now does not cancel:

2p1 -p2 k- (p1+ p2) )
2 Re {AT As in] =T gNCC A 7
Colzol;rs e e ’ “prokpe-k p1opo AlpL p2)l

»  precisely compensates 1/z= 1 + (1-z)!! —(1 - 2)
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Squared amplitudes and cross sections

1 -k -k 1 -k -k
opf = —§(p2 pf = p5’+k“), ops = —(pl PR =2 pi“rk“)
p1 D2 P1 D2 2 \p1-p2 D1 D2

+ In summary
292N, (NZ — 1) p1 - p2

> gluons - Aweel” = p1-kps -k

A L (p1+ dp1, p2 + 0p2)|°

S
p1-kp2-k

» quarks Ll = o | A(py + 0p1, a2 + 0p2) |’
+ Up to colour factors the same:

» eikonal (dipole) factor times shifted Born cross section

»  Born can be loop-induced, have complex parts etc.

+ Combine carefully with phase space for general inclusive formula

dﬁ(gg) 2 e CYC 477'#2 i —1—2¢ F2(_6)
—0P — C4 Kiip (%6) by (28)  Fwe{ae) = 2 (1) - i
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Single Higgs production

Infinite top mass limit not needed
extra operators = shift in kinematics

+ Single Higgs production

—, = 93a9.2 F(zT,¢€) 3 + 2D1(2) — Dp(z) —4log(l — 2) + 2

»  with F the well-known Born function. D’s and L's agree with exact calculation, but also
with full top mass dependence! Dawson; Spira, Djouadi,

Graudenz, Zerwas
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Di-Higgs production

‘> ------- ‘\ "

. o o o e e e =
Y

Borowka, Greiner, Heinrich, Jones,

) . Kerner, Schlenk, Zirke
+ Double Higgs production at NLO-NLP
do iy, 72\ “ [12 — 6Dy(2) s
= = — 12D;(z) — =
Ne _ 2 g, (E ) 4 12D, (2) - 2410g(1 - )] o ()
» where e R
orn S 2 2
i = & 512t [’CAFA+CDFD| + |CaGol }

v with triangle and box graphs, again for full top mass dependence
»  Should be useful for numerical evaluations, and seeing new patterns
+  Similar result for triple-Higgs production

De Florian, Mazzitelli
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Final state partons:
Prompt photon production

Beenakker, van Beekveld, EL, White
to appear



With final state partons: prompt photon

+ Two LO channels: gg and qg

+ With extra radiation, different ways to define threshold. We shall use “w"—1

up = (p1 —pV)2 = —SVW
ti = (p2—py)° =sv—1)
sS4 = s+t +u =sv(l —w)

+ Two issues to deal with
»  shifting kinematics in 2 — 2 kinematics

»  soft fermion emission

43



Gluon emission

+ For qq channel

9 g a qT v q g q g

\ é N\ \ 5

\ (2
9 P YO g
7
Z

/() QQQ p: ‘\L y,

] Y q a Y q 7 q

+ (Can in fact write down general formula

ANLP = -Ascal =+ Aspin + Aorb
n—+2

9 T o o o . %
- Z 2;_ .jk (Oscal,j T Ospin,j -+ Oorb,j) X Z~/\/lH(pla INY Z T 7pn+2)€g(k)a
A

»  color charge and spin generator depends on emitting IS or FS particle

» orbitral part on IS or FS particle

4



Squared amplitude at NLP

+ Result: again dipoles plus momentum shift

+ Important to implement 2 — 3 momentum conservation in 2 — 2 matrix element

»  used Catani-Seymour dipoles (FKS is also possible) Gervais
C 2p1
i Do s D1 - P2 ) 9
ANLP, g7—99] Ca Cr (o1 k) (p2 - k) (M yg—syg (D1 + P12, D2 + p2.1))]

1 2p1 - PR 2
=€ 7 P71 — Opp.

1 2p2 - PR 2
~C 7 Ips. — OpR.
= L P Y P—— [ Mgg—~g(p2 + 0p2;R, PR — ODR:2)|

1 2p1 - p2 2
— ~C B Op1. Opa. .
A e [Mg—rg(P1 + 0p1;2, P2 + dp2;1)|

Note sign change for final state emitter

+ Integrate over NLO phase, agrees with NLO calculation including In(1-w) terms

Gordon, Vogelsang
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Soft fermions

+ At NLP (not LP) one can have soft fermion emission

»  Effective feynman rule for left diagram (note that “u(k)” is of order vk )

IMNLP,1,g = W =0 ‘;_ igé“(pl)u(k)wzﬁlf\/lcj (P1,p25 -+, Pni2)
»  Right diagram

M _ 9T g M

t/VINLP,1,g = (1 —k)2+i5u( )Ypu(p1)Mpp(P1,P2, - - - s Pnt2)-

+ Squaring amplitude and integration over phase space gives agreement with exact
NLO

»  Must keep careful track of singular regions

46



LL resummation of NLP logarithms

Bahjat-Abbas, Bonocore, EL, Magnea, Sinninghe Damsté, Vernazza, White
to appear



LL resummation of NLP logarithms

+ We have organized NLP threshold logs at NLO and NNLO for
Drell-Yan. Can one resum them?

+ First resummation conjecture: just change kernel in regular

- Kraemer, EL, Spira; 1998
resummation formula O e
1+ 22 2

> —2
1l — 2z 1l — 2z

»  reproduced NNLO NLP logs of van Neerven et al

+ Physical kernel approach for inclusive quantities

Soar, Moch, Vemaseren, Vogt;

» using single log behaviour of kernel Moch, Vogt; Mattizelli, de Florian

+ Recent LL resummation using SCET

Beneke, Broggio, Garny, Jaskiewicz,
Szafron, LV, Wang, 2018

—8&C g
ANip (2, 1) = exp [48™" (un, p) — 45" (ps, )] % 7 iy = ((:)> A=)
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NLP amplitude exponentiation via path integral

EL, Magnea, Stavenga, White

+ Fluctuations around classical path are NE corrections
» Al NLP corrections from external lines exponentiate

»  Keep track via scaling variable A P = An¥

oy — L é-2 ) - Az,
f(oo)—/x(o):OD:Ee p[z/o dt(zx +(n+1x)- A(x; + nt + x)

2\

+—8- A(z; +pst + :U)) }

+ Exponentiation then in terms of NLP webs
Y C(D)F(D) = exp [C(D)Wg(D) + C'(D)Wng(D)]

Bonocore, EL, Magnea, Melville, Vernazza, White
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LI. resummation for cross section at NL.P

+ Can show that phase space NLP effects behave as
e(l—2)
» 1.e. softness suppression comes with singularity suppression
» =>phase space does not give leading logs

+ (Can show that there are no LL enhancements from purely collinear regions (single
log)

»  =>LL effects come then only from NLP soft function = NLP webs

50



Exponentating NLP soft function

+ Moments of cross section

/1 i dopy
0 dT

= 50(Q) an (Q*)an (Q%) Sxp (N, Q% €),

LL, NLP

+ with NLP soft function (f's are NLP Wilson lines)

5= 2 Sn [l a0 (= - L)

S
+ Exponentiation then gives

= 00(Q%) gL, nLp (N, Q%) gL, NnLp (N, Q7)

41()?\[(]\7))] |

[asCF
X exp
T

(2 log?(N) +

» agrees with 1998 conjecture
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LL resummation of NLP logarithms in

prompt photon production

Basu, Beenakker, van Beekveld, EL, Misra, Motylinski
to appear
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NLP resummation in prompt photon production at fixed pr

Threshold resummation of powers of a o c
Ap2

In(1-27)  of=-7 % %
S

Threshold resummation long known, to NNLL and even beyond

EL, Oderda, Sterman; Catani, Mangano, Nason, Oleari

Joint threshold+recoil resummation Ridolfi; De Florian,Vogelsang+Sterman, Schaefer;
EL, Sterman, Vogelsang Becher, Schwartz + Lorentzen; Hinderer, Ringer, Sterman,
Vogelsang

»  gives about 20% correction w.r.tthreshold

Two ways of including NLP logarithms
» 1) Extend kernel to NLP in Sudakov exponent => modified resummation exponent

»  2) Extend PDF evolution to soft scale, automatically includes NLP terms
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Joint-resummation

Joint-resummed formula

d (direct,joint)

AB—)fy—|—X d2QT N+1
dpr 87TS2 / 271 / )2 (4|pT El QT/2|2> fa/A( MF)fb/B( , LF)

Ma 5132 2 -
/ a52(2)N MarodCDI vy, g2/2 22y
0 /1 — 32

9 / @b ™97 0 (5 — |Qr) Paa(N, b, ur, i, Q). (13)

with resummation
Pabd(N7 b7 HE, LR, Q) = €Xp [EET(N7 b7 HE, LR, Q) =+ EIE)T(N7 b7 HE, LR, Q) + Fd(N7 HR, Q) + gabd(N)}

Initial state Initial state Final state Soft

Q? dk2 2Nk Nk
BRG] = /O i = S k) [Jo(ka)Ko( QT)+1H( QTH

_ (9% qk2
—InN T A (s (K2))
W ki
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Numerical results

+ Effect of NLP logs, LL accuracy = about 10-20% positive

+ Scale uncertainty reduces as well

107 MF:JQF:1/2Q 107
—  NLL exp. |
109} — NLL + NLP (h')
--- NLL + NLP (diag. evol.)
_10°%) NLL + NLP (LL evol.) __ 0%
> 1 N | NLL + NLP (full evol.) || 3
Q 104 1 Q 10¢
S o)
2 2
52 103 ] 52 10°}
£ ]
S s
S ©
10%F 1 107
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o
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o
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106}
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Summary

Soft approximation reveals patterns enabling all-order resummation

Next-to-soft/NLP is also promising

Factorization + LBDK theorem leads to strong predictive power for NLP threshold logs
»  Drell-Yan at NNLO

Simply NLP formulae at NLO for colour singlet final states

» and now also prompt photon

LL resummation at NLP for Drell-Yan done

»  NLL seems much harder

NLP corrections are becoming an interesting object of study

»  Dedicated recent workshops in Edinburgh and Amsterdam
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